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Complex analytic spaces 1: Hodge decomposition

Rules: This is a class assignment for the next week. Exercises with [*] are extra hard and not necessary to

follow the rest. Exercises with [!] are non-trivial, fundamental and necessary for further work.

1.1 Complex structures on real vector spaces

Definition 1.1. Let V be a vector space over a field k. A linear operator A ∈ Endk(V )
is semisimple if it can be diagonalized over the algebraic closure k̄. It is of finite
order if An = IdV for sone integer n > 0.

Exercise 1.1. Prove that any operator of finite order over a field k of characteristic
0 is semisimple

Exercise 1.2 (*). Find a non-semisimple operator of finite order over a field k of
characteristic p.

Definition 1.2. Complex structure on a real vector space V is an endomorphism
I ∈ End(V ) satisfying I2 = − IdV .

From now on, V is considered a real vector space.

Exercise 1.3. Let F : V −→ V be an operator which satisfies F 3 = −F . Prove that
F is semisimple. Prove that F is written in some (real) basis by a matrix



0 0
0 0

.
.
.

.
.
.

0 −1
1 0

.
.
.

.
.
.

0 −1
1 0



Exercise 1.4. Let V be a real vector space equipped with an action of a group G =
Z/nZ, n > 2, such that non-unit elements of G act on V by linear automorphisms
without non-zero fixed vectors. Prove that V admits a G-invariant complex structure
operator.

Exercise 1.5 (*). Prove that the space of all complex structures I : V −→ V is
homotopy equivalent to the space of all non-degenerate skew-symmetric 2-forms ω ∈
Λ2V .

Exercise 1.6. Let I be a complex structure on a vector space V of dimension 2n.
Prove that the group of invertible matrices A ∈ GLR(V ) satisfying A ◦ I = I ◦ A is
isomorphic to GL(n,C).
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1.2 Algebras defined by generators and relations

Definition 1.3. Let V be a vector space. Free or tensor algebra generated by V
is an algebra T (V ) :=

⊕
i V
⊗i with multiplivation given by x · y = x ⊗ y. The zero

component V ⊗0 is identified with the ground field. Therefore, T (V ) is an algebra with
unit.

Exercise 1.7. Let V be a vector space over the ground field k, called “the space of
generators”, and W ⊂ T (V ) another space called “the space of relations”. Consider the

quotient space A := T (V )
T (V )WT (V ) , where T (V )WT (V ) is a subspace of T (V ) generated

by vectors vwv′, where w ∈ W , v, v′ ∈ T (V ). Assume that A is non-zero. Prove that
A is equipped with a natural structure of an algebra with unit, in such a way that the
quotient map T (V )−→A is an homomorphism.

Definition 1.4. In assumptions of the previous exercise, let vi be a basis in V , and
wi basis in W . Each relation wi = 0 can be written as a non-commutative tensorial
expression ∑

I

αi1,...,inxi1xi2 · · · = 0

where I runs through a set of multi-indices i1, . . . , in, for various n, and αi1,...,in ∈ k
are scalar coefficients. The algebra A is called algebra with generators vi and
relations wi = 0.

Definition 1.5. Let V be a 3-dimensional space over R, with basis I, J,K, and H an
algebra generated by V with relations I2 = J2 = K2 = I · J · K = −1. Then H is
called quaternion algebra.

Exercise 1.8. Prove that quaternion algebra is a 4-dimensional algebra with division.

Hint. Use the same argument which was used to show that the complex numbers have
division.

Exercise 1.9. a. Prove that any algebra A with unit can be defined by generators
and relations.

b. (*) Prove that when A is finite-dimensional, this can be done in such a way that
the space of generators V and the space of relations W are finitely-dimensional.

Definition 1.6. An algebra A defined by the space of generators V and the space of
relations W is called finitely generated if V can be chosen finitely-dimensional, and
finitely represented if both W and V can be chosen finite-dimensional.

Exercise 1.10. a. Prove that the matrix algebra Mat(R2) is finitely represented.

b. Prove that the algebra k[t, t−1] of Laurent polynomials is finitely represented.

Exercise 1.11 (*). Find a finitely generated algebra which is not finitely represented.
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Definition 1.7. Let V be a vector space with a bilinear symmetric form g : V ⊗
V −→ R. Consider the algebra Cl(V ) generated by V , with relations

v1 · v2 + v2 · v1 = g(v1, v2) · 1,

for all v1, v2 ∈ V . This algebra is called Clifford algebra over k.

Exercise 1.12. Describe all Clifford algebras over R for dimV = 1, 2.

Exercise 1.13. Prove that the following algebras are isomorphic to a Clifford algebra
over R for an appropriate space V with bilinear symmetric form g, and find this V
and g.

a. C

b. (!) H

c. (!) Mat(2,R)

d. (*) Mat(4,R).

Exercise 1.14 (*). Let n = dimV . Find dim Cl(V ).

1.3 Grassmann algebra

Definition 1.8. An algebra A is called graded if A is represented as A =
⊕
Ai,

where i ∈ Z, and the product satisfies Ai · Aj ⊂ Ai+j . Instead
⊕
Ai one often writes

A∗, where ∗ denotes all indices together. Some of the spaces Ai can be zero, but the
ground field is always assumed to belong in A0.

Example: The tensor algebra T (V ) and the polynomial algebra are obviously
graded.

Definition 1.9. A subspace W ⊂ A∗ of a graded algebra A∗ =
⊕

iA
i is called

graded if W is a direct sum of components W i ⊂ Ai.

Exercise 1.15. Let W ⊂ T (V ) be a graded subspace. Prove that the algebra gener-
ated by V with relation space W is also graded.

Definition 1.10. Let V be a vector space, and W ⊂ V ⊗ V a graded subspace,
generated by vectors x⊗y+y⊗x and x⊗x, for all x, y ∈ V . A graded algebra defined
by the generator space V and the relation space W is called Grassmann algebra,
or exterior algebra, and denoted Λ∗(V ). The space Λi(V ) is called i-th exterior
power of V , and the multiplication in Λ∗(V ) – exterior multiplication. Exterior
multiplication is denoted ∧.

Remark 1.1. Grassmann algebra is a Clifford algebra with the symmetric form g = 0.

Exercise 1.16. Prove that Λ1V is isomorphic to V .
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Exercise 1.17. Let V be finitely dimensional. Prove that Λ2(V )∗ is isomorphic to
the space of bilinear skew-symmetric forms on V .

Exercise 1.18. Consider a subalgebra
⊕

i∈Z Λ2i(V ) in a Grassmann algebra. Prove
that this subalgebra is commutative.

Definition 1.11. An element of Grassmann algebra is called even if it lies in
⊕

i∈Z Λ2i(V )
and odd if it lies in

⊕
i∈Z Λ2i+1(V ). For an even or odd x ∈ Λ∗(V ), we define a number

x̃ called parity of x. The parity of x is 1 for even x and -1 for odd.

Exercise 1.19 (!). Prove that x ∧ y = (−1)x̃ỹy ∧ x.

Exercise 1.20 (*). Find all η ∈ Λ2(V ) such that η2 = 0.

Exercise 1.21. Let x1, x2, . . . be a basis in V ∼= Λ1V . Show that the set of vectors
xi1 ∧ xi2 ∧ xi3 ∧ · · · , for all i1 < i2 < i3 < . . . is a basis in Λ∗(V ).

Exercise 1.22 (!). Let V be a d-dimensional vector space. Find dim Λi(V ). Prove
that dim ΛdV = 1.

Definition 1.12. The space ΛdV is called the space of determinant vectors on
V .

Exercise 1.23. Let V be a d-dimensional vector space, x1, x2, . . . , xd its basis, and
det := x1 ∧ x2 ∧ x3 · · · ∧ xd the corresponding determinant vector in ΛdV . For a given
permutation I = (i1, i2, . . . , id) consider a vector I(det) := xi1 ∧ xi2 ∧ xi3 · · · ∧ xid .
Prove that I(det) = ±det. Prove that this correspondence gives a homomorphism σ
from the group Sd of permutations to {±1}. Prove that this homomorphism maps
a product of odd number of transpositions to -1 and a product of even number of
transpositions to 1.

Definition 1.13. The number σ(I) is called signature of a permitation I.

Definition 1.14. Let η ∈ V ⊗d be an element in the d-th tensor power of V . The
group Sd acts on V ⊗d by permutation of tensor factors. Define Alt(η) as

Alt(η) :=
1

d!

∑
I∈Sd

σ(I)I(η).

This operation is called antisymmetrization. We say that a vector η ∈ V ⊗d is
totally antisymmetric if η = Alt(η).

Exercise 1.24. Let η ∈ V ⊗d be a vector which satisfies η = 1
d!

∑
I∈Sd

I(η). Prove
that I(η) = η for any permutation I ∈ Sd.

Exercise 1.25 (!). Let η ∈ V ⊗d be a totally antisymmetric tensor. Prove that I(η) =
σ(I)η for any permutation I ∈ Sd.

Exercise 1.26. Prove that Alt(Alt(η)) = Alt(η) for any η ∈ V ⊗d.

Issued 07.08.2023 – 4 – Handouts version 1.0, 07.08.2023



Complex analytic spaces 1: Hodge decomposition Complex analytic spaces, Misha Verbitsky

Exercise 1.27. Let W ⊂ V ⊗ V be the space of relations of Grassmann algebra
defined above. Prove that Alt(T (V ) ·W · T (V )) = 0.

Remark 1.2. From this exercise it follows that there exists a natural map from Λi(V )
to the space imAlt of totally antisymmetric tensors.

Exercise 1.28 (!). Prove that the homomorphism Λi(V )−→ imAlt defined above is
bijective.

Exercise 1.29 (!). In the previous exercise, we have identified Λ∗(V ) and the space
of totally antisymmetric tensors. This defines multiplicative structure on the space of
totally antisymmetric tensors. Prove that this multiplicative structure can be written
as follows. Given totally antisymmetric tensors α, β ∈ T (V ), to find α ∧ β ∈ imAlt =
Λ∗(V ), we muptiply α and β in T (V ) and apply Alt.

Remark 1.3. From now on, we identify Λ∗(V ) and the space of totally antisymmetric
tensors, and consider Λ∗(V ) as a subspace in the tensor algebra.

Exercise 1.30. Let V1, V2 be vector spaces. Prove that Λ∗(V1 ⊕ V2) and Λ∗(V1) ⊗
Λ∗(V2) are isomorphic as graded vector spaces.

Exercise 1.31. Prove that dim Λ∗(V ) = 2dimV .

Exercise 1.32. Consider the map

V ⊗ Λi(V )
∧−→ Λi+1(V ),

defined by x⊗η 7→ x∧η. For any given η, this defines a linear map Lη : V −→ Λi+1(V ).

a. (*) Prove that for all η 6= 0 one has dim kerLη 6 i.

b. (*) Suppose that dim kerLη = i. Prove that in this case η = x1 ∧ x2 ∧ · · · ∧ xi
for some x1, . . . , xi ∈ V .

1.4 Determinant

Exercise 1.33. Let W be a one-dimensional vector space over k. Prove that EndW
is naturally isomorphic to k.

Exercise 1.34. Let A ∈ End(V ) be a linear endomorphism of a vector space V .
Prove that the action of A on V ∼= Λ1V is uniquely extended to a multiplicative
endomorphism of the algebra Λ∗V . Prove that this homomorphism preserves the
grading.

Definition 1.15. Let V be a d-dimensional vector space and A ∈ End(V ). Consider
the induced endomorphism of the space of determinant vectors Λd(V ) denoted as
detA ∈ End(Λd(V )). Since Λd(V ) is 1-dimensional, the space End(Λd(V )) is naturally
identified with k. This allows to consider detA as a number, that is, an element of k.
This number is called determinant of A.
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Exercise 1.35. Let V be a vector space, and x1, . . . , xd ∈ V . Prove that x1 ∧ x2 ∧
· · · ∧ xd 6= 0 if and only if these vectors are linearly independent.

Exercise 1.36 (!). Prove that A ∈ End(V ) has positive-dimensional kernel if and
only if detA = 0.

Hint. Use the previous exercise.

Exercise 1.37 (!). Prove that det defines a homomorphism from the group GL(V )
of invertible matrices to the multiplicative group k∗ of the ground field.

Exercise 1.38 (!). Let V , V ′ be vector spaces, A,A′ their endomorphisms. Then
A⊕A′ defines an endomorphism of V ⊕ V ′. Prove that det(A⊕A′) = detA detA′.

Hint. Use the isomorphism Λ∗(V ⊕ V ′) ∼= Λ∗(V )⊗ Λ∗(V ′).

Exercise 1.39 (*). Let V be a vector space equipped with a non-degenerate bilinear
form, that is, an isomorphism g : V −→ V ∗, and A a linear operator preserving g.
Prove that detA = ±1.

Exercise 1.40 (!). Let V = Rn, and α ∈ ΛmV , α 6= 0. Prove that there exists
β ∈ Λn−mV such that α ∧ β 6= 0.

1.5 Hodge decomposition

Exercise 1.41. Let (V, I) be a real vector space equipped with a complex structure
operator. Prove that the corresponding complex vector space VC := V ⊗R C is de-
composed as VC = V 1,0 ⊕ V 0,1, with I

∣∣
V 1,0

=
√
−1 and I

∣∣
V 1,0

= −
√
−1. Prove that

dimC V
1,0 = dimC V

0,1 = 1
2 dimR V .

Exercise 1.42 (!). In these assumptions, let Λp,0(V ) := ΛpC(V 1,0), Λ0,q(V ) := ΛpC(V 0,q),
and Λp,q(V ) := Λp,0(V )⊗C Λ0,q(V ). Prove that Λ∗(V ) =

⊕
p,q Λp,q(V ).

Definition 1.16. The decomposition Λ∗(V ) =
⊕

p,q Λp,q(V ) is called the Hodge
decomposition on the Grassmann algebra.

Exercise 1.43 (!). Let dimR V = 2n, and Φ ∈ Λn,0(V ) be a non-zero element. Con-
sider x ∈ VC. Prove that x ∈ V 1,0 if and only if x ∧ Φ = 0.

Exercise 1.44 (*). Let η ∈ Λ2V be a non-degenerate 2-form, and Lη : ΛkV −→ Λk+2V
the multiplication map x−→ x ∧ η. Prove that Lkη : Λ1V −→ Λ1+2kV is injective if
dimV > 2k.
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