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Complex analytic spaces 3: Weierstrass preparation the-
orem

Rules: This is a class assignment for the next week. Exercises with [*] are extra hard and not necessary to follow

the rest. Exercises with [!] are non-trivial, fundamental and necessary for further work.

3.1 Germs of holomorphic functions

Definition 3.1. Let U,U ′ ⊂ Cn be neighbourhoods of 0 and f ∈ OU , f
′ ∈ OU ′ holomorphic

functions. We say that f and f ′ have the same germ, f ∼ f ′ if f
∣∣
U∩U′ = f ′

∣∣
U∩U′ . Clearly,

∼ gives an equivalence relation on the set of pairs (U 3 0, f ∈ OU ). An equivalence class
is called germ of a holomorphic function. We always consider germs as holomorphic
functions defined in a neighbourhood of 0 ∈ Cn. The space of germs in 0 of holomorphic
functions on Cn is denoted O0,Cn or On. In the same way one defines the space of germs
Ox,M of functions in x ∈M , where M is a complex manifold.

Remark 3.1. Clearly, the equivalence relation ∼ is compatible with multiplication and ad-
dition. Therefore, O0,Cn is a ring.

Exercise 3.1. Let f be a holomorphic functions on a ball B ⊂ Cn which vanishes in an
open subset U ⊂ B. Prove that f = 0.

Exercise 3.2. Let U ⊂ V be connected open subsets of a complex manifold, and H0(OU ),
H0(OV ) the rings of holomorphic functions on U, V . Prove that the restriction map
H0(OU )−→H0(OV ) is injective.

Definition 3.2. A ring R′ ⊃ R is called finitely generated over R if it is isomorphic to a
quotient ring R[t1, ..., tn]/I for some ideal I ⊂ R[t1, ..., tn].

Exercise 3.3 (*). Prove that the ring On of germs of holomorphic functions is not finitely
generated over C for any n > 0.

Definition 3.3. Formal power series in variables t1, ..., tn is a sum

∞∑
i=0

Pi(t1, ..., tn),

where Pi are homogeneous polynomials of degree i. Addition of power series is defined
componentwise, multiplication is defined via( ∞∑

i=0

Pi(t1, ..., tn)

)( ∞∑
i=0

Qi(t1, ..., tn)

)
=

∞∑
i=0

Ri(t1, ..., tn)

where Rd(t1, ..., tn) =
∑
i+j=d Pi(t1, ..., tn)Qj(t1, ..., tn).

Exercise 3.4. Prove that the space of power series is a ring.

Exercise 3.5. Construct an injective ring homomorphism from On to C[[t1, ..., tn]].

Exercise 3.6. Prove that On has no zero divisors.

Definition 3.4. A ring R is called local if it contains an ideal I ⊂ R such that all elements
r /∈ I are invertible.

Exercise 3.7. Prove that the ring On is local.

Exercise 3.8 (*). Prove that the ring C[[t1, ..., tn]] is not finitely generated over On ⊂
C[[t1, ..., tn]].
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3.2 Principal part of a germ of holomorphic function

Definition 3.5. Let f ∈ On be a germ of holomorphic function on Cn. Write its Taylor
series f(z) =

∑∞
i=0 Pi(t1, ..., tn), where Pi are homogeneous polynomials of degree i. We say

that f has zero of order (or of multiplicity) k in 0 if P0 = ... = Pk−1 = 0. In this
situation principal part if the function f is the homogeneous polynomial Pk.

Exercise 3.9 (!). Let Φ(t1, ..., tn) = F1(t1, ..., tn), ..., Fn(t1, ..., tn) be the holomorphic coor-

dinate change around 0, with Fi(0, ..., 0) = 0, and A :=
(
dFi

dtj

)
its diferential. Prove that

a. For any germ f ∈ On which has 0 of multiplicity k, the function Φ∗(f) has zero of the
same multiplicity.

b. The principal part of Φ∗(f) is obtained from the principal part of f by action of A.

Hint. Write Φ as a composition of A and a map

(t1, ..., tn)−→G1(t1, ..., tn), ..., Gn(t1, ..., tn),

where Gi = ti + Pi(t1, ..., tn), and all Pi have zeroes in 0 with multiplicity > 2.

Remark 3.2. For any germ F ∈ On, the expression F (0, zn) denotes F (0, 0, 0..., 0, zn).

Exercise 3.10 (!). Let F ∈ On be a germ of holomorphic function with zero of multiplicity

k. Prove that lim
zn→0

F (0,zn)
zkn

= Q(0, ..., 1), where Q is the principal part of F .

Exercise 3.11 (!). Let Q be a non-zero homogeneous polynomial on t0, ..., tn, and V (Q) its
zero set, which we consider as a subset in CPn.

a. Prove that CPn\V (Q) is non-empty.

b. Prove that V (Q) ⊂ CPn is a set of measure 0.

Exercise 3.12. Let Q1, ..., Qn, ... ∈ C[z1, ..., zn+1] be a countable set of homogeneous poly-
nomials, and Z1, ..., Zn, ... ⊂ CPn their zero sets. Prove that CPn\

⋃
Zi is non-empty.

Exercise 3.13. Let f1, ..., fn, ... ∈ On be a countable collection of germs, which vanish
with multiplicity k1, k2, .... Prove that there exists a coordinate system z1, ..., zn, such that

lim
zn→0

fi(0,zn)

z
ki
n

6= 0 for all i.

Exercise 3.14 (**). Let f ∈ On be a germ with zero of multiplicity 2. Assume that its
principal part is a non-degenerate quadratic form. Prove “the Morse lemma”: for some
coordinate system z1, ..., zn, the function f is written as f =

∑
z2
i .

Exercise 3.15 (**). Let f ∈ O3 be a germ of holomorphic function on C3. Prove that f is
polynomial in appropriate coordinate system, or find a counterexample.

3.3 Newton formula

Definition 3.6. Let ei ∈ Z[α1, ..., αn] be coefficients of a polynomial tn + e1t
n−1 + ... +

en−1t + en :=
∏n
i=1(t + αi). Then ei are called elementary symmetric polynomials

on αi. Newton polynomials are pj :=
∑n
i=1 α

j
i . Complete homogeneous symmetric

polynomial of degree k is hk obtained as a sum of all homogeneous monomials of degree
k. The corressponding generating functions are formal series E(t) :=

∑n
i=0 eit

i, P (t) :=∑∞
i=1 pit

i, H(t) :=
∑∞
i=0 hit

i ∈ Z[α1, ..., αn][[t]].
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Exercise 3.16. Prove that H(t) =
∏n
i=1

1
1−tαi

.

Exercise 3.17. Prove that E(t) =
∏n
i=1(1 + tαi).

Exercise 3.18. Prove that H(t)E(−t) = 1.

Exercise 3.19. Prove that E′(−t)
E(−t) = −

∑n
i=1

αi

1−tαi
.

Exercise 3.20. Prove that P (t) = −tE
′(−t)
E(−t) .

Exercise 3.21. Prove that pi can be expressed as polynomials of ei (with integer coeffi-
cients).

Exercise 3.22. Prove that hi can be expressed as polynomials of ei with integer coefficients.
Prove that ei can be expressed as polynomials of hi with integer coefficients.

Exercise 3.23. (Newton formula) Prove that kek =
∑k−1
i=1 (−1)iek−ipi.

Hint. Use the formula P (t) = −tE
′(−t)
E(−t) .

Exercise 3.24 (!). Prove that ei are expressed as polynomials on pi with rational coeffi-
cients.

Exercise 3.25 (*). Prove that khk =
∑k
i=1 hk−ipi.

3.4 Logarithmic derivative and Rouché theorem

Exercise 3.26 (!). Let f be a holomorphic function on a disk, non-zero everywhere on its

boundary ∂∆, and Sk(f) := 1
2π
√
−1

∫
∂∆

f ′

f z
kdz. Prove that Sk(f) =

∑
diα

k
i , where αi are

all zeros of f , and di their multiplicities.

Exercise 3.27. (Rouché theorem) Let ft be a family of holomorphic functions on a disk ∆,
continuously depending on a parameter t ∈ R and non-zero everywhere on its boundary ∂∆.
Prove that the number of zeros of ft in ∆ is constant.

Hint. Use the previous exercise.

Exercise 3.28. Prove that all zeros of the polynomial f(z) = z5 + 3z3 + 7 belong to a disk
|z| 6 2.

Exercise 3.29. Prove that the equation z+e−z−10 = 0 has a unique solution with Re z > 0.

Exercise 3.30 (!). Let F (x, y) ⊂ O∆×∆ be a holomorphic function of two complex vari-
ables, having no zeros in the set |x| = 1, and φ(x) a holomorphic function on a unit disk
∆ ⊂ C. Consider a function Φ mapping y0 ∈ ∆ to

∑
diφ(αi), where αi are all zeros of

F (x, y0) in the disk |x| 6 1, and di their multiplicities. Prove that Φ is holomorphic.

Exercise 3.31 (*). Let ft be a continuous family of non-constant holomorphic functions on
a disk, and t ∈ [0, 1] a real parameter. Let S be the set of all t such that ft is injective. Prove
that S is closed in [0, 1].

Hint. Use Rouché theorem.

Issued 20.08.2023 – 3 – Handouts version 1.1, 28.08.2023



Complex analytic spaces 3: Weierstrass preparation theorem Complex analytic spaces, Misha Verbitsky

3.5 Weierstrass preparation theorem

Definition 3.7. Let z1, ..., zk be coordinates in Ck. Denote the disk of radius r in Ck by
Br(z1, ...zk).

Exercise 3.32. Let F be an analytic function in a neighbourhood of 0 in Cn, such that

lim
zn→0

F (0,zn)
zkn

6= 0,∞. Consider the projection map Π : Cn −→ Cn−1 (z1, ..., zn)−→ (z1, ..., zn−1).

a. (!) Prove that for an appropriate pair r, r′, the restriction of F to the polydisk
∆(n − 1, 1) := Br(z1, ..., zn−1) × ∆r′(zn) nowhere vanishes on the set Π−1(∂∆r′(zn),
where ∂∆r′(zn) is the boundary of the disk.

b. (!) Prove that in this case the restriction of F to this polydisk has precisely k zeros
α1, ..., αk on each fiber of Π.

c. (!) Prove that
∑k
i=1 α

d
i is a holomorphic function on Br(z1, ..., zn−1).

d. (!) Prove that any elementary symmetric polynomial on αi gives a holomorphic
function on Br(z1, ..., zn−1).

Hint. For the last statement use the Newton formula to express the elementary symmetric
polynomials through pi.

Definition 3.8. A Weierstrass polynomial is a function f ∈ On−1[zn], with the leading
coefficient 1. Equivalently, a Weierstrass polynomial is f(z1, z2, ..., zn) = zkn + ak−1z

k−1
n +

...+ a0, with all ai ∈ On−1.

Exercise 3.33 (!). Let F be an analytic function in a neighbourhood of 0 in Cn, such that

lim
zn→0

F (0,zn)
zkn

6= 0,∞. Consider the projection map Π : Cn −→ Cn−1 (z1, ..., zn)−→ (z1, ..., zn−1),

and let P (zn) ∈ On−1[zn] be a Weierstrass polynomial, which is expressed as P (zn) =∑k
i=0(−1)k−iek−iz

i
n, where ei are elementary symmetric polynomial on the zeros α1, ..., αk

defined in the previous exercise. Prove that F = P (zn)u, where u is a germ of an invertible
holomorphic function.

Exercise 3.34 (!). Let F ∈ On be a germ of an analytic function.

a. Prove that in appropriate coordinate system, one has F = uP (zn), where P (zn) is a
Weierstrass polynomial of degree k, such that P (0, ..., 0, zn) = zkn.

b. Prove that for an appropriate coordinate system k is equal to the multiplicity of zero
of F .

Definition 3.9. In this case, P (zn) is called the Weierstrass polynomial of F .

Exercise 3.35 (!). Let F1, ..., Fi, ... ∈ On be a collection of germs of analytic functions.
Prove that in appropriate coordinate system, all Fi can be written as Fi = uiPi(zn), where
Pi(zn) is a Weierstrass polynomial.

Exercise 3.36. Consider a function f(z, w) = wz2 +(1+w2)z+w(1+w2) on C2. Compute
its Weierstrass polynomial.

Hint. Express z through w by solving the quadratic equation f(z, w) = 0.
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