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Complex variables 5: Ring of germs (Noetheri-
anity, factoriality)

Rules: This is a class assignment for the next week. Exercises with [*] are extra hard and not

necessary to follow the rest. Exercises with [!] are non-trivial, fundamental and necessary for

further work.

Remark 5.1. All rings in the sequel are assumed commutative, associative and
with unit.

5.1 Gauss lemma

Definition 5.1. An element a of a ring R is invertible if there exists b ∈ R
such that ab = 1. A non-invertible element r ∈ R is called prime if for any
divisor r′|r, either r′ or r/r′ is invertible.

Exercise 5.1. Prove that in the ring On of germs of holomorphic functions
every element can be decomposed to a product of primes.

Exercise 5.2. Prove that in the ring OM of holomorphic functions on an open
subset M ⊂ Cn, every element can be decomposed to a product of primes, or
find a counterexample.

Definition 5.2. We say that a ring R is factorial if it has no zero divisors,
any element of R has prime decomposition, and for any two decompositions
a = r1r2...rn = s1s2...sm to prime multipliers, these decompositions coincide up
to the order and invertible multipliers.

Remark 5.2. Now we shall prove Gauss lemma: the polynomial ring R[t] is
factorial if R is factorial.

Exercise 5.3. Let R be a ring without zero divisors. Prove that the polynomial
ring R[t] has no zero divisors.

Definition 5.3. Let R be a factorial ring. A polynomial P (t) ∈ R[t] is called
primitive if the greatest common divisor (gcd) of its coefficients is 1.

Exercise 5.4 (!). Let P1(t), P2(t) ∈ R[t] be primitive polynomials, and R fac-
torial. Prove that the product P1(t)P2(t) is also primitive.

Hint. Prove that P1(t)P2(t) is non-zero modulo p ∈ R, if p is prime, and
P1(t), P2(t) are non-zero modulo p.

Exercise 5.5. Let R be a factorial ring, P (t) ∈ R[t] primitive polynomial, and
rP (t) = r′P1(t)P2(t) decomposition of the polynomial rP (t), where r, r′ ∈ R
and P1(t), P2(t) ∈ R[t] are primitive polynomials. Prove that r/r′ is invertible.

Hint. Use the previous exercise.
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Exercise 5.6. Let R be a factorial ring, and K its fraction field. Prove that
every primitive polynomial P (t) ∈ R[t], which is irreducible in R[t], is also
irreducible in K[t].

Hint. Use the previous exercise.

Exercise 5.7. Prove the Gauss lemma: for any factorial ring R, the ring of
polynomials R[t] is also factorial.

Exercise 5.8. Let f ∈ On−1[zn] be a Weierstrass polynomial of degree d, prime
in the ring On−1[zn], and satisfying f(0, ..., 0, zn) = zd. Prove that f is inde-
composable in the ring On.

Hint. Use the Weierstrass preparation theorem on the multipliers of f .

Exercise 5.9. Let f = r1r2...rn = s1s2...sm be two prime decompositions in
the ring On. Prove that in some coordinate system, all si and ri can be obtained
as a product of an invertible function and Weierstrass polynomials of degree d
satisfying f(0, ..., 0, zn) = zd.

Exercise 5.10. Prove that the ring O1 (germs of holomorphic functions in one
variable) is factorial.

Exercise 5.11. Let f ∈ On−1[zn] be a Weierstrass polynomial of degree d
satisfying f(0, ..., 0, zn) = zd, and f = r1r2...rn = s1s2...sm its prime decom-
positions. Assume that On−1 is factorial. Prove that these two decompositions
coincide up to the order and invertible multipliers

Hint. Use the Gauss lemma.

Exercise 5.12 (!). Prove that the ring On of germs is factorial.

Exercise 5.13 (*). Prove that the ring C[[t1, ..., tn]] of formal power series is
factorial.

5.2 Ascending chain condition

Definition 5.4. Let (S,≺) be a partially ordered set (poset). We say that S
satisfies ascending chain condition if for any sequence a1 � a2 � a3 � a4 �
... of elements of S, all ai starting from some N � 0 coincide. The poset S
satisfies descending chain condition if for any sequence b1 � b2 � b3 � b4 �
... of elements of S, all bi starting from some N � 0 coincide.

Definition 5.5. Let R be a ring, and S the set of all ideals in R, ordered
by inclusion. We say that R is Noetherian if S satisfies the ascending chain
condition, and Artinian if it satisfies the descending chain condition.

Exercise 5.14. Let R be a ring which has only one prime ideal. Prove that R
is Artinian, or find a counterexample.
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Exercise 5.15 (*). Let R be a ring which has only one prime ideal. Prove
that R is Noetherian, or find a counterexample.

Remark 5.3. Consider the ring R as a module over itself. Clearly, submodules
of R coincide with ideals of R.

Definition 5.6. An R-module M is finitely generated over R if there exists
a finite collection r1, ..., rn ∈M such that M = R · r1 +R · r2 +R · r3 + ...R · rn.
In this situation r1, ..., rn are called generators of M . An ideal in R is called
finitely generated if it is finitely generated as an R-module.

Exercise 5.16 (!). Prove that the ring R is Noetherian if and only if all its
ideals are finitely generated.

Exercise 5.17. Prove that the rings Z and C[t] are Noetherian.

Exercise 5.18. Construct a ring which is not Artinian and not Noetherian.

Exercise 5.19 (*). Let M be a circle, and C(M) the ring of continuous func-
tions on M . Prove that C(M) is non-Noetherian. Is it Artinian?

Exercise 5.20 (*). Let R be a Noetherian ring. Prove that R admits prime
decomposition, or find a counterexample.

5.3 Noetherian modules

Definition 5.7. Let R be a ring. Noetherian module over R is an R-module
which satisfies the ascending chain condition.

Exercise 5.21. Prove that any submodules and quotient modules of a Noete-
rian module are also Noetherian.

Exercise 5.22 (!). Prove that a ring R is Noetherian if and only if any ideal
I ⊂ R is finitely generated as an R-module.

Definition 5.8. Short exact sequence of R-modules is a sequence of R-
modules and homomorphisms

0−→M1
i−→ M2

e−→ M3 −→ 0

such i is injective, e surjective, i ◦ e = 0, and ker e = im i.

Exercise 5.23 (!). Let 0−→M1
i−→ M2

e−→ M3 −→ 0 be an exact sequence
of R-modules, where M1 and M3 are Noetherian. Prove that M2 is also Noethe-
rian.

Exercise 5.24 (*). Let u : M −→M be a surjective endomorphism of a
Noetherian R-module. Prove that it is injective.

Hint. Use the ascending chain condition on a chain ker u ⊂ ker u2 ⊂ ....
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Definition 5.9. An R-module M is called cyclic if it is isomorphic to R/I,
where I is an ideal.

Exercise 5.25. Prove that an R-module is cyclic if and only if it is generated
over R by one element r ∈M .

Exercise 5.26. Let R be a Noetherian ring, and M a cyclic R-module. Prove
that N is Noetherian.

Exercise 5.27 (!). Let M be an R-module. Prove that M is finitely generated
if and only if it admits a filtration 0 = M0 ⊂ M1 ⊂ ... ⊂ Mn = M by R-
submodules, and all subquotients Mi/Mi−1 are cyclic.

Exercise 5.28. Let R be a Noetherian ring, and M an R-module. Prove that
M is finitely generated if and only if it is Noetherian.

Hint. Use the induction by the number of generators and apply Exercise 5.23.

5.4 Lasker’s theorem: the ring of germs is Noetherian

Exercise 5.29. Prove that the ring of holomorphic functions on a disk ∆ ⊂ C
is non-Noetherian.

Exercise 5.30. Prove that the ring O1 of germs of holomorphic functions in
one variable is Noetherian.

Exercise 5.31. Let P (z, zn) ∈ On−1[zn] – be a Weierstrass polynomial of de-
gree k with P (0, zn) = zkn, and a (P ) ⊂ On the ideal generated by P . Prove
that On/(P ) is generated by On−1 and 1, zn, z

2
n, ..., z

k−1
n .

Hint. Use the Weierstrass division theorem.

Exercise 5.32. Prove that the quotient On/(P ) is finitely generated as an
On−1-module.

Exercise 5.33. Let I ⊂ On be an ideal in the ring of germs. Suppose that
On−1 is Noetherian. Let P ∈ I be a Weierstrass polynomial of degree k with
P (0, zn) = zkn.

a. Prove that the image I/(P ) of I in On/(P ) is finitely generated as an
On−1-module.

b. Let r̄1, ..., r̄m be generators of I/(P ), considered as On−1-module, and
r1, ..., rm their representatives over I. Prove that I is generated over On

by P and r1, ...rm.

c. Prove that any ideal I ⊂ On is finitely generated as an On-module.

Exercise 5.34 (!). Prove Lasker’s theorem: the ring On is Noetherian.

Exercise 5.35 (*). Let A be the ring of rational functions on Cn which are
holomorphic in 0. Consider A as a subring in On, and let R ⊂ On be a subring
containing A. Prove that R is Noetherian or find a counterexample.
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