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Complex variables 6: A crash-course in Galois theory

Rules: This is a class assignment for the next week. Exercises with [*] are extra hard and not necessary to

follow the rest. Exercises with [!] are non-trivial, fundamental and necessary for further work.

6.1 Artinian algebras

Remark 6.1. In this assignment, algebra over a field k denotes a vector space over
a field k with k-linear, commutative multiplication, possibly without unity. A ring is
a commutatove ring with unity. Finite field extension [K : k] of field K over a field
k ⊂ K is a field K which contains a subfield k, which is finite-dimensional as a vector
space over k.

Definition 6.1. Let R be a commutative algebra with unity over a field k. We say
that R is an Artinian ring over k if R is finite-dimensional as a vector space over
k.

Remark 6.2. Let A ∈ EndV be a linear endomorphism of a finite-dimensional vector
space V over k. Consider the subalgebra k[A] ⊂ EndV generated by unity and A.
Clearly, k[A] is an Artinian ring.

Exercise 6.1 (!). Let R be an Artinian ring without zero divisors. Prove that R is a
field.

Hint. Prove that any injective endomorphism of a finite-dimensional space is invert-
ible. Use this to find x−1 for any given x ∈ R.

Exercise 6.2. Prove that any prime ideal in an Artinian ring is maximal.

Hint. Use the previous exercise.

Definition 6.2. An Artinian ring is called semisimple if it does not contain non-zero
nilpotents.

Definition 6.3. Let R1, . . . , Rn be algebras over a field. Consider the direct sum⊕
iRi with the natural (componentwise) addition and multiplication. This algebra is

called the direct sum of R1, . . . , Rn.

Exercise 6.3. Prove that the direct sum of semisimple Artinian rings is semisimple.

Exercise 6.4. Let v ∈ R be an element of a finite-dimensional algebra R over k.
Consider a subspace k[v] ⊂ R generated by 1, v, v2, v3, . . . . Suppose that dim k[v] = n.
Prove that P (v) = 0 for a polynomial P = tn + an−1t

n−1 + . . . with coefficients in k.
Prove that this polynomial is unique.

Definition 6.4. This polynomial is called the minimal polynomial of v ∈ R.

Exercise 6.5. Let v ∈ R be an element of an Artinian ring over k, and P (t) its
minimal polynomial. Consider the subalgebra k[v] ⊂ R generated by v and k. Prove
that R[v] is isomorphic to the ring k[t]/(P ) of residues modulo P (t).
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6.2 Idempotents

Definition 6.5. Suppose that v ∈ R satisfies v2 = v. Then v is called an idempo-
tent.

Exercise 6.6. Let e ∈ R be an idempotent in a ring. Prove that 1 − e is also an
idempotent. Prove that a product of idempotents is an idempotent.

Exercise 6.7. Let e ∈ R be an idempotent in a ring. Consider the space eR ⊂ R
(image of the multiplication by e. Prove that eR is a subalgebra in R, e is unity in
eR, and R = eR⊕ (1− e)R.

Exercise 6.8 (!). Let R = k[t]/P , where P ∈ k[t] is a polynomial decomposing
as a product P = P1P2 . . . Pn of coprime polynomials. Prove that there exists an
isomorphism R−→

⊕
i k[t]/Pi mapping t to (t, t, . . . , t).

Hint. Use the Chinese remainder theorem.

Exercise 6.9 (!). Let R be a semisimple Artinian ring with all idempotents equal to
1 or 0. Prove that it is a field.

Hint. Suppose that R is not a field. Consider a subalgebra k[x] ⊂ R generated by a
non-invertible element x, and apply the previous exercise.

Definition 6.6. We say that idempotents e1, e2 ∈ R are orthogonal if e1e2 = 0.

Exercise 6.10. Let e2, e3 ∈ R be orthogonal idempotents. Prove that e1 := e2 + e3
is also an idempotent satisfying e2, e3 ∈ e1R and e1R = e2R⊕ e3R.

Exercise 6.11. Let char k 6= 2, and e1, e2, e3 idempotents in an algebra R over k.
Suppose that e1 = e2 + e3. Prove that e2, e3 are orthogonal.

Definition 6.7. An idempotent e ∈ R is called indecomposable if there are no
non-zero orthogonal idempotents e2, e3 such that e = e2 + e3.

Exercise 6.12 (!). Let R be a semisimple Artinian algebra, and e ∈ R a non-
decomposable idempotent. Prove that eR is a field.

Exercise 6.13 (!). Let R be a semisimple Artinian ring over a field k, char k 6= 2.
Prove that 1 can be decomposed to a sum of indecomposable orthogonal idempotents,
1 =

∑r
i=1 ei. Prove that such a decomposition is unique.

Hint. To prove existence, take an idempotent e ∈ R, decompose R to a direct sum of
two subrings, R = eR ⊕ (1− e)R, and use induction in dimk R. For uniqueness, take
two different orthogonal decompositions, 1 =

∑r
i=1 ei, and 1 =

∑s
j=1 fj , and prove

that ei =
∑s

j=1 eifj is an orthogonal decomposition.

Exercise 6.14 (!). Let R be a semisimple Artinian ring over a field k, char k 6= 2.
Prove that R is isomorphic to a direct sum of fields. Prove that this decomposition is
unique.
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Hint. Use the previous exercise.

Exercise 6.15 (*). Is it true when char k = 2?

Exercise 6.16 (*). Let R be an Artinian ring over a field k, char k 6= 2, and 1 =
e1 + · · ·+en a decomposition of 1 to a sum of indecomposable orthogonal idempotents.
Prove that R has precisely n prime ideals.

Exercise 6.17. Let R be a ring, and S the set of all unipotents in R. We define the
following two operations on S: e1 ∩ e2 := e1e2 and e1 ∪ e2 := 1 − (1 − e1)(1 − e2) =
e1 + e2 − e1e2.

a. (**) Prove that there exists a compact, Hausdorff topological space such that
its open sets are in bijection with S, the intersection of open sets corresponds to
e1 ∩ e2, and the union of open sets corresponds to e1 ∪ e2.

b. (**) A boolean ring A is a ring where all elements are idempotent. Prove
that there exists a compact, Hausdorff topological space X such that A is the
ring of continuous functions on X with values in Z/2Z.

6.3 Trace form

Definition 6.8. Let R be an algebra over a field k. A bilinear symmetric form g on
R is called invariant if g(x, yz) = g(xy, z) for all x, y, z ∈ R.

Remark 6.3. If R contains unity, then for any invariant form g, we have g(x, y) =
g(xy, 1). This means that g is uniquely determined by a linear functional x−→ g(x, 1).

Exercise 6.18. Let R be an Artinian ring equipped with a bilinear invariant form g,
and m an ideal in R. Prove that its orthogonal complement m⊥ is also an ideal.

Exercise 6.19 (*). Find an Artinian ring which does not admit a non-degenerate
invariant bilinear form.

Definition 6.9. LetR be an Artinian ring over k. Consider the bilinear form a, b−→ Tr(ab),

where Tr(ab) is the trace of the endomorphism Lab ∈ Endk R, x
Lab−→ abx. This form

is called the trace form, denoted Trk(ab).

Exercise 6.20 (*). Let A be a linear operator on an n-dimensional vector space of
characteristic 0, such that TrA = TrA2 = ... = TrAn = 0. Prove that A is nilpotent.

Exercise 6.21 (!). Let [K : k] be a finite field extension in characteristic 0. Prove
that the trace form is always non-degenerate.

Hint. Prove that Trk(x, x−1) = dimkK.

Definition 6.10. A finite field extension [K : k] with non-degenerate trace form is
called separable.

Exercise 6.22 (*). Find an example of non-separable finite field extension in char-
acteristic p.

Exercise 6.23 (!). Let R be an Artinian ring over k with non-degenerate trace form.
Prove that R is semisimple. Prove that for char k = 0, the trace form is non-degenerate
on any semisimple Artinian ring.
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6.4 Tensor products of field extensions

Exercise 6.24. Let A, B be rings over a field k.

a. Prove that there exists a multiplicative operation (A⊗kB)×(A⊗kB)−→A⊗kB,
mapping a⊗ b, a′ ⊗ b′ to aa′ ⊗ bb′.

b. Prove that this operation defines the ring structure on A⊗k B.

Definition 6.11. The ring A ⊗k B is called the tensor product of the rings A
and B.

Exercise 6.25. Let R,R′ be Artinian rings over k, and g, g′ the trace forms on R,R′.
Consider the tensor product R⊗kR

′, and the bilinear symmetric form g⊗g′ on R⊗R′,
acting as g⊗ g′(a⊗ a′, b⊗ b′) := g(a, a′)g′(b, b′). Prove that g⊗ g′ is equal to the form
a, b−→ Tr(ab).

Exercise 6.26 (!). Prove that the tensor product of semisimple Artinian rings is
semisimple if char k = 0.

Hint. Use the previous exercise.

Exercise 6.27. Let [K1 : k], [K2 : k] be finite extensions, char k = 0. Prove that the
algebra K1 ⊗k K2 is semisiple.

Exercise 6.28. Let P1(t), P2(t) ∈ k[t] be polynomials over k, and Ki := k[t]/(Pi).
Prove that K1 ⊗K2

∼= K1[t]/Q(t) ∼= K2[t]/P (t).

Exercise 6.29. Let P (t) ∈ Q[t] be a polynomial which has precisely r real roots and
2s complex roots which are not real, all roots distinct. Show that

(Q[t]/P )⊗Q R =
⊕
s

C⊕
⊕
r

R.

Exercise 6.30 (*). Find two non-trivial finite extensions [K1 : Q], [K2 : Q] such that
K1 ⊗Q K2 is also a field.

Exercise 6.31 (*). Find two finite extensions [K1 : k], [K2 : k], char k = p such that
K1 ⊗K2 is not semisimple.

6.5 Galois extensions

Remark 6.4. In the sequel, we assume that char k = 0 unless stated otherwise.

Exercise 6.32. Let P (t) ∈ K[t] be a degree n polynomial with n pairwise distinct
roots in K. Prove that the ring K[t]/(P ) is isomorphic as a ring to the direct sum of
n copies of K.

Definition 6.12. Let [K : k] be a finite extension of a field k. We say that [K : k] is
a Galois extension if K ⊗k K is isomorphic (as a ring) to the direct sum of several
copies of K.
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Remark 6.5. A finite extension [K : k] has degree n if K is n-dimensional as a
vector space over k.

Exercise 6.33. Let [K : Q] be a degree 2 field extension. Prove that it is a Galois
extension.

Hint. Show first that K ⊗k K is a direct sum of fields.

Exercise 6.34 (*). Let p be a prime number. Prove that for any root of unity of
degree p, the extension [Q[ζ] : Q] is Galois.

Exercise 6.35. Let P ∈ k[t] be a polynomial of degree n over a field k. Let K1 = k,
and consider a sequence of field extensionsKl ⊃ Kl−1 ⊃ · · · ⊃ K1, obtained inductively
as follows. Suppose that Kj is already constructed. Decompose P onto irreducible
multipliers P =

∏
Pi over Kj . If all Pi have degree 1, we are done. Otherwise, let P0

be an irreducible multiplier of P over Kj of degree d > 0. Take Kj+1 := Kj [t]/P0.
Prove that it is a field. Prove that the sequence Kl ⊃ Kl−1 ⊃ · · · ⊃ K1 terminates
and gives a field K ⊃ k.

Definition 6.13. This field is called the splitting field of a polynomial P .

Exercise 6.36. Let K be the splitting field for a polynomial P (t) ∈ k[t]. Prove that
K is isomorphic to the subfield in an algebraic closure k̄ generated by all roots of P .

Exercise 6.37. Let P (t) be a polynomial of degree n, and d the degree of its splitting
field. Prove that d 6 n!.

Exercise 6.38. Let P ∈ k[t] be a degree n polynomial which has n pairwise distinct
roots in the algebraic closure of k. Let [K : k] be its splitting field, and Kl ⊃ Kl−1 ⊃
· · · ⊃ K1 the corresponding chain of extensions. Prove that K ⊗Ki−1

Ki is isomorphic
to a direct sum of several copies of K.

Hint. Deduce this from Exercise 6.32.

Exercise 6.39. Let P ∈ k[t] be a degree n polynomial which has n pairwise distinct
roots in the algebraic closure of k, and K its splitting field. Prove that [K : k] is a
Galois extension.

Hint. Use the previous exercise and apply induction.

Exercise 6.40 (*). Let a1, ..., an be integers. Prove that Q[
√
a1, ...,

√
an] is a Galois

extension.

Exercise 6.41 (*). Let P (t) ∈ Q[t] be an irreducible cubic polynomial with two
complex and one real root. Prove that Q[t]/(P ) is not a Galois extension of Q.

Exercise 6.42 (*). Find an irreducible cubic polynomial P (t) ∈ Q[t] such that Q[t]/(P )
is a Galois extension of Q.
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6.6 Artin’s primitive element theorem

Exercise 6.43. Let R := ⊕nK be a direct sum of several copies of a field K. Prove
that any subalgebra A ⊂ R contains a unity (which might be distinct from the unity
in R).

Hint. Prove that A is semisimple and show that it is a direct sum of fields.

Exercise 6.44. Prove that subalgebras of R := ⊕nK are in (1,1)-correspondence with
idempotents of R.

Exercise 6.45. Prove that ⊕nK has precisely n! idempotents.

Exercise 6.46. Prove that ⊕nK has finitely many different subalgebras.

Exercise 6.47. Let [K : k] be a finite extension in characteristic 0. Prove that there
exists a Galois extension [K ′ : k] containing K.

Exercise 6.48. Let [K : k] be a finite extension, [K ′ : k] a Galois extension containing
K, and k′ ⊂ K a subfield containing k. Prove that k′ ⊗k K

′ is a subalgebra in
K ′ ⊗k K

′ = ⊕nK ′. Prove that different subfields k′ give different subalgebras in
⊕nK ′.

Exercise 6.49 (!). Let [K : k] be a finite extension, char k = 0. Prove that there are
only finitely many intermediate extensions k ⊂ k′ ⊂ K.

Hint. Use the previous exercise and Exercise 6.46.

Exercise 6.50 (!). Let k be a field of characteristic 0, V a finitely-dimensional vector
space, and V1, ...Vn ⊂ V a family of subspaces of positive codimension. Prove that⋃

i Vi 6= V .

Exercise 6.51 (!). Let [K : k] be a finite extension, char k = 0, and k1, ..., kn all
intermediate subfields k ⊂ ki ( K. Prove that

⋃
i ki 6= K.

Hint. Use the previous exercise.

Definition 6.14. Let [K : k] be a field extension. An element α ∈ K is called
primitive if it generates K.

Exercise 6.52 (!). (Artin’s primitive element theorem) Prove that any finite exten-
sion [K : k] in characteristic 0 is generated by a primitive element.

Hint. Use the previous exercise.

Exercise 6.53 (*). Construct a finite extension [K : k] in char = p such that K does
not contain a primitive element.

Exercise 6.54. Let k := Q[
√

2,
√

3]. Prove that it is a field. Find whether
√

2 +
√

3
is a primitive element in [k : Q] or not.

Exercise 6.55 (*). Let a1, ..., an be integers, such that K := Q[
√
a1, ...,

√
an] is a

field. Find whether
∑

i

√
ai is a primitive element in [k : Q] or not.
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