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Complex structure on vector spaces

DEFINITION: Let V be a vector space over R, and I : V −→ V an automor-

phism which satisfies I2 = − IdV . Such an automorphism is called a complex

structure operator on V .

We extend the action of I on the tensor spaces V ⊗V ⊗...⊗V ⊗V ∗⊗V ∗⊗...⊗
V ∗ by multiplicativity: I(v1⊗...⊗w1⊗...⊗wn) = I(v1)⊗...⊗I(w1)⊗...⊗I(wn).

Trivial observations:

1. The eigenvalues αi of I are ±
√
−1 . Indeed, α2

i = −1.

2. V admits an I-invariant, positive definite scalar product (“metric”)

g. Take any metric g0, and let g := g0 + I(g0).

3. I is orthogonal for such g.

Indeed, g(Ix, Iy) = g0(x, y) + g0(Ix, Iy) = g(x, y).

4. I diagonalizable over C. Indeed, any orthogonal matrix is diagonalizable.

5. There are as many
√
−1-eigenvalues as there are −

√
−1-eigenvalues.
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Comples structure operator in coordinates

This implies that in an appropriate basis in V ⊗R C, the almost complex
structure operator is diagonal, as follows:



√
−1 √

−1
.. . √

−1

0

0

−
√
−1

−
√
−1

.. .
−
√
−1


We also obtain its normal form in a real basis:

0 −1
1 0

0 −1
1 0

.. .
. . .

0 −1
1 0
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The Grassmann algebra

DEFINITION: Let V be a vector space. Denote by ΛiV ∗ the space of

antisymmetric polylinear i-forms on V ∗, and let Λ∗V :=
⊕

ΛiV ∗. Denote by

T⊗iV ∗ the algebra of all polylinear i-forms on V ∗ (“tensor algebra”), and let

Alt : T⊗iV ∗ −→ ΛiV ∗ be the antisymmetrization,

Alt(η)(x1, ..., xi) :=
1

i!

∑
σ∈Σi

(−1)σ̃η(xσ1, ..., xσi)

where Σi is the group of permutations, and σ̃ = 1 for odd permutations, and

0 for even. Consider the multiplicative operation (“wedge-product”) on Λ∗V ,

denoted by η ∧ ν := Alt(η ⊗ ν). The space Λ∗V ∗ with this operation is called

the Grassmann algebra of antisymmetric forms on V ∗.

REMARK: It is an algebra of anti-commutative polynomials.

Properties of Grassmann algebra:

1. dim ΛiV :=
(

dimV
i

)
, dim Λ∗V = 2dimV .

2. Λ∗(V ⊕W ) = Λ∗(V )⊗ Λ∗(W ).
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The Hodge decomposition in linear algebra

DEFINITION: Let (V, I) be a space equipped with a complex structure.

The Hodge decomposition V ⊗R C := V 1,0 ⊕ V 0,1 is defined in such a way

that V 1,0 is a
√
−1 -eigenspace of I, and V 0,1 a −

√
−1 -eigenspace.

REMARK: Let VC := V ⊗R C. The Grassmann algebra of skew-symmetric

forms ΛnVC := ΛnRV ⊗R C admits a decomposition

ΛnVC =
⊕

p+q=n

ΛpV 1,0 ⊗ ΛqV 0,1

We denote ΛpV 1,0 ⊗ ΛqV 0,1 by Λp,qV . The resulting decomposition ΛnVC =⊕
p+q=nΛp,qV is called the Hodge decomposition of the Grassmann al-

gebra.
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De Rham algebra

DEFINITION: Let M be a smooth manifold. A bundle of differential

i-forms on M is the bundle ΛiT ∗M of antisymmetric i-forms on TM . It is

denoted ΛiM .

REMARK: Λ0M = C∞M .

DEFINITION: Let
⊗
k T
∗M Π−→ ΛkM be the antisymmetrization map,

Π(α)(x1, ..., xn) :=
1

n!

∑
σ∈Symn

(−1)σα(xσ1, xσ2, ..., xσn).

Define the exterior multiplication ∧ : ΛiM × ΛjM −→ Λi+jM as α ∧ β :=

Π(α⊗ β), where α⊗ β is a section ΛiM ⊗ ΛjM ⊂
⊗
i+j T

∗M obtained as their

tensor multiplication.

REMARK: The fiber of the bundle Λ∗M at x ∈ M is identified with the

Grassmann algebra Λ∗T ∗xM. This identification is compatible with the Grass-

mann product.
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Almost complex manifolds

DEFINITION: Let M be a smooth manifold. An almost complex structure

is an operator I : TM −→ TM which satisfies I2 = − IdTM .

The eigenvalues of this operator are ±
√
−1. The corresponding eigenvalue

decomposition is denoted TM = T0,1M ⊕ T1,0(M).

DEFINITION: Let Λp,0(M, I) := Λp
C∞C (M)(T1,0M)∗, Λ0,p(M, I) := Λp

C∞C (M)(T0,1M)∗,

and Λp,q(M, I) := Λp,0(M, I)⊗C∞C (M) Λ0,q(M, I).

CLAIM:

ΛnM ⊗R C =
⊕

p+q=n

Λp,q(M, I)

Proof: Same as for the vector spaces.
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Complex manifolds

EXAMPLE: Let M = Cn, with the complex coordinates z1, ..., zn and real co-

ordinates xi := Re(zi), yi := Im(zi). The standard almost complex struc-

ture is defined as I(dxi) = dyi, I(dyi) = dxi,.

DEFINITION: A complex manifold is an almost complex manifold which

is locally isomorphic to Cn with this complex structure.

REMARK: A 1-form α ∈ Λ1(M,C) satisfies α(Ix) =
√
−1 α(x) if and only if

α ∈ Λ1,0(M). Therefore, a function f : M −→ C is complex differentiable

if and only if df ∈ Λ1,0(M).
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De Rham differential

THEOREM: There exists a unique operator C∞M d−→ Λ1M
d−→ Λ2M

d−→
Λ3M

d−→ ... satisfying the following properties

1. On functions, d is equal to the differential.

2. d2 = 0

3. d(η ∧ ξ) = d(η)∧ ξ+ (−1)η̃η ∧ d(ξ), where η̃ = 0 where η ∈ λ2iM is an

even form, and η ∈ λ2i+1M is odd.

DEFINITION: The operator d is called de Rham differential.

DEFINITION: A form η is called closed if dη = 0, exact if η ∈ im d. The

group ker d
im d is called de Rham cohomology of M .

THEOREM: (Stokes’ theorem)

Let M be a compact manifold with boundary ∂M and α ∈ ΛdimM−1M a

differential form on M . Then
∫
M dα =

∫
∂M α.
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Holomorphic functions

DEFINITION: Let U ⊂ Cn be an open subset, and f : U −→ C a function of

class C1 (differentiable at least once). We say that f is holomorphic if the

differential df : TxU −→ C is complex linear at each x ∈ U .

REMARK: Clearly, f is holomorphic if and only if df ∈ Λ1,0(U), where Λ1,0(U)

is the Hodge (1,0)-component of the de Rham algebra.

Taylor series decomposition for holomorphic functions in 1 variable is

implied by the Cauchy formula: for any folomorphic function f in disc

∆ ⊂ C, ∫
∂∆

f(z)dz

z − a
= 2π

√
−1 f(a),

where a ∈∆ any point, and z coordinate on C. Indeed, in this case,

2π
√
−1 f(a) =

∑
i>0

ai
∫
∂∆

f(z)(z−1)i+1,

because 1
z−a = z−1∑

i>0(az−1)i.
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Cauchy formula in dimension 1

Let’s prove Cauchy formula, using Stokes’ theorem. Since the space Λ1,0C is
1-dimensional, df ∧ dz = 0 for any holomorphic function on C. This gives

CLAIM: A function on a disc ∆ ⊂ C is holomorphic if and only if the form
η := fdz is closed (that is, satisfies dη = 0).

Now, let Sε be a radius ε circle around a point a ∈ ∆, ∆ε its interior, and
∆0 := ∆\∆ε. Stokes’ theorem gives

0 =
∫

∆0

d

(
f(z)dz

z − a

)
= −

∫
Sε

f(z)dz

z − a
+
∫
∂∆

f(z)dz

z − a
,

hence Cauchy formula would follow if we show that lim
ε→0

∫
Sε

f(z)dz
z−a = 2π

√
−1f(a).

Assuming for simplicity a = 0 and parametrizing the circle Sε by εe
√
−1 t, we

obtain∫
Sε

f(z)dz

z
=
∫ 2π

0

f(εe
√
−1 t)

εe
√
−1 t

d(εe
√
−1 t) =

=
∫ 2π

0

f(εe
√
−1 t)

εe
√
−1 t

√
−1 εe

√
−1 tdt =

∫ 2π

0
f(εe

√
−1 t)

√
−1 dt

as ε tends to 0, f(εe
√
−1 t) tends to f(0), and this integral goes to 2π

√
−1f(0).
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Augustin-Louis Cauchy, 1789-1857

Baron Augustin-Louis Cauchy, 1789-1857

...In August 1833 Cauchy left Turin for Prague to become the science tutor of the thirteen-

year-old Duke of Bordeaux, Henri d’Artois (1820-1883), the exiled Crown Prince and grandson

of Charles X.[12] As a professor of the École Polytechnique, Cauchy had been a notoriously

bad lecturer, assuming levels of understanding that only a few of his best students could

reach, and cramming his allotted time with too much material. The young Duke had neither

taste nor talent for either mathematics or science, so student and teacher were a perfect

mismatch.
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Augustin-Louis Cauchy, 1789-1857 (2)

...Although Cauchy took his mission very seriously, he did this with great clumsiness, and with

surprising lack of authority over the Duke. During his civil engineering days, Cauchy once

had been briefly in charge of repairing a few of the Parisian sewers, and he made the mistake

of mentioning this to his pupil; with great malice, the young Duke went about saying Mister

Cauchy started his career in the sewers of Paris. Cauchy’s role as tutor lasted until the Duke

became eighteen years old, in September 1838.[10] Cauchy did hardly any research during

those five years, while the Duke acquired a lifelong dislike of mathematics. The only good

that came out of this episode was Cauchy’s promotion to baron, a title by which Cauchy set

great store... (Wikipedia)∫
∂∆ fdz = 0 for f holomorphic was proven in

A.-L. Cauchy. Mémoire sur les intégrales d’efinies, prises entre des limites imaginaires (Mem-

oire on definite integrals taken between imaginary limits). De Bure, Paris, 1825.∫
∂∆

fdz
z−a = 2π

√
−1 f(a) was proven in

A.-L. Cauchy. Sur la mecanique celeste et sur un nouveau calcul qui s’applique a un grand

nombre de questions diverses etc [On Celestial Mechanics and on a new calculation which is

applicable to a large number of diverse questions], presented to the Academy of Sciences of

Turin, October 11. 1831.
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Holomorphic functions on Cn

THEOREM: Let f : U −→ C be a differentiable function on an open subset
U ⊂ Cn. Then the following are equivalent.
(1) f is holomorphic.
(2) For any complex affine line L ∈ Cn, the restriction f |L = C is holomorphic
as a function of one complex variable.
(3) f is expressed as a sum of Taylor series around any point (z1, ..., zn) ∈
U : for all sufficiently small t1, ..., tn, one has f(z1 + t1, z2 + t2, ..., zn + tn) =∑
i1,...,in ai1,...,int

i1
1 t

i2
2 ...t

in
n .

Proof: Equivalence of (1) and (2) is clear, because a restriction of θ ∈ Λ1,0(M)
to a line is a (1,0)-form on a line, and, conversely, if df is of type (1,0) on
each complex line, it is of type (1,0) on TM , which is implied by the following
linear-algebraic observation.

LEMMA: Let η ∈ V ∗ ⊗ C be a complex-valued linear form on a real vector
space (V, I) equipped with a complex structure I. Then η ∈ Λ1,0(V ) if
and only if its restriction to any I-invariant 2-dimensional subspace L
belongs to Λ1,0(L).
EXERCISE: Prove it.

(3) clearly implies (1). (1) implies (3) by Cauchy formula (many variables),
proven below.
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Cauchy formula (many variables)

REMARK: Let U ⊂ Cn be an open subset, and z1, ..., zn complex coordinates.

Holomorphicity of f : U −→ C is equivalent to df ∈ Λ1,0(M), which is equiva-

lent to df ∧ dz1 ∧ dz1 ∧ ...∧ dzn = 0. Denote the form dz1 ∧ dz1 ∧ ...∧ dzn by Φ.

We obtain that f is holomorphic if and only if the form fΦ is closed

THEOREM: (Cauchy formula in dimension n)

Let ∆ ⊂ Cn be a polydisc (product of discs) of radius 1, and α1, ..., αn ∈ ∆

complex numbers. Denote by S ⊂ Cn the product of circles of radius 1 in

variables z1, ..., zn:, S = S1(z1)× S1(z2)× ...× S1(zn). Let f be a holomorphic

function in a polydisc. Then
∫
S V = (2π

√
−1 )nf(α1, ...αn), where

V =
fΦ

(z1 − α1)(z2 − α2)× ...× (zn − αn)
.

Proof. Step 1: Denote by Z the set
⋃n
i=1{(z1, ..., zn) | zi = αi}. The

complement of ∆\Z is the set of definition of the closed differential form

V . Let Sε be the product of circles of radius ε with center in α1, ..., αn.

Then S, Sε ⊂ Cn\Z, and the tori S, Sε are homotopy equivalent in the

domain Cn\Z, where V is closed. It remains to show that limε→0
∫
Sε V =

(2π
√
−1 )nf(α1, ...αn).
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Cauchy formula (many variables), part 2

THEOREM: (Cauchy formula in dimension n)
Let ∆ ⊂ Cn be a polydisc (product of discs) of radius 1, and α1, ..., αn ∈ ∆
complex numbers. Denote by S ⊂ Cn the product of circles of radius 1 in
variables z1, ..., zn:, S = S1(z1)× S1(z2)× ...× S1(zn). Let f be a holomorphic
function in a polydisc. Then

∫
S V = (2π

√
−1 )nf(α1, ...αn), where

V =
fΦ

(z1 − α1)(z2 − α2)...(zn − αn)
.

Proof. Step 1: Let Sε be a product of circles of radius ε with center in
α1, ..., αn. It remains to show that limε→0

∫
Sε V = (2π

√
−1 )nf(α1, ...αn).

Step 2: To simplify notation we set αi = 0. Parametrize Sε by the cube
[0,2π]n using the map t1, ..., tn −→ εe

√
−1 t1, ..., εe

√
−1 tn. This gives∫

Sε
V =

∫
Sε
f(z)

dz1

z1
∧ ... ∧

dzn

zn
=

=
∫ 2π

0
...
∫ 2π

0

f(εe
√
−1 t1, εe

√
−1 t2, ..., εe

√
−1 tn)

εe
√
−1 t1εe

√
−1 t2...εe

√
−1 tn

εnd

(
e
√
−1 t1

)
d

(
e
√
−1 t2

)
...d

(
e
√
−1 tn

)
=

= (
√
−1 )n

∫ 2π

0
...
∫ 2π

0
f(εe

√
−1 t1, ..., εe

√
−1 tn)dt1dt2...dtn,

which converges to (2π
√
−1 )nf(0, ...,0).
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Cauchy formula and Taylor expansion

REMARK: Cauchy formula implies that holomorphic functions defined in

a polydisc have Taylor expansion in this polydisc. Indeed,

f(α1, ...αn) =
1

(2π
√
−1 )n

∫
S

fdz1 ∧ ... ∧ dzn
(z1 − α1)(z2 − α2)× ...× (zn − αn)

Take the Taylor expansion of (zi − αi)−1 using

1

(zi − αi)
=

z−1
i

(1− αiz−1
i )

=
∞∑
l=0

αliz
−l−1
i .

Then

f(α1, ...αn) =
∞∑

i1=0

...
∞∑

in=0

α
i1
1 ....α

in
in

∫
Sε
f(z1, ..., zn)z−i1−1

1 ...z−in−1
n dz1 ∧ ... ∧ dzn.
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