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Complex analytic subsets in Cn

DEFINITION: Let U ⊂ Cn be an open set. A complex analytic subset

Z ⊂ U is a set of common zeroes of a finite family of holomorphic functions.

A holomorphic function on Z is a restriction of a holomorphic function

defined in a neighbourhood of Z. A complex analytic subvariety of U is Z

equipped with the sheaf of holomorphic functions.

DEFINITION: Two complex analytic subvarieties Z1, Z2 are isomorphic if

they are isomorphic as ringed spaces, that is, there exists a homeomorphism

Z1 −→ Z2 taking any holomorphic function (locally defined or global) on Z1

to a holomorphic function on Z2 and a holomorphic function on Z2 to a

holomorphic function on Z1.
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Morphism of complex varieties

DEFINITION: A morphism of complex varieties is a continuous map

Z1 −→ Z2 such that a pullback of a locally defined holomorphic function on

Z2 is holomorphic on Z1.

PROPOSITION: Consider complex subvarieties Z1 ⊂ U1 ⊂ Cn, Z2 ⊂ U2 ⊂
Cm and a morphism ϕ : (Z1,OZ1

)−→ (Z2,OZ2
). Then there exist an open

neighbourhood W1 ⊃ Z1 such that ϕ can be restricted to a holomorphic

map W1 −→ U2.

Proof: The pullback map ϕ∗ takes the coordinate functions z1, ..., zn on U2 ⊂
Cn restricted to Z2 to holomorphic functions α1, ..., αn on Z1. These functions

are obtained as restrictions from a certain neighbourhood of Z1, denoted as

W1. Clearly, for any z ∈ Z1, the number αi(z) is the i-th coordinate of

ϕ(z) ∈ Cn. Therefore, the map (α1, ..., αn) : W1 −→ U2 taking z ∈ W1 to

(α1(z), ..., αn(z)) is equal to ϕ on Z1.
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The ring of germs of holomorphic function

Let x ∈ X be a point in a complex analytic variety, and U1, U2 3 x two

connected open neighbourhoods and f1 ∈ H0(OU1
), f2 ∈ H0(OU2

). We write

f1 ∼ f2 if these functions are equal on U1 ∩U2. Clearly, this is an equivalence

relation which is compatible with the ring structure.

DEFINITION: The set of equivalence classes of functions f ∈ H0(OU), for

all connected open sets U 3 x, is called the ring of germs of holomorphic

functions in x, denoted by OX,x or Ox.

EXERCISE: (“the principle of analytic continuation”)

Let f be a holomorphic function on a connected open subset U ⊂ Cn. Suppose

that f = 0 on an open subset of U . Prove that f = 0 on U.

COROLLARY: Let X be a smooth, connected complex manifold. Then

the natural restriction map H0(OX)−→OX,x is injective.

EXERCISE: Prove this.
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Formal power series

DEFINITION: A formal power series of variables t1, ..., tn is a sum
∑∞
i=0 Pi(t1, ..., tn),

where all Pi are homogeneous polynomials of degree i. Addition of formal
series is defined componentwise, the product is defined as on polynomials,
using  ∞∑

i=0

Pi(t1, ..., tn)

 ∞∑
i=0

Qi(t1, ..., tn)

 =
∞∑
i=0

Ri(t1, ..., tn)

where Rd(t1, ..., tn) =
∑
i+j=d Pi(t1, ..., tn)Qj(t1, ..., tn).

EXERCISE: Prove that these operations define a structure of a ring on
the space of formal power series. The ring of formal power series is
denoted C[[t1, ..., tn]].

DEFINITION: A ring R is called local if it contains an ideal I ⊂ R such that
any element a ∈ R\I is invertible in I.

EXERCISE: Prove that the ring of formal power series is local.

CLAIM: The ring OX,x of germs of holomorphic functions is local.
Proof: Let I ⊂ OX,x be the ideal of all functions vanishing in x. Given
f ∈ H0(OU) such that f(x) 6= 0, consider W := {y ∈ U | f(y) 6= 0}. By
definition, W is open, and f is invertible in W .
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Taylor series and germs of holomorphic functions

DEFINITION: Let M be a complex manifold, x ∈ M a point, and t1, ..., tn

complex coordinates in its neighbourhood, with ti(x) = 0. To any germ

f ∈ OM,x, we attach a formal power series

∞∑
r=0

∑
i1+i2+...

...+in=r

drf

dt
i1
1 dt

i2
2 ...dt

in
n

·
t
i1
1 t

i2
2 ...t

in
n

i1!i2!...in!

This formal power series is called the Taylor power series of f .

PROPOSITION: The Taylor power series of a holomorphic function f con-

verges to f in a neighbourhoof of x.

Proof: Lecture 1.

CLAIM: The operation of taking the Taylor power series defines a ring

homomorphism OM,x −→ C[[t1, ..., tn]].

EXERCISE: Prove this.
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Order of zero of a holomorphic function

DEFINITION: Let f be a holomorphic function on U ⊂ Cn, vanishing in 0 ∈
U , and f(z) =

∑∞
i=0 Pi(t1, ..., tn) be its Taylor series, where Pi are homogeneous

polynomials of degree i. We say that f has zero of order k in 0, or zero

of multiplicity k, if P0 = ... = Pk−1 = 0.

PROPOSITION: The order of zero of f in 0 is invariant under holo-

morphic changes of coordinates preserving 0.

Proof: Let (t1, ..., tn)
F7→ F1(t1, ..., tn), ..., Fn(t1, ..., tn) be a holomorphic dif-

feomorphism defined in a neighbourhood of 0 and mapping 0 to 0. Here Fi

are holomorphic functions such that the matrix dF =
(
dFi
dtj

)
is non-degenerate.

Composing F with a linear coordinate change, we can assume that Fi(t1, ..., tn) =

ti+Gi, where Gi is a sum of homogeneous polynomials of degree > 2. Clearly,

the composition of a homogeneous polynomial Q of degree d and F is

Q + A, where A is a sum of homogeneous polynomials of degree > d.

Therefore, the order of zero of F ∗(f) is equal to the order of zero of f .
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Principal part of a holomorphic function

DEFINITION: Let f(t1, ..., tn) be a holomorphic function which has zero of

order d in 0. The principal part f is a homogeneous polynomial Q(t1, ..., tn)

of degree d such that f −Q has zero of order > d+ 1.

REMARK: From the previous proof it also follows that the principal part of

f is invariant under the coordinate change. More precisely, a holomorphic

coordinate change acts on the principal part of f as a linear map ti −→
∑
j aijtj

where aij ∈ C.

EXERCISE 1: Let f be a holomorphic function on U ⊂ Cn which has in 0 a

zero of order k. Prove that for any coordinate system centered in 0, the

limit lim
zn→0

f(0,...,0,zn)
zkn

is finite.

EXERCISE 2: Let Q be the principal part of a holomorphic function f on

U ⊂ Cn. Perform a linear coordinate change such that Q(0, ...,0, zn) 6= 0.

Prove that lim
zn→0

F (0,zn)
zkn

6= 0.
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Weierstrass preparation theorem

DEFINITION: Let z1, ..., zn be coordinate functions on Cn. Denote the

ring of germs of holomorphic functions on Cn depending on z1, ..., zk by Ok

A Weierstrass polynomial is a function F ∈ On−1[zn], with the leading

coefficient 1. In other words, F = A0 + znA1 + ... + ak−1z
k−1
n + zkn, where

Ai are germs of holomorphic functions on Cn depending on z1, ..., zn−1. A

Weierstrass polynomial is often written as P (z, zn), where z denotes the

collection z1, ..., zn−1.

THEOREM: (Weierstrass preparation theorem)

Let F ∈ On be a germ of a holomorphic function, with zero of order k in 0,

such that lim
zn→0

F (0,zn)
zkn

6= 0 Then in a certain neighbourhood of 0, F can

be decomposed as F = uP (z, zn), where u ∈ On is an invertible holomorphic

function, and P (z, zn) a Weierstrass polynomial of degree k. Moreover, such

a decomposition is unique.

Proof: Next lecture
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Karl Theodor Wilhelm Weierstraß

(1815 - 1897)
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Weierstrass preparation theorem: its applicability

EXERCISE 1: Let f be a holomorphic function on U ⊂ Cn which has in 0 a
zero of order k. Prove that for any coordinate system centered in 0, the
limit lim

zn→0

f(0,...,0,zn)
zkn

is finite.

EXERCISE 2: Let Q be the principal part of a holomorphic function f on
U ⊂ Cn. Perform a linear coordinate change such that Q(0, ...,0, zn) 6= 0.
Prove that lim

zn→0

F (0,zn)
zkn

6= 0.

THEOREM: (Weierstrass preparation theorem)
Let F ∈ On be a germ of a holomorphic function, with zero of order k in 0,
such that lim

zn→0

F (0,zn)
zkn

6= 0 Then in a certain neighbourhood of 0, F can

be decomposed as F = uP (z, zn), where u ∈ On is an invertible holomorphic
function, and P (z, zn) a Weierstrass polynomial of degree k. Moreover, such
a decomposition is unique.
REMARK: Exercises 1-2 imply that the Weierstrass preparation theorem
can be applied to any holomorphic function f which satisfies Q(0, ...,0, zn) 6=
0. In particular, it can be applied after a linear coordinate change
z1, ..., zn −→A(z1), ..., A(zn) for A ∈ GL(n) outside of a measure 0 set.

COROLLARY: For any countable set of holomorphic functions f1, f2, ...,
there exists a coordinate system such that all fi satisfy the assumptions
of the Weierstrass preparation theorem.
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