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Order of zero of a holomorphic function (reminder)

DEFINITION: Let f be a holomorphic function on U C C", vanishing in O €
U, and f(z) = 372 Pi(t1,...,tn) beits Taylor series, where P; are homogeneous
polynomials of degree i. We say that f has zero of order £ in 0, or zero
of multiplicity k, if P =...= P,_1 = 0.

DEFINITION: Let f(t1,...,tn) be a holomorphic function which has zero of
order d in 0. The principal part f is a homogeneous polynomial Q(t1,...,tn)
of degree d such that f — @ has zero of order > d + 1.

DEFINITION: Let zq,...,2zn be coordinate functions on C". Denote the
ring of germs of holomorphic functions on C" depending on zi,...,z; by O
A Weierstrass polynomial is a function F € ©O,_1[zn], with the leading
coefficient 1. In other words, F = Ag + zpA1 + ... + ap_12E71 + 2E, where
A; are germs of holomorphic functions on C™ depending on z1,...,z2,—1. A
Weierstrass polynomial is often written as P(z, z,), where z denotes the
collection zq,...,z,_1.
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Weierstrass preparation theorem (reminder)

EXERCISE 1: Let f be a holomorphic function on U C C™ which hasin O a
zero of order k. Prove that for any coordinate system centered in O, the

limitlim_ [10.0.2) s finite.
Zn_> mn

EXERCISE 2: Let Q be the principal part of a holomorphic function f on
U Cc C". Perform a linear coordinate change such that Q(O,...,0,z,) #= O.

Prove that lim (%) + o,

THEOREM: (Weierstrass preparation theorem)

Let FF € O, be a germ of a holomorphic function, with zero of order k£ in O,
and @ € C[zq,...,2n] its principal part. Assume that Q(0,z,) 7= 0. Then in
a certain neighbourhood of 0, FF can be decomposed as F = uP(z, zn),
where u € ©,, is an invertible holomorphic function, and P(z, z,) a Weierstrass
polynomial of degree k. Moreover, such a decomposition is unique.

Proof: Later today

COROLLARY: For any countable set of holomorphic functions f1, fo,...,
there exists a coordinate system such that all f; satisfy the assumptions

of the Weierstrass preparation theorem. =
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Newton identity

DEFINITION: Let a1,...,a; be a collection of independent variables, and e;
the coefficients of a polynomials t!4-¢;_1t!=14+...4e1t+eq :=[T'_; (t+;). The
polynomials e;(a1,...,;) are called the elementary symmetric polynomials
on «;.

THEOREM: (Newton identity)
Let Q; :=> ;o). Then the elementary symmetric polynomials e, ...,e;_;
are expressed through @, ..., Q; with rational coefficients.

Proof: More precisely, Newton identity gives
k—1

ke, = > (—1)'e_;Q;.

i=0
To see that, write the generating function E(t) := [[;(1 — ta;) = 3;(—1)"e;.
Taking a derivation in t, we obtain

E'(t) —Q; = i1
E(t) _;1—0@_ 22 et

i =1

Let Q(t) = Zf??ozl thj. The previous formula gives tE' = —EQ, which gives
the Newton identity. m
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Zeroes of the logarithmic derivative

Exercise 3: Let f be a holomorphic function on a disc A C C, not vanishing

on its boundary dA, and Sp(f) = QW\}__l Jan fT,zkdz. Then S,(f) = Y af,

where «; is the set of zeroes of f, taken with their multiplicities.

Hint: Use the Cauchy formula.

EXERCISE: Use this to prove Rouché’s theorem: for any a family f; of
holomorphic functions on A, continuously depending on ¢t € R and not
vanishing on 0A, the number of zeroes of f; in A is constant in t.



Complex analytic spaces, lecture 4 M. Verbitsky

Weierstrass preparation theorem: strategy of the proof

THEOREM: (Weierstrass preparation theorem)

Let F' € O, be a germ of a holomorphic function, with zero of order k in O, and
Q € Clz1, ..., zn] its principal part (the lowest degree homogeneous term of its
Taylor series). Assume that Q(0, z,) 7 0. Then in a certain neighbourhood
of 0, ' can be decomposed as F = uP(z,zn), where u € Oy is an invertible
holomorphic function, and P(z,zn) a Weierstrass polynomial of degree k.
Moreover, such a decomposition is unique.

To prove the Weierstrass preparation theorem, we consider the set of zeroes
of F' as an analytic subvariety of C", projected to C*~ 1! as a k-fold ramified
covering, and construct a Weiertrass polynomial with the same zero set
as F.
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Weierstrass preparation theorem: strategy of the proof (2)

This is done as follows. We consider the function Fs, . . ,(zn) = F(21, ..., 2n)
as a function on A, expressed as a power series with coefficients in O,,_1. It is
a holomorphic functions on A, smooth and non-vanishing on its boundary (we
shrink A if necessary). Then we write the Newton polynomials of the zeroes
of qu--,zn_l(zn) in A, using the logarithmic derivative formula (Exercise 3), as
holomorphic functions on zq,...,z,_1. We use the Newton formula to express
these Newton polynomials through the elementary symmetric polynomials.
This gives a finction P(z,z,), polynomial in z,, and vanishing in the
same points as F.,, . . ,(z,) with the same multiplicities.

EXERCISE: (Riemann removable singularity theorem)

Let Z C U be a complex analytic subset, and f a locally bounded function on
U\Z, holomorphic on U\Z. Prove that f is extended to a holomorphic
function on U.
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Weierstrass preparation theorem (proof)

The proof of Weierstrass preparation theorem:
Since F(O z”) = Q(0, zp) # 0, thereis a polydisc A(n—1,1) := By(21,...2,—1) X

A,(zn) of biradius r,7’, such that F(z,zn) = 0 when |zn| = r'. We write the
decomposition F' = uP in this polydisc.

Step 1: Let 6,(z) = Sip(F(z,-)), where z € By(z1,...2n—1), and Si(f) =
/ . -
27“}__1 Jan fTdez' By Exercise 3, Gp(z) Is equal to the number of zeroes

of F'(z,-) on the disc A . Since Gg(z) is continuous, the number of zeroes
is constant (this is Rouché’'s theorem, by the way).

Step 2: Let ¢(z) be the elementary polynomials of these zeroes, denoted
as a;(z). Exercise 3 gives Y al(z) = &;(z). Using the Newton identity, we
express ¢;(z) through &;(z), obtaining ¢;(z) as a holomorphic function
on z1,...,2p—-1-

Step 3: Let P(z,zn) = 2F 4 Zz_o( 1)%;(2)z*. This function has the same

zeroes as F'(z,zn) with the same multiplicities. Therefore, the fraction

u = ggz §"> is nowhere vanishing in A(n — 1,1); this function is complex

differentiable, hence it is holomorphic and invertible in A(n—1,1). We obtain
F=Pu =
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