
Complex analytic spaces, lecture 4 M. Verbitsky

Complex analytic spaces
lecture 4: Weierstrass preparation theorem (2)

Misha Verbitsky

IMPA, sala 236

August 16, 2023

1



Complex analytic spaces, lecture 4 M. Verbitsky

Order of zero of a holomorphic function (reminder)

DEFINITION: Let f be a holomorphic function on U ⊂ Cn, vanishing in 0 ∈
U , and f(z) =

∑∞
i=0 Pi(t1, ..., tn) be its Taylor series, where Pi are homogeneous

polynomials of degree i. We say that f has zero of order k in 0, or zero

of multiplicity k, if P0 = ... = Pk−1 = 0.

DEFINITION: Let f(t1, ..., tn) be a holomorphic function which has zero of

order d in 0. The principal part f is a homogeneous polynomial Q(t1, ..., tn)

of degree d such that f −Q has zero of order > d+ 1.

DEFINITION: Let z1, ..., zn be coordinate functions on Cn. Denote the

ring of germs of holomorphic functions on Cn depending on z1, ..., zk by Ok

A Weierstrass polynomial is a function F ∈ On−1[zn], with the leading

coefficient 1. In other words, F = A0 + znA1 + ... + ak−1z
k−1
n + zkn, where

Ai are germs of holomorphic functions on Cn depending on z1, ..., zn−1. A

Weierstrass polynomial is often written as P (z, zn), where z denotes the

collection z1, ..., zn−1.
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Weierstrass preparation theorem (reminder)

EXERCISE 1: Let f be a holomorphic function on U ⊂ Cn which has in 0 a
zero of order k. Prove that for any coordinate system centered in 0, the
limit lim

zn→0

f(0,...,0,zn)
zkn

is finite.

EXERCISE 2: Let Q be the principal part of a holomorphic function f on
U ⊂ Cn. Perform a linear coordinate change such that Q(0, ...,0, zn) 6= 0.
Prove that lim

zn→0

F (0,zn)
zkn

6= 0.

THEOREM: (Weierstrass preparation theorem)
Let F ∈ On be a germ of a holomorphic function, with zero of order k in 0,
and Q ∈ C[z1, ..., zn] its principal part. Assume that Q(0, zn) 6= 0. Then in
a certain neighbourhood of 0, F can be decomposed as F = uP (z, zn),
where u ∈ On is an invertible holomorphic function, and P (z, zn) a Weierstrass
polynomial of degree k. Moreover, such a decomposition is unique.

Proof: Later today

COROLLARY: For any countable set of holomorphic functions f1, f2, ...,
there exists a coordinate system such that all fi satisfy the assumptions
of the Weierstrass preparation theorem.
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Newton identity

DEFINITION: Let α1, ..., αl be a collection of independent variables, and ei
the coefficients of a polynomials tl+el−1t

l−1+...+e1t+e0 :=
∏l
i=1(t+αi). The

polynomials ei(α1, ..., αl) are called the elementary symmetric polynomials
on αi.

THEOREM: (Newton identity)
Let Qj :=

∑
iα

j. Then the elementary symmetric polynomials e0, ..., el−1
are expressed through Q1, ..., Ql with rational coefficients.

Proof: More precisely, Newton identity gives

kek =
k−1∑
i=0

(−1)iek−iQi.

To see that, write the generating function E(t) :=
∏
i(1− tαi) =

∑
i(−1)itiei.

Taking a derivation in t, we obtain

E′(t)

E(t)
=

∑
i

−αi
1− αit

= −
∑
i

∞∑
j=1

α
j
i t
j−1.

Let Q(t) :=
∑∞
j=1Qjt

j. The previous formula gives tE′ = −EQ, which gives
the Newton identity.
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Zeroes of the logarithmic derivative

Exercise 3: Let f be a holomorphic function on a disc ∆ ⊂ C, not vanishing

on its boundary ∂∆, and Sk(f) := 1
2π
√
−1

∫
∂∆

f ′
f z

kdz. Then Sk(f) =
∑
αki ,

where αi is the set of zeroes of f, taken with their multiplicities.

Hint: Use the Cauchy formula.

EXERCISE: Use this to prove Rouché’s theorem: for any a family ft of

holomorphic functions on ∆, continuously depending on t ∈ R and not

vanishing on ∂∆, the number of zeroes of ft in ∆ is constant in t.
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Weierstrass preparation theorem: strategy of the proof

THEOREM: (Weierstrass preparation theorem)

Let F ∈ On be a germ of a holomorphic function, with zero of order k in 0, and

Q ∈ C[z1, ..., zn] its principal part (the lowest degree homogeneous term of its

Taylor series). Assume that Q(0, zn) 6= 0. Then in a certain neighbourhood

of 0, F can be decomposed as F = uP (z, zn), where u ∈ On is an invertible

holomorphic function, and P (z, zn) a Weierstrass polynomial of degree k.

Moreover, such a decomposition is unique.

To prove the Weierstrass preparation theorem, we consider the set of zeroes

of F as an analytic subvariety of Cn, projected to Cn−1 as a k-fold ramified

covering, and construct a Weiertrass polynomial with the same zero set

as F .

6



Complex analytic spaces, lecture 4 M. Verbitsky

Weierstrass preparation theorem: strategy of the proof (2)

This is done as follows. We consider the function F̃z1,...,zn−1(zn) = F (z1, ..., zn)

as a function on ∆, expressed as a power series with coefficients in On−1. It is

a holomorphic functions on ∆, smooth and non-vanishing on its boundary (we

shrink ∆ if necessary). Then we write the Newton polynomials of the zeroes

of F̃z1,...,zn−1(zn) in ∆, using the logarithmic derivative formula (Exercise 3), as

holomorphic functions on z1, ..., zn−1. We use the Newton formula to express

these Newton polynomials through the elementary symmetric polynomials.

This gives a finction P (z, zn), polynomial in zn, and vanishing in the

same points as F̃z1,...,zn−1(zn) with the same multiplicities.

EXERCISE: (Riemann removable singularity theorem)

Let Z ⊂ U be a complex analytic subset, and f a locally bounded function on

U\Z, holomorphic on U\Z. Prove that f is extended to a holomorphic

function on U.
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Weierstrass preparation theorem (proof)

The proof of Weierstrass preparation theorem:
Since F (0,zn)

zkn
= Q(0, zn) 6= 0, there is a polydisc ∆(n−1,1) := Br(z1, ...zn−1)×

∆r′(zn) of biradius r, r′, such that F (z, zn) 6= 0 when |zn| = r′. We write the
decomposition F = uP in this polydisc.

Step 1: Let Sk(z) := Sk(F (z, ·)), where z ∈ Br(z1, ...zn−1), and Sk(f) :=
1

2π
√
−1

∫
∂∆

f ′
f z

kdz. By Exercise 3, S0(z) is equal to the number of zeroes

of F (z, ·) on the disc ∆r′. Since S0(z) is continuous, the number of zeroes
is constant (this is Rouché’s theorem, by the way).

Step 2: Let el(z) be the elementary polynomials of these zeroes, denoted
as αi(z). Exercise 3 gives

∑
αli(z) = Sl(z). Using the Newton identity, we

express el(z) through Sl(z), obtaining el(z) as a holomorphic function
on z1, ..., zn−1.

Step 3: Let P (z, zn) := zkn +
∑k−1
i=0(−1)iei(z)zi. This function has the same

zeroes as F (z, zn) with the same multiplicities. Therefore, the fraction
u := F (z,zn)

P (z,zn) is nowhere vanishing in ∆(n − 1,1); this function is complex
differentiable, hence it is holomorphic and invertible in ∆(n−1,1). We obtain
F = Pu.
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