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Gauss lemma

EXERCISE: Let R be a ring without zero divisors. Prove that the poly-
nomial ring R[t] has no zero divisors.

THEOREM: (“Gauss lemma”)
Let R be a factorial ring. Then the ring of polynomials R[t] is also
factorial.

Proof: See the next slide.

DEFINITION: An element p € R is called irreducible, if for any decompo-
sition p =rs in R, either r or s is invertible.

DEFINITION: Let R be a factorial ring. A polynomial P(t) € R[t] is called
primitive if the greatest common divisor of its coefficients is 1.

Lemma 1: Let Py, P> € R[t] be primitive polynomials. Then their product
IS also primitive.

Proof: Let p € R be an irreducible element. Since the polynomials Py, P>
are primitive, they are non-zero modulo p. Since the ring R/(p) has no
zero divisors, the product P; P, is non-zero in R/(p)[t], hence the greatest
common divisor of the coefficients of Py P> is not divisible by p. =
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Irreducibility of polynomials in R[t] and K|[t]

Lemma 1: Let Py, P> € R[t] be primitive polynomials. Then their product
IS also primitive.

Lemma 2: Let R be a factorial ring, and K its fraction field. Then any prim-
itive polynomial P € R[t], which is irreducible in R[t], is also irreducible
in K[t].

Proof: Assume that P is decomposable in K[t]. Then rP = PP, where
P1,P> € R[t] and r € R. Let s1,s> be the greatest common divisors of the
coefficients of Py, P,. Then rP = s1spP]P5, and Pj, P5 are primitive. In this
case PiP; is primitive (Lemma 1), hence the greatest common divisor of
the coefficients of slsgP{Pé IS s1so. Since P is also primitive, the greatest
common divisor of the coefficients of rP = s1spP1P; is r. Then = is
invertible, and P is decomposable in R[t]. =
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THEOREM: (“Gauss lemma’)
Let R be a factorial ring. Then the ring of polynomials R[t] is also
factorial.

Proof: Let K be the fraction field of R. The ring KJ[t] is factorial, because
it is Euclidean. Lemma 2 implies that an irreducible decomposition of
a primitive polynomial P(t) € R[t] is uniquely determined by its prime
decomposition in K|[t], hence it is unique. A non-primitive polynomial is
decomposed as a product of the greatest common divisor of its coefficients
and a primitive polynomial, hence its prime decomposition is also unique. =

COROLLARY: The affine space C" is a normal variety. Moreover, for any
variety X with factorial ring Oy of regular functions, the product X x C"
IS also normal.

Proof: As we have shown previously, Oy ycn = Ox®cClt1,...,tn] = Ox|[t1, ..., tn].
This ring is factorial by Gauss lemma. m
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Carl Friedrich Gauss

Carl Friedrich Gauss (1777 - 1855)
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Disquisitiones Arithmeticae
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“Disquisitiones Arithmeticae”,
written by Gauss in 1798, in Latin, when he was 21.

This book contains “Gauss Lemma’ .
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Weierstrass preparation theorem (reminder)

DEFINITION: Let zq,...,2zn be coordinate functions on C". Denote the
ring of germs of holomorphic functions on C" depending on z1,...,2;r by O
A Weierstrass polynomial is a function F € ©O,_q1[zn], with the leading
coefficient 1. In other words, F = Ag + znA1 + ... + ap_12E71 + 2E, where
A; are germs of holomorphic functions on C" depending on z1,...,z,-1. A
Weierstrass polynomial is often written as P(z,z,), where z denotes the
collection zq, ..., z,—1.

THEOREM: (Weierstrass preparation theorem)

Let FF € O, be a germ of a holomorphic function, with zero of order k£ in O,
and @ € C[zq,...,2n] its principal part. Assume that Q(0,z,) # 0. Then In
a certain neighbourhood of 0, F can be decomposed as F = uP(z,zn),
where u € Oy is an invertible holomorphic function, and P(z, zn,) a Weierstrass
polynomial of degree k. Moreover, such a decomposition is unique.

Proof: Lecture 4.

COROLLARY: For any countable set of holomorphic functions f1, fo,...,
there exists a coordinate system such that all f; satisfy the assumptions
of the Weierstrass preparation theorem. =
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Carl Ludwig Siegel (1896 - 1981)

The proof of WPT and of Weierstrass division theorem below comes from
“Topics in complex function theory,” by Carl L. Siegel.

Carl Ludwig Siegel, 1896 - 1981
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The ring of germs of holomorphic functions is factorial

DEFINITION: A germ of holomorphic function f € ©), is called indecom-
posable if for any decomposition f = g19p,..,9n, all g; except (at most) one
are invertible.

PROPOSITION: Let f € ©,. Then f can be decomposd as f = f1...fr,
where all f; are indecomposable. Moreover, such a decomposition is
unique, up to an order and an invertible multiplier.

Proof: It is sufficient to prove this when f is a Weierstrass polyno-
mial. Decomposing f into a product of irreducible polynomials, we obtain a
decomposition f = fy...fr. It remains to prove that it is unique.

Step 1: Using induction, we may assume that ©,_; is factorial. Gauss
lemma implies that ©,,_1[zn] is also factorial.

Step 2: Let g € O, be an indecomposable germ dividing the product of inde-
composable germs uv. Applying the WPT, we may assume that g,u,v € Oy
are Weierstrass polynomials in the same coordinate system; these polynomials
are clearly indecomposable. Then g divides uv in O, _1[zn].

Step 3: By Step 1, ©O,,_1[zn] is factorial, hence g divides u or v, which implies
the uniqueness of prime decomposition on ©,,. =
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Division with remainders

EXERCISE: Let f,g € C[t] be polynomials, with all roots of g in the unit
disc A C C. Prove that the function

1 f(Q) 1
d¢. ()
27/ —1 Jon g(¢) ¢ — z
is polynomial in z. Prove that h(z) is equal to the quotient f % ¢ under
division with remainder.

h(z) =
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Division with remainders (2)

Proposition 1: Let f(t) be a holomorphic functions on the unit disc A C C,
and g(t) a polynomial which does not vanish on the boundary 0A. Then the
function

1 f(¢) 1
d¢. ()
27/ —1 Jon g(¢) ¢ — z
is holomorphic in the disc A. Moreover, the function r(z) := f(z) —g(2)h(2)
IS a unital polynomial of degree smaller than degg.

h(z) =

Proof. Step 1: The function h(z) is clearly holomorphic, because (*) is
decomposed in Taylor series in z, as usual. Indeed, v(z) := [yA u(C)szdC IS
holomorphic for any integrable function u« on 0A.

Step 2:
1) =) = 1) - 5 [ (e TS 2 ac=
S N TR Y W P Sy g SR IGETOP
2my/—1 Joa | — g(Q)¢—= 2my/—1 Joa g(¢) (—z '

The function 9(0:2(2) is a polynomial in z of degree degg — 1. This
implies that »(z) = f(z) — h(z2)g(2) € C[z], and degr < degg— 1. =
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Weierstrass division theorem
As in the WPT, we write (z1,...,2,_1,2n) as (z, zn).

THEOREM: (Weierstrass division theorem)

Let P(z,2n) € O,,_1[2n] be a Weierstrass polynomial of degree k, with P(0, zp) =
2k Then every germ F € O, can be written as F = hP+Q, where Q(z, zn)
IS @ Weierstrass polynomial of degree < k.

Proof. Step 1: Since IimZnﬁoL;f”) = 1, in a certain polydisc A(n—1,1) :=
Z?’L
Br(21,---2p—1) X A,s(zn) we have P(z,z,) 7 0 when |z,| = r’. We will construct

the decomposition FF' = hP 4+ @ in this polydisc.

Step 2: Write

21/ —1 Jon P(z,() ¢ —zp

By Proposition 1, Q := F — Ph is a polynomial in z, of degree < k, with
coefficients in ©,,_1 and the leading term 1, that is, a Weierstrass polynomial.
|

h(z,zn) =
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