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Gauss lemma

EXERCISE: Let R be a ring without zero divisors. Prove that the poly-
nomial ring R[t] has no zero divisors.

THEOREM: (“Gauss lemma”)
Let R be a factorial ring. Then the ring of polynomials R[t] is also
factorial.

Proof: See the next slide.

DEFINITION: An element p ∈ R is called irreducible, if for any decompo-
sition p = rs in R, either r or s is invertible.

DEFINITION: Let R be a factorial ring. A polynomial P (t) ∈ R[t] is called
primitive if the greatest common divisor of its coefficients is 1.

Lemma 1: Let P1, P2 ∈ R[t] be primitive polynomials. Then their product
is also primitive.

Proof: Let p ∈ R be an irreducible element. Since the polynomials P1, P2
are primitive, they are non-zero modulo p. Since the ring R/(p) has no
zero divisors, the product P1P2 is non-zero in R/(p)[t], hence the greatest
common divisor of the coefficients of P1P2 is not divisible by p.
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Irreducibility of polynomials in R[t] and K[t]

Lemma 1: Let P1, P2 ∈ R[t] be primitive polynomials. Then their product

is also primitive.

Lemma 2: Let R be a factorial ring, and K its fraction field. Then any prim-

itive polynomial P ∈ R[t], which is irreducible in R[t], is also irreducible

in K[t].

Proof: Assume that P is decomposable in K[t]. Then rP = P1P2, where

P1, P2 ∈ R[t] and r ∈ R. Let s1, s2 be the greatest common divisors of the

coefficients of P1, P2. Then rP = s1s2P
′
1P
′
2, and P ′1, P

′
2 are primitive. In this

case P ′1P
′
2 is primitive (Lemma 1), hence the greatest common divisor of

the coefficients of s1s2P
′
1P
′
2 is s1s2. Since P is also primitive, the greatest

common divisor of the coefficients of rP = s1s2P
′
1P
′
2 is r. Then r

s1s2
is

invertible, and P is decomposable in R[t].
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THEOREM: (“Gauss lemma”)

Let R be a factorial ring. Then the ring of polynomials R[t] is also

factorial.

Proof: Let K be the fraction field of R. The ring K[t] is factorial, because

it is Euclidean. Lemma 2 implies that an irreducible decomposition of

a primitive polynomial P (t) ∈ R[t] is uniquely determined by its prime

decomposition in K[t], hence it is unique. A non-primitive polynomial is

decomposed as a product of the greatest common divisor of its coefficients

and a primitive polynomial, hence its prime decomposition is also unique.

COROLLARY: The affine space Cn is a normal variety. Moreover, for any

variety X with factorial ring OX of regular functions, the product X×Cn

is also normal.

Proof: As we have shown previously, OX×Cn = OX⊗CC[t1, ..., tn] = OX[t1, ..., tn].

This ring is factorial by Gauss lemma.
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Carl Friedrich Gauss

Carl Friedrich Gauss (1777 - 1855)
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Disquisitiones Arithmeticae

“Disquisitiones Arithmeticae”,

written by Gauss in 1798, in Latin, when he was 21.

This book contains “Gauss Lemma”.
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Weierstrass preparation theorem (reminder)

DEFINITION: Let z1, ..., zn be coordinate functions on Cn. Denote the
ring of germs of holomorphic functions on Cn depending on z1, ..., zk by Ok
A Weierstrass polynomial is a function F ∈ On−1[zn], with the leading
coefficient 1. In other words, F = A0 + znA1 + ... + ak−1z

k−1
n + zkn, where

Ai are germs of holomorphic functions on Cn depending on z1, ..., zn−1. A
Weierstrass polynomial is often written as P (z, zn), where z denotes the
collection z1, ..., zn−1.

THEOREM: (Weierstrass preparation theorem)
Let F ∈ On be a germ of a holomorphic function, with zero of order k in 0,
and Q ∈ C[z1, ..., zn] its principal part. Assume that Q(0, zn) 6= 0. Then in
a certain neighbourhood of 0, F can be decomposed as F = uP (z, zn),
where u ∈ On is an invertible holomorphic function, and P (z, zn) a Weierstrass
polynomial of degree k. Moreover, such a decomposition is unique.

Proof: Lecture 4.

COROLLARY: For any countable set of holomorphic functions f1, f2, ...,
there exists a coordinate system such that all fi satisfy the assumptions
of the Weierstrass preparation theorem.
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Carl Ludwig Siegel (1896 - 1981)

The proof of WPT and of Weierstrass division theorem below comes from

“Topics in complex function theory,” by Carl L. Siegel.

Carl Ludwig Siegel, 1896 - 1981
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The ring of germs of holomorphic functions is factorial

DEFINITION: A germ of holomorphic function f ∈ On is called indecom-
posable if for any decomposition f = g1g2, .., gn, all gi except (at most) one
are invertible.

PROPOSITION: Let f ∈ On. Then f can be decomposd as f = f1...fr,
where all fi are indecomposable. Moreover, such a decomposition is
unique, up to an order and an invertible multiplier.

Proof: It is sufficient to prove this when f is a Weierstrass polyno-
mial. Decomposing f into a product of irreducible polynomials, we obtain a
decomposition f = f1...fr. It remains to prove that it is unique.

Step 1: Using induction, we may assume that On−1 is factorial. Gauss
lemma implies that On−1[zn] is also factorial.

Step 2: Let g ∈ On be an indecomposable germ dividing the product of inde-
composable germs uv. Applying the WPT, we may assume that g, u, v ∈ On
are Weierstrass polynomials in the same coordinate system; these polynomials
are clearly indecomposable. Then g divides uv in On−1[zn].

Step 3: By Step 1, On−1[zn] is factorial, hence g divides u or v, which implies
the uniqueness of prime decomposition on On.
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Division with remainders

EXERCISE: Let f, g ∈ C[t] be polynomials, with all roots of g in the unit

disc ∆ ⊂ C. Prove that the function

h(z) =
1

2π
√
−1

∫
∂∆

f(ζ)

g(ζ)

1

ζ − z
dζ. (∗)

is polynomial in z. Prove that h(z) is equal to the quotient f % g under

division with remainder.
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Division with remainders (2)

Proposition 1: Let f(t) be a holomorphic functions on the unit disc ∆ ⊂ C,
and g(t) a polynomial which does not vanish on the boundary ∂∆. Then the
function

h(z) =
1

2π
√
−1

∫
∂∆

f(ζ)

g(ζ)

1

ζ − z
dζ. (∗)

is holomorphic in the disc ∆. Moreover, the function r(z) := f(z)− g(z)h(z)
is a unital polynomial of degree smaller than deg g.

Proof. Step 1: The function h(z) is clearly holomorphic, because (*) is
decomposed in Taylor series in z, as usual. Indeed, v(z) :=

∫
∂∆ u(ζ) 1

ζ−zdζ is
holomorphic for any integrable function u on ∂∆.

Step 2:

f(z)− h(z)g(z) = f(z)−
1

2π
√
−1

∫
∂∆

[
g(z)

f(ζ)

g(ζ)

1

ζ − z

]
dζ =

=
1

2π
√
−1

∫
∂∆

[
f(ζ)

ζ − z
− g(z)

f(ζ)

g(ζ)

1

ζ − z

]
dζ =

1

2π
√
−1

∫
∂∆

f(ζ)

g(ζ)
·
g(ζ)− g(z)

ζ − z
dζ.

The function g(ζ)−g(z)
ζ−z is a polynomial in z of degree deg g − 1. This

implies that r(z) = f(z)− h(z)g(z) ∈ C[z], and deg r < deg g − 1.
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Weierstrass division theorem

As in the WPT, we write (z1, ..., zn−1, zn) as (z, zn).

THEOREM: (Weierstrass division theorem)

Let P (z, zn) ∈ On−1[zn] be a Weierstrass polynomial of degree k, with P (0, zn) =

zkn. Then every germ F ∈ On can be written as F = hP +Q, where Q(z, zn)

is a Weierstrass polynomial of degree < k.

Proof. Step 1: Since limzn→0
P (0,zn)
zkn

= 1, in a certain polydisc ∆(n−1,1) :=

Br(z1, ...zn−1)×∆r′(zn) we have P (z, zn) 6= 0 when |zn| = r′. We will construct

the decomposition F = hP +Q in this polydisc.

Step 2: Write

h(z, zn) =
1

2π
√
−1

∫
∂∆

F (z, ζ)

P (z, ζ)

1

ζ − zn
dζ.

By Proposition 1, Q := F − Ph is a polynomial in zn of degree < k, with

coefficients in On−1 and the leading term 1, that is, a Weierstrass polynomial.

12


