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Weierstrass preparation and division theorems (reminder)

DEFINITION: Let z1,...,2zn, be coordinate functions on C". Denote the
ring of germs of holomorphic functions on C" depending on z1,...,2;r by O
A Weierstrass polynomial is a function F € ©O,_q1[zn], with the leading
coefficient 1. In other words, F = Ag + zpA1 + ... + ap_12E71 + 2E, where
A; are germs of holomorphic functions on C" depending on z1,...,z2,_1. A
Weierstrass polynomial is often written as P(z, z,), where z denotes the
collection zq,...,z,_1.

THEOREM: (Weierstrass preparation theorem)

Let FF € O, be a germ of a holomorphic function, with zero of order k£ in O,
and Q € Clzq,...,2n] its principal part. Assume that Q(0,z,) = sz; Then in
a certain neighbourhood of 0, FF can be decomposed as F = uP(z, zn),
where u € ©,, is an invertible holomorphic function, and P(z, z,) a Weierstrass
polynomial of degree k. Moreover, such a decomposition is unique.

THEOREM: (Weierstrass division theorem)
Let P(z,zn) € O,,_1[2n] be a Weierstrass polynomial of degree k, with P(0, zp,) =
z,,’;j Then every germ F € ©, can be written as F = hP 4+ (@, where

Q(z,zn) € is a polynomial of degree < k.
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Complex analytic subvarieties and their germs (reminder)

DEFINITION: A complex analytic subset (or a complex analytic sub-
variety) of a complex manifold M is a closed subset Z C M locally defined as
the set of common zeros of a collection of holomorphic functions.

EXERCISE: Prove that a finite union and any intersection of complex
analytic subsets is a complex analytic subset.

DEFINITION: Let Z; C Uq,4> C Uy be complex analytic subsets of open
subsets U; C M containing x € M. We say that Z; and Z> have the same
germ in z if Z1NU = Z>,NU for some neighbourhood U C U1 NU> containing
x. Clearly, this defines an equivalence relation. A germ of a complex
analytic subset in x € M is an equivalence class of complex-analytic subsets
Z C U under this relation.

EXERCISE: Prove that a finite union and any intersection of germs of
complex analytic subsets is a germ of a complex analytic subset.
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Irreducible germs of subvarieties (reminder)

DEFINITION: Let Ay, A> be germs of complex analytic subsets in x € M.
We say that A{ C Ay if Ay1NU C A> NU for some open neighbourhood of
x e M.

DEFINITION: A germ Z of a complex analytic subset in x € M is called
irreducible if for any decomposition Z = A1 U A> into a union of two germs,
we have Ay C A> or A> C A>. An irreducible component of a germ Z is an
irreducible germ Z1 C Z such that Z = Z1 N 45, for some other germ Z»> 5 Z;.

EXERCISE: Prove that a germ of a smooth submanifold is irreducible.

EXERCISE: Find an irreducible complex variety Z such that the germ
of Z in z IS not irreducible.

PROPOSITION: Any germ ~Z of a complex variety is a union of its
irreducible components.

COROLLARY: Let Z C M be a germ of subvariety in z € M. Then the
following are equivalent: (a) Z is irreducible (b) Oz, has no zero divisors
(c) the ideal J, C Oy, is prime.
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Noether’s normalization lemma

Today we are going to prove a complex-analytic version of the following
theorem.

(Noether’s normalization lemma)

Let X C C™ be an irreducible algebraic variety, zq,...,zn coordinates on C".
Assume that z1, ...,z is a transcendence basis in the fraction field k(X). Then
there exists a linear coordinate change =z = z; 4 Z?;’f Aj+kZj+k» SUCH
that the projection 1, : X — Ck to the first & arguments is a finite,
dominant morphism.

We are going to show that any irreducible germ of a complex variety admits a
holomorphic map ¢ to a hypersurface X ¢ C**T1, and ¢ induces an invertible
function on the corresponding fraction fields. Moreover, the coordinate pro-
jection m: X —» Ck is proper, and every point has finitely many preimages.
Finally, outside of a proper subvariety D C Ck, called the discriminant the
map = is a finite covering.

This implies, for instance, that for any germ of complex subvariety X C C"
there exists a proper subvariety Z C X and a hypersurface D C cd
together with a holomorphic covering X\Z — C%\D.
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Regular coordinate systems for an ideal

Consider the ring of germs of functions on C" depending only on the first d
coordinates. We identify this ring with ©; C O,

THEOREM: Let J be an ideal in ©,. There exists a coordinate system
215+ 2dy 2d+1, ---» 2n IN @ neighbourhood of 0 such that

1. Jd = 0, where Jd L= @dﬂ J.

2. The ideal J is generated by a collection of Weierstrass polynomials
INn O;,_1[z], i=d+1,...,n.

Proof. Step 1: Let Pq,..., Py be generators of J. Choose a coordinate
system where all these generators are Weierstrass polynomials, P, € ©O,,_1[zn].
Then J is generated by P;(z,) and the intersection J,_1 :=JN0O,_1.

Step 2: Applying induction in n, we may assume that the theorem is already
proven for J,_1. Then J is generated by P;(z,) and the generators of
Jn—l- l

DEFINITION: In this situation, zq,...,zn IS called a regular coordinate

system for J.
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Regular coordinate systems: geometric interpretation

THEOREM: Let J be an ideal in ©,,. There exists a coordinate system
2150y Zdy Zd415 0> 20 ( “a regular coordinate system for J") in a neighbourhood
of O such that

1. Jd = 0, where Jd L= @dﬂ J.

2. The ideal J is generated by a collection of Weierstrass polynomials
in O;_1[z%], i=d+1,...,n.

REMARK: Let J C ©, be an ideal of functions vanishing in a germ of a
complex analytic variety Z. Then the first condition is equivalent to the
following. Let N;: C" — C™ be the projection to first d coordinates. The
condition (1) means that N,;(~7) is not contained in any proper analytic
subset 7/ c C¢.

REMARK: In this situation, the second condition is an algebraic restatement
of the following geometric observation. Consider the projection N, : Z — cd
to the first d coordinates. Then the preimage of every point is finite.
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Artin’s primitive element theorem

Exercise 1: Let [K : k] be a finite field extension, chark = 0. Prove that
there exist only finitely many intermediate subfields K D K1 D k.

Exercise 2: Let k be an infinite field, W a vector space over K, and S a
union of finitely many subspaces V; C W of positive codimension. Prove that
WA\S is infinite.

DEFINITION: Let [K : k] be a finite field extension. An element z € K is
called primitive if it generates K over k.

THEOREM: (Artin’s primitive element theorem)
Let [K : k] be a finite field extension, chark = 0. Then there exists a
primitive element z € K.

Proof: Take for x an element which does not belong to intermediate subfields
K D K’ D k. Such an element exists by Exercise 2, because k is infinite, and
K’ belongs to a finite set of subspaces of positive codimension (Exercise 1).
Then z is primitive, because it generates a subfield which is equal to

K. nm
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Artin’s primitive element theorem (the second version)
We will use a stronger version of this theorem

THEOREM: (Artin’'s primitive element theorem, the second version)
Let [K : k] be a finite field extension, chark = 0, and xz1, ..., zn, € K a collection
of multiplicative generators. Then there exists an infinite subset U C k™ such
that for any point (\q,...,\n) € k™, the element u := > \;z; is primitive.

Proof: Let {K; C K} be the set of all intermediate subfields K > K’ D k.
Exercise 1 implies that there are only finitely many. Consider the vector
space W generated by x1,...,xn Over k. For each 3, the intersection KjﬂW IS
a subspace of positive codimension, because W multiplicatively generates K.
Exercise 2 implies that U := W\ Kj is infinite. =
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Regular coordinate systems: finite exensions

THEOREM: Let J be an ideal in ©,. There exists a coordinate system
21y .0y 24y 2441, -, 2n IN @ neighbourhood of O such that 1. J; = 0, where
Jg = O;NnJ. 2. The ideal J is generated by a collection of Weierstrass
polynomials Pz(zz) c (9@-_1[2'@-], 1=d+1,....n.

Lemma 1: Let Pyyq,...,P, be the Weierstrass polynomials, constructed
above, deg P, = s;. Then ©,/J, as a ©O4;-module, is generated by monomials
on z441,...,2n Of degree less than s; on each variable z;, 1t =d+1,...,n.

Proof. Step 1: Using induction in n, we may assume that lemma is proven
for any function F € ©O,_1.

Step 2: Let F € ©,. Using Weierstrass division theorem, we may assume
that ' = fP, + Q, where Q(zn) € O,,_1[z2n], deg Q < sn. Using Step 1, we
express the coefficients of Q(z) in terms of monomials of degree less than s;
on each variable z;, 1t =d+1,...,.n— 1. This is used to express () as a linear
combination of monomials on z441,...,zp. Since F' =@ mod J, any element
of ©O,, can be thus expressed. =

COROLLARY: Assume that J is a prime ideal. Lemma 1 implies that
©On/J is a finite extension of O,.
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Finiteness theorem

COROLLARY: (Finiteness theorem)

Let zq,...,2n, De a regular coordinate system for an ideal J C ©p, and Oy
holomorphic functions, depending only on z1,...,z4. Then the ring ©,/J is
finitely generated as a ©;-module.

Proof: It is generated by a finite number of coordinate monomials. =

THEOREM: (Primitive element theorem)

Let J C On be a prime ideal, such that ©,/J is finitely generated as a
O4-module. Then for an open, dense subset U in the vector space
(24415 ---»2n), the function u = Z?ch—l A;z; generates the fraction field
k(On/J) over k(Oy).

Proof: Follows from Artin’'s primitive element theorem, because Zd+41) s 2N
multiplicatively generate Op/J. =

DEFINITION: A germ of a hypersurface, or a germ of divisor in C" is
a germ of subvariety given by a single holomorphic equation. The coordinate
projection M, from C” to C*~1, taking (z1,...,2n) to (z1,...,2,—1) is finite on
the germ of hypersurface Z C C" if Z is a common zero set of a Weierstrass
polynomial P(zn) € O,,_1(2zn).

EXERCISE: Prove that for such a morphism, the number of preimages
#(I‘Igl(z)) Is constant, if counted with multiplicities.
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A germ of a subvariety mapped to a hypersurface

THEOREM: Let J be a prime ideal in Oy, and z1,..., 24, ..., 2n @ regular coor-
dinate system for J. Assume that u := ?:dJrl A;z; generates the fraction field

k(On/J) over k(©,). Defineamapu: C* — C41 u(zy, ..., 20) = (21, ..., 2g, ).
(1) The map u defines a holomorphic map ¢ : 7 — Z;, from the germ
Z of common zeroes of J to a germ of a hypersurface 2, C cd+1,
(2) The projection N, : Z, — C% to the first d coordinates is finite.
(3) Themap Z — Z, induces an isomorphism k(Ogy 1/(Py)) — k(On/J)
on the fraction fields.
Proof. Step 1: Take a regular coordinate system (zq,..., 24, ..., 2n. Consider
a primitive element w = %' ;. 4 A\jz;, generating k(On/J) over k(O,4), and let
Pu(t) € O4[t] be its minimal polynomial. Since ©O,/J is finitely generated
over ©4, the polynomial #,(t) has coefficients in ©; and leading term
1. Let Z, C C%*1 be the zero set of Py(t) in (21, ..., 24, t).

Step 2: The map u: C* — CIt1L (21,...,2) — (zl, ey 2, U = Z?:d-ﬂ Aizi)
takes Z to Z,. Indeed, if all elements of J vanish in (z1,...,2n), the function
P (u) € J also vanishes on (z1,...,2n). This map is finite, because #,(t) is a
Weierstrass polynomial.

Step 3: The isomorphism k(©n/J) = k(O4[t]/(Pyu(t))) follows from the
definition of a primitive element. =
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