Complex analytic spaces

lecture 8: Regular coordinate system

Misha Verbitsky

IMPA, sala 236,

August 30, 2023, 17:00

Weierstrass preparation and division theorems (reminder)

DEFINITION: Let $z_1, ..., z_n$ be coordinate functions on \mathbb{C}^n . Denote the ring of germs of holomorphic functions on \mathbb{C}^n depending on $z_1, ..., z_k$ by \mathcal{O}_k **A Weierstrass polynomial** is a function $F \in \mathcal{O}_{n-1}[z_n]$, with the leading coefficient 1. In other words, $F = A_0 + z_n A_1 + ... + a_{k-1} z_n^{k-1} + z_n^k$, where A_i are germs of holomorphic functions on \mathbb{C}^n depending on $z_1, ..., z_{n-1}$. **A Weierstrass polynomial is often written as** $P(z, z_n)$, where z denotes the collection $z_1, ..., z_{n-1}$.

THEOREM: (Weierstrass preparation theorem)

Let $F \in \mathcal{O}_n$ be a germ of a holomorphic function, with zero of order k in 0, and $Q \in \mathbb{C}[z_1, ..., z_n]$ its principal part. Assume that $Q(0, z_n) = z_n^k$. Then in a certain neighbourhood of 0, F can be decomposed as $F = uP(z, z_n)$, where $u \in \mathcal{O}_n$ is an invertible holomorphic function, and $P(z, z_n)$ a Weierstrass polynomial of degree k. Moreover, such a decomposition is unique.

THEOREM: (Weierstrass division theorem)

Let $P(z, z_n) \in \mathcal{O}_{n-1}[z_n]$ be a Weierstrass polynomial of degree k, with $P(0, z_n) = z_n^k$. Then every germ $F \in \mathcal{O}_n$ can be written as F = hP + Q, where $Q(z, z_n) \in$ is a polynomial of degree < k.

Complex analytic subvarieties and their germs (reminder)

DEFINITION: A complex analytic subset (or a complex analytic subvariety) of a complex manifold M is a closed subset $Z \subset M$ locally defined as the set of common zeros of a collection of holomorphic functions.

EXERCISE: Prove that a finite union and any intersection of complex analytic subsets is a complex analytic subset.

DEFINITION: Let $Z_1 \subset U_1, Z_2 \subset U_2$ be complex analytic subsets of open subsets $U_i \subset M$ containing $x \in M$. We say that Z_1 and Z_2 have the same germ in x if $Z_1 \cap U = Z_2 \cap U$ for some neighbourhood $U \subset U_1 \cap U_2$ containing x. Clearly, this defines an equivalence relation. A germ of a complex analytic subset in $x \in M$ is an equivalence class of complex-analytic subsets $Z \subset U$ under this relation.

EXERCISE: Prove that a finite union and any intersection of germs of complex analytic subsets is a germ of a complex analytic subset.

Irreducible germs of subvarieties (reminder)

DEFINITION: Let A_1, A_2 be germs of complex analytic subsets in $x \in M$. We say that $A_1 \subset A_2$ if $A_1 \cap U \subset A_2 \cap U$ for some open neighbourhood of $x \in M$.

DEFINITION: A germ Z of a complex analytic subset in $x \in M$ is called **irreducible** if for any decomposition $Z = A_1 \cup A_2$ into a union of two germs, we have $A_1 \subset A_2$ or $A_2 \subset A_2$. An irreducible component of a germ Z is an irreducible germ $Z_1 \subset Z$ such that $Z = Z_1 \cap Z_2$, for some other germ $Z_2 \not\supseteq Z_1$.

EXERCISE: Prove that a germ of a smooth submanifold is irreducible.

EXERCISE: Find an irreducible complex variety Z such that the germ of Z in x is not irreducible.

PROPOSITION: Any germ Z of a complex variety is a union of its irreducible components.

COROLLARY: Let $Z \subset M$ be a germ of subvariety in $z \in M$. Then the following are equivalent: (a) Z is irreducible (b) $\mathcal{O}_{Z,z}$ has no zero divisors (c) the ideal $J_z \subset \mathcal{O}_{M,z}$ is prime.

Noether's normalization lemma

Today we are going to prove a complex-analytic version of the following theorem.

(Noether's normalization lemma)

Let $X \subset \mathbb{C}^n$ be an irreducible algebraic variety, $z_1, ..., z_n$ coordinates on \mathbb{C}^n . Assume that $z_1, ..., z_k$ is a transcendence basis in the fraction field k(X). Then there exists a linear coordinate change $z'_i := z_i + \sum_{j=1}^{n-k} \lambda_{j+k} z_{j+k}$, such that the projection $\Pi_k : X \longrightarrow C^k$ to the first k arguments is a finite, dominant morphism.

We are going to show that any irreducible germ of a complex variety admits a holomorphic map φ to a hypersurface $X \subset \mathbb{C}^{k+1}$, and φ induces an invertible function on the corresponding fraction fields. Moreover, the coordinate projection $\pi : X \longrightarrow \mathbb{C}^k$ is proper, and every point has finitely many preimages. Finally, outside of a proper subvariety $D \subset \mathbb{C}^k$, called **the discriminant** the map π is a finite covering.

This implies, for instance, that for any germ of complex subvariety $X \subset \mathbb{C}^n$ there exists a proper subvariety $Z \subset X$ and a hypersurface $D \subset \mathbb{C}^d$ together with a holomorphic covering $X \setminus Z \longrightarrow \mathbb{C}^d \setminus D$.

Regular coordinate systems for an ideal

Consider the ring of germs of functions on \mathbb{C}^n depending only on the first d coordinates. We identify this ring with $\mathcal{O}_d \subset \mathcal{O}_n$.

THEOREM: Let *J* be an ideal in \mathcal{O}_n . There exists a coordinate system $z_1, ..., z_d, z_{d+1}, ..., z_n$ in a neighbourhood of 0 such that

1. $J_d = 0$, where $J_d := \Theta_d \cap J$.

2. The ideal J is generated by a collection of Weierstrass polynomials in $\mathcal{O}_{i-1}[z_i]$, i = d + 1, ..., n.

Proof. Step 1: Let $P_1, ..., P_N$ be generators of J. Choose a coordinate system where all these generators are Weierstrass polynomials, $P_i \in \mathcal{O}_{n-1}[z_n]$. Then J is generated by $P_i(z_n)$ and the intersection $J_{n-1} := J \cap \mathcal{O}_{n-1}$.

Step 2: Applying induction in n, we may assume that the theorem is already proven for J_{n-1} . Then J is generated by $P_i(z_n)$ and the generators of J_{n-1} .

DEFINITION: In this situation, $z_1, ..., z_n$ is called a regular coordinate system for J.

Regular coordinate systems: geometric interpretation

THEOREM: Let J be an ideal in \mathcal{O}_n . There exists a coordinate system $z_1, ..., z_d, z_{d+1}, ..., z_n$ ("a regular coordinate system for J") in a neighbourhood of 0 such that

1. $J_d = 0$, where $J_d := \mathcal{O}_d \cap J$.

2. The ideal J is generated by a collection of Weierstrass polynomials in $\mathcal{O}_{i-1}[z_i]$, i = d + 1, ..., n.

REMARK: Let $J \subset \Theta_n$ be an ideal of functions vanishing in a germ of a complex analytic variety Z. Then the first condition is equivalent to the following. Let $\Pi_d : \mathbb{C}^n \longrightarrow \mathbb{C}^n$ be the projection to first d coordinates. The condition (1) means that $\Pi_d(Z)$ is not contained in any proper analytic subset $Z' \subset \mathbb{C}^d$.

REMARK: In this situation, the second condition is an algebraic restatement of the following geometric observation. Consider the projection $\Pi_d : Z \longrightarrow \mathbb{C}^d$ to the first *d* coordinates. **Then the preimage of every point is finite.** Complex analytic spaces, lecture 8

M. Verbitsky

Artin's primitive element theorem

Exercise 1: Let [K : k] be a finite field extension, char k = 0. Prove that there exist only finitely many intermediate subfields $K \supset K_1 \supset k$.

Exercise 2: Let k be an infinite field, W a vector space over K, and S a union of finitely many subspaces $V_i \subset W$ of positive codimension. Prove that $W \setminus S$ is infinite.

DEFINITION: Let [K : k] be a finite field extension. An element $x \in K$ is called **primitive** if it generates K over k.

THEOREM: (Artin's primitive element theorem) Let [K : k] be a finite field extension, char k = 0. Then there exists a primitive element $x \in K$.

Proof: Take for x an element which does not belong to intermediate subfields $K \supseteq K' \supset k$. Such an element exists by Exercise 2, because k is infinite, and K' belongs to a finite set of subspaces of positive codimension (Exercise 1). Then x is primitive, because it generates a subfield which is equal to K.

Artin's primitive element theorem (the second version)

We will use a stronger version of this theorem

THEOREM: (Artin's primitive element theorem, the second version) Let [K : k] be a finite field extension, char k = 0, and $x_1, ..., x_n \in K$ a collection of multiplicative generators. Then there exists an infinite subset $U \subset k^n$ such that for any point $(\lambda_1, ..., \lambda_n) \in k^n$, the element $u := \sum \lambda_i x_i$ is primitive.

Proof: Let $\{K_j \subsetneq K\}$ be the set of all intermediate subfields $K \supseteq K' \supset k$. Exercise 1 implies that there are only finitely many. Consider the vector space W generated by $x_1, ..., x_n$ over k. For each j, the intersection $K_j \cap W$ is a subspace of positive codimension, because W multiplicatively generates K. **Exercise 2 implies that** $U := W \setminus \bigcup K_j$ **is infinite.**

Regular coordinate systems: finite exensions

THEOREM: Let J be an ideal in \mathcal{O}_n . There exists a coordinate system $z_1, ..., z_d, z_{d+1}, ..., z_n$ in a neighbourhood of 0 such that 1. $J_d = 0$, where $J_d := \mathcal{O}_d \cap J$. 2. The ideal J is generated by a collection of Weierstrass polynomials $P_i(z_i) \in \mathcal{O}_{i-1}[z_i]$, i = d + 1, ..., n.

Lemma 1: Let $P_{d+1}, ..., P_n$ be the Weierstrass polynomials, constructed above, deg $P_i = s_i$. Then \mathcal{O}_n/J , as a \mathcal{O}_d -module, is generated by monomials on $z_{d+1}, ..., z_n$ of degree less than s_i on each variable z_i , i = d + 1, ..., n.

Proof. Step 1: Using induction in n, we may assume that **lemma is proven** for any function $F \in \mathcal{O}_{n-1}$.

Step 2: Let $F \in \mathcal{O}_n$. Using Weierstrass division theorem, we may assume that $F = fP_n + Q$, where $Q(z_n) \in \mathcal{O}_{n-1}[z_n]$, deg $Q < s_n$. Using Step 1, we express the coefficients of $Q(z_n)$ in terms of monomials of degree less than s_i on each variable z_i , i = d + 1, ..., n - 1. This is used to express Q as a linear combination of monomials on $z_{d+1}, ..., z_n$. Since $F = Q \mod J$, any element of \mathcal{O}_n can be thus expressed.

COROLLARY: Assume that *J* is a prime ideal. Lemma 1 implies that \mathcal{O}_n/J is a finite extension of \mathcal{O}_d .

Finiteness theorem

COROLLARY: (Finiteness theorem)

Let $z_1, ..., z_n$ be a regular coordinate system for an ideal $J \subset \mathcal{O}_n$, and \mathcal{O}_d holomorphic functions, depending only on $z_1, ..., z_d$. Then the ring \mathcal{O}_n/J is finitely generated as a \mathcal{O}_d -module.

Proof: It is generated by a finite number of coordinate monomials.

THEOREM: (Primitive element theorem)

Let $J \subset \Theta_n$ be a prime ideal, such that Θ_n/J is finitely generated as a Θ_d -module. Then for an open, dense subset U in the vector space $\langle z_{d+1}, ..., z_n \rangle$, the function $u = \sum_{i=d+1}^n \lambda_i z_i$ generates the fraction field $k(\Theta_n/J)$ over $k(\Theta_d)$.

Proof: Follows from Artin's primitive element theorem, because $z_{d+1}, ..., z_n$ multiplicatively generate \mathcal{O}_n/J .

DEFINITION: A germ of a hypersurface, or a germ of divisor in \mathbb{C}^n is a germ of subvariety given by a single holomorphic equation. The coordinate projection Π_d from \mathbb{C}^n to \mathbb{C}^{n-1} , taking $(z_1, ..., z_n)$ to $(z_1, ..., z_{n-1})$ is finite on the germ of hypersurface $Z \subset \mathbb{C}^n$ if Z is a common zero set of a Weierstrass polynomial $P(z_n) \in \mathcal{O}_{n-1}(z_n)$.

EXERCISE: Prove that for such a morphism, the number of preimages $\#(\prod_{d=1}^{-1}(z))$ is constant, if counted with multiplicities.

A germ of a subvariety mapped to a hypersurface

THEOREM: Let J be a prime ideal in \mathcal{O}_n , and $z_1, ..., z_d, ..., z_n$ a regular coordinate system for J. Assume that $u := \sum_{i=d+1}^n \lambda_i z_i$ generates the fraction field $k(\mathcal{O}_n/J)$ over $k(\mathcal{O}_d)$. Define a map $\mathfrak{u} : \mathbb{C}^n \longrightarrow \mathbb{C}^{d+1}$, $\mathfrak{u}(z_1, ..., z_n) = (z_1, ..., z_d, u)$.

(1) The map \mathfrak{u} defines a holomorphic map $\varphi : Z \longrightarrow Z_u$ from the germ Z of common zeroes of J to a germ of a hypersurface $Z_u \subset \mathbb{C}^{d+1}$.

(2) The projection Π_d : $Z_u \longrightarrow \mathbb{C}^d$ to the first d coordinates is finite.

(3) The map $Z \xrightarrow{\mathfrak{u}} Z_u$ induces an isomorphism $k(\mathfrak{O}_{d+1}/(P_u)) \xrightarrow{\sim} k(\mathfrak{O}_n/J)$ on the fraction fields.

Proof. Step 1: Take a regular coordinate system $(z_1, ..., z_d, ..., z_n)$. Consider a primitive element $u = \sum_{i=d+1}^n \lambda_i z_i$, generating $k(\mathcal{O}_n/J)$ over $k(\mathcal{O}_d)$, and let $\mathcal{P}_u(t) \in \mathcal{O}_d[t]$ be its minimal polynomial. Since \mathcal{O}_n/J is finitely generated over \mathcal{O}_d , the polynomial $\mathcal{P}_u(t)$ has coefficients in \mathcal{O}_d and leading term **1.** Let $Z_u \subset \mathbb{C}^{d+1}$ be the zero set of $\mathcal{P}_u(t)$ in $(z_1, ..., z_d, t)$.

Step 2: The map $\mathfrak{u} : \mathbb{C}^n \longrightarrow \mathbb{C}^{d+1}$, $(z_1, ..., z_n) \xrightarrow{\mathfrak{u}} (z_1, ..., z_d, u = \sum_{i=d+1}^n \lambda_i z_i)$ **takes** Z **to** Z_u . Indeed, if all elements of J vanish in $(z_1, ..., z_n)$, the function $\mathscr{P}_u(u) \in J$ also vanishes on $(z_1, ..., z_n)$. This map is finite, because $\mathscr{P}_u(t)$ is a Weierstrass polynomial.

Step 3: The isomorphism $k(\mathcal{O}_n/J) = k(\mathcal{O}_d[t]/(P_u(t)))$ follows from the definition of a primitive element.