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Weierstrass preparation and division theorems (reminder)

DEFINITION: Let z1, ..., zn be coordinate functions on Cn. Denote the

ring of germs of holomorphic functions on Cn depending on z1, ..., zk by Ok
A Weierstrass polynomial is a function F ∈ On−1[zn], with the leading

coefficient 1. In other words, F = A0 + znA1 + ... + ak−1z
k−1
n + zkn, where

Ai are germs of holomorphic functions on Cn depending on z1, ..., zn−1. A

Weierstrass polynomial is often written as P (z, zn), where z denotes the

collection z1, ..., zn−1.

THEOREM: (Weierstrass preparation theorem)

Let F ∈ On be a germ of a holomorphic function, with zero of order k in 0,

and Q ∈ C[z1, ..., zn] its principal part. Assume that Q(0, zn) = zkn. Then in

a certain neighbourhood of 0, F can be decomposed as F = uP (z, zn),

where u ∈ On is an invertible holomorphic function, and P (z, zn) a Weierstrass

polynomial of degree k. Moreover, such a decomposition is unique.

THEOREM: (Weierstrass division theorem)

Let P (z, zn) ∈ On−1[zn] be a Weierstrass polynomial of degree k, with P (0, zn) =

zkn. Then every germ F ∈ On can be written as F = hP + Q, where

Q(z, zn) ∈ is a polynomial of degree < k.
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Complex analytic subvarieties and their germs (reminder)

DEFINITION: A complex analytic subset (or a complex analytic sub-

variety) of a complex manifold M is a closed subset Z ⊂M locally defined as

the set of common zeros of a collection of holomorphic functions.

EXERCISE: Prove that a finite union and any intersection of complex

analytic subsets is a complex analytic subset.

DEFINITION: Let Z1 ⊂ U1, Z2 ⊂ U2 be complex analytic subsets of open

subsets Ui ⊂ M containing x ∈ M . We say that Z1 and Z2 have the same

germ in x if Z1∩U = Z2∩U for some neighbourhood U ⊂ U1∩U2 containing

x. Clearly, this defines an equivalence relation. A germ of a complex

analytic subset in x ∈M is an equivalence class of complex-analytic subsets

Z ⊂ U under this relation.

EXERCISE: Prove that a finite union and any intersection of germs of

complex analytic subsets is a germ of a complex analytic subset.
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Irreducible germs of subvarieties (reminder)

DEFINITION: Let A1, A2 be germs of complex analytic subsets in x ∈ M .
We say that A1 ⊂ A2 if A1 ∩ U ⊂ A2 ∩ U for some open neighbourhood of
x ∈M .

DEFINITION: A germ Z of a complex analytic subset in x ∈ M is called
irreducible if for any decomposition Z = A1 ∪A2 into a union of two germs,
we have A1 ⊂ A2 or A2 ⊂ A2. An irreducible component of a germ Z is an
irreducible germ Z1 ⊂ Z such that Z = Z1∩Z2, for some other germ Z2 6⊃ Z1.

EXERCISE: Prove that a germ of a smooth submanifold is irreducible.

EXERCISE: Find an irreducible complex variety Z such that the germ
of Z in x is not irreducible.

PROPOSITION: Any germ Z of a complex variety is a union of its
irreducible components.

COROLLARY: Let Z ⊂ M be a germ of subvariety in z ∈ M . Then the
following are equivalent: (a) Z is irreducible (b) OZ,z has no zero divisors
(c) the ideal Jz ⊂ OM,z is prime.
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Noether’s normalization lemma

Today we are going to prove a complex-analytic version of the following
theorem.

(Noether’s normalization lemma)
Let X ⊂ Cn be an irreducible algebraic variety, z1, ..., zn coordinates on Cn.
Assume that z1, ..., zk is a transcendence basis in the fraction field k(X). Then
there exists a linear coordinate change z′i := zi +

∑n−k
j=1 λj+kzj+k, such

that the projection Πk : X −→ Ck to the first k arguments is a finite,
dominant morphism.

We are going to show that any irreducible germ of a complex variety admits a
holomorphic map ϕ to a hypersurface X ⊂ Ck+1, and ϕ induces an invertible
function on the corresponding fraction fields. Moreover, the coordinate pro-
jection π : X −→ Ck is proper, and every point has finitely many preimages.
Finally, outside of a proper subvariety D ⊂ Ck, called the discriminant the
map π is a finite covering.

This implies, for instance, that for any germ of complex subvariety X ⊂ Cn
there exists a proper subvariety Z ⊂ X and a hypersurface D ⊂ Cd
together with a holomorphic covering X\Z −→ Cd\D.
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Regular coordinate systems for an ideal

Consider the ring of germs of functions on Cn depending only on the first d

coordinates. We identify this ring with Od ⊂ On.

THEOREM: Let J be an ideal in On. There exists a coordinate system

z1, ..., zd, zd+1, ..., zn in a neighbourhood of 0 such that

1. Jd = 0, where Jd := Od ∩ J.

2. The ideal J is generated by a collection of Weierstrass polynomials

in Oi−1[zi], i = d+ 1, ..., n.

Proof. Step 1: Let P1, ..., PN be generators of J. Choose a coordinate

system where all these generators are Weierstrass polynomials, Pi ∈ On−1[zn].

Then J is generated by Pi(zn) and the intersection Jn−1 := J ∩On−1.

Step 2: Applying induction in n, we may assume that the theorem is already

proven for Jn−1. Then J is generated by Pi(zn) and the generators of

Jn−1.

DEFINITION: In this situation, z1, ..., zn is called a regular coordinate

system for J.
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Regular coordinate systems: geometric interpretation

THEOREM: Let J be an ideal in On. There exists a coordinate system

z1, ..., zd, zd+1, ..., zn (“a regular coordinate system for J”) in a neighbourhood

of 0 such that

1. Jd = 0, where Jd := Od ∩ J.

2. The ideal J is generated by a collection of Weierstrass polynomials

in Oi−1[zi], i = d+ 1, ..., n.

REMARK: Let J ⊂ On be an ideal of functions vanishing in a germ of a

complex analytic variety Z. Then the first condition is equivalent to the

following. Let Πd : Cn −→ Cn be the projection to first d coordinates. The

condition (1) means that Πd(Z) is not contained in any proper analytic

subset Z′ ⊂ Cd.

REMARK: In this situation, the second condition is an algebraic restatement

of the following geometric observation. Consider the projection Πd : Z −→ Cd

to the first d coordinates. Then the preimage of every point is finite.

7



Complex analytic spaces, lecture 8 M. Verbitsky

Artin’s primitive element theorem

Exercise 1: Let [K : k] be a finite field extension, char k = 0. Prove that

there exist only finitely many intermediate subfields K ⊃ K1 ⊃ k.

Exercise 2: Let k be an infinite field, W a vector space over K, and S a

union of finitely many subspaces Vi ⊂W of positive codimension. Prove that

W\S is infinite.

DEFINITION: Let [K : k] be a finite field extension. An element x ∈ K is

called primitive if it generates K over k.

THEOREM: (Artin’s primitive element theorem)

Let [K : k] be a finite field extension, char k = 0. Then there exists a

primitive element x ∈ K.

Proof: Take for x an element which does not belong to intermediate subfields

K ) K′ ⊃ k. Such an element exists by Exercise 2, because k is infinite, and

K′ belongs to a finite set of subspaces of positive codimension (Exercise 1).

Then x is primitive, because it generates a subfield which is equal to

K.
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Artin’s primitive element theorem (the second version)

We will use a stronger version of this theorem

THEOREM: (Artin’s primitive element theorem, the second version)

Let [K : k] be a finite field extension, char k = 0, and x1, ..., xn ∈ K a collection

of multiplicative generators. Then there exists an infinite subset U ⊂ kn such

that for any point (λ1, ..., λn) ∈ kn, the element u :=
∑
λixi is primitive.

Proof: Let {Kj ( K} be the set of all intermediate subfields K ) K′ ⊃ k.

Exercise 1 implies that there are only finitely many. Consider the vector

space W generated by x1, ..., xn over k. For each j, the intersection Kj ∩W is

a subspace of positive codimension, because W multiplicatively generates K.

Exercise 2 implies that U := W\
⋃
Kj is infinite.
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Regular coordinate systems: finite exensions

THEOREM: Let J be an ideal in On. There exists a coordinate system
z1, ..., zd, zd+1, ..., zn in a neighbourhood of 0 such that 1. Jd = 0, where
Jd := Od ∩ J. 2. The ideal J is generated by a collection of Weierstrass
polynomials Pi(zi) ∈ Oi−1[zi], i = d+ 1, ..., n.

Lemma 1: Let Pd+1, ..., Pn be the Weierstrass polynomials, constructed
above, degPi = si. Then On/J, as a Od-module, is generated by monomials
on zd+1, ..., zn of degree less than si on each variable zi, i = d+ 1, ..., n.

Proof. Step 1: Using induction in n, we may assume that lemma is proven
for any function F ∈ On−1.

Step 2: Let F ∈ On. Using Weierstrass division theorem, we may assume
that F = fPn + Q, where Q(zn) ∈ On−1[zn], degQ < sn. Using Step 1, we
express the coefficients of Q(zn) in terms of monomials of degree less than si
on each variable zi, i = d + 1, ..., n − 1. This is used to express Q as a linear
combination of monomials on zd+1, ..., zn. Since F = Q mod J, any element
of On can be thus expressed.

COROLLARY: Assume that J is a prime ideal. Lemma 1 implies that
On/J is a finite extension of Od.
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Finiteness theorem

COROLLARY: (Finiteness theorem)
Let z1, ..., zn be a regular coordinate system for an ideal J ⊂ On, and Od
holomorphic functions, depending only on z1, ..., zd. Then the ring On/J is
finitely generated as a Od-module.
Proof: It is generated by a finite number of coordinate monomials.

THEOREM: (Primitive element theorem)
Let J ⊂ On be a prime ideal, such that On/J is finitely generated as a
Od-module. Then for an open, dense subset U in the vector space
〈zd+1, ..., zn〉, the function u =

∑n
i=d+1 λizi generates the fraction field

k(On/J) over k(Od).
Proof: Follows from Artin’s primitive element theorem, because zd+1, ..., zn
multiplicatively generate On/J.

DEFINITION: A germ of a hypersurface, or a germ of divisor in Cn is
a germ of subvariety given by a single holomorphic equation. The coordinate
projection Πd from Cn to Cn−1, taking (z1, ..., zn) to (z1, ..., zn−1) is finite on
the germ of hypersurface Z ⊂ Cn if Z is a common zero set of a Weierstrass
polynomial P (zn) ∈ On−1(zn).

EXERCISE: Prove that for such a morphism, the number of preimages
#(Π−1

d (z)) is constant, if counted with multiplicities.
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A germ of a subvariety mapped to a hypersurface

THEOREM: Let J be a prime ideal in On, and z1, ..., zd, ..., zn a regular coor-
dinate system for J. Assume that u :=

∑n
i=d+1 λizi generates the fraction field

k(On/J) over k(Od). Define a map u : Cn −→ Cd+1, u(z1, ..., zn) = (z1, ..., zd, u).
(1) The map u defines a holomorphic map ϕ : Z −→ Zu from the germ

Z of common zeroes of J to a germ of a hypersurface Zu ⊂ Cd+1.
(2) The projection Πd : Zu −→ Cd to the first d coordinates is finite.
(3) The map Z

u−→ Zu induces an isomorphism k(Od+1/(Pu)) −̃→ k(On/J)
on the fraction fields.
Proof. Step 1: Take a regular coordinate system (z1, ..., zd, ..., zn. Consider
a primitive element u =

∑n
i=d+1 λizi, generating k(On/J) over k(Od), and let

Pu(t) ∈ Od[t] be its minimal polynomial. Since On/J is finitely generated
over Od, the polynomial Pu(t) has coefficients in Od and leading term
1. Let Zu ⊂ Cd+1 be the zero set of Pu(t) in (z1, ..., zd, t).

Step 2: The map u : Cn −→ Cd+1, (z1, ..., zn)
u−→

(
z1, ..., zd, u =

∑n
i=d+1 λizi

)
takes Z to Zu. Indeed, if all elements of J vanish in (z1, ..., zn), the function
Pu(u) ∈ J also vanishes on (z1, ..., zn). This map is finite, because Pu(t) is a
Weierstrass polynomial.

Step 3: The isomorphism k(On/J) = k(Od[t]/(Pu(t))) follows from the
definition of a primitive element.
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