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Artinian algebras over a field

DEFINITION: A commutative, associative k-algebra R is called Artinian

algebra if it is finite-dimensional as a vector space over k. We don’t assume

existence of a unity. Artinian algebra is called semisimple if it has no non-zero

nilpotents.

DEFINITION: Let R1, ..., Rn be k-algebras. Consider their direct sum ⊕Ri
with the natural (term by term) multiplication and addition. This algebra is

called direct sum of Ri, and denoted ⊕Ri.

Today we are going to prove the following theorem.

THEOREM: Let A be a semisimple Artinian algebra. Then A is a direct

sum of fields, and this decomposition is uniquely defined.
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Idempotents

DEFINITION: Let v ∈ R be an element of an algebra R satisfying v2 = v.

Then v is called idempotent.

REMARK: A product of two idemponents is clearly an idempotent.

If e is an idemponent, then 1 − e is also an idempotent: (1 − e)2 =

1− 2e+ e2 = 1− e.

COROLLARY: For each idemponent e ∈ R, one has e(1−e) = 0. Therefore,

each idemponent e ∈ A defines a decomposition of A into a direct sum:

A = eA⊕ (1− e)A.
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All Artinian algebras contain idempotents

THEOREM: Let A be an Artinian k-algebra without nilpotents. Then A
contains an idempotent.

Proof. Step 1: Since A is finite-dimensional, every decreasing chain of ideals
stabilizes. Therefore, A contains an ideal I ⊂ A which has no non-zero
proper ideals. We shall consider I as a sub-algebra in A.

Step 2: Since A has no nilpotents, for each non-zero z ∈ I we have z2 6= 0.
Since I is minimal, we have zI = I.

Step 3: Since I is finite-dimensional, all elements of I are invertible as
endomorphisms of I.

Step 4: Since I is finite-dimensional, the elements z, z2, z3, ... ∈ End I are
linearly dependent, which gives a polynomial relation P (z) = 0. If this
polynomial has zero constant term, we divide it by z, and obtain another
polynomial with the same property. Using induction, we obtain a polyno-
mial relation P (z) = 0 with non-zero constant term. This gives a relation
IdI = az + bz2 + cz3 + ... in the ring Endk(I), with a, b, c, ... ∈ k.

Step 5: The element U := az + bz2 + cz3 + ... ∈ I satisfies Ux = x for any
x ∈ I. Therefore, U is an idempotent in A, and unity in I.
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Structure theorem for semisimple Artinian algebras

REMARK: Step 5 proves the following useful statement. Let I be a commu-

tative Artinian algebra without zero divisors. Then I containes unit, that

is, I is a field.

COROLLARY: Let A be a semisimple Artinian algebra, that is, a finite-

dimensional commutative k-algebra without nilpotents. Then A is a direct

sum of fields

Proof: Let I ⊂ A be a non-trivial ideal. As shown above, I contains a non-

zero idempotent a. Then a and b := 1 − a idempotents satisfying ab = 0,

a + b = 1. This gives a direct sum decomposition A = aA ⊕ (1 − a)A.

Using induction in dimA, we may assume already that aA and (1 − a)A are

direct sum of fields.
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Structure theorem for semisimple Artinian algebras: uniqueness of de-

composition

LEMMA: Let A be a direct sum of fields, A =
⊕
i ki. Then the decompo-

sition A =
⊕
i ki is defined uniquely, up to permutation of summands.

Proof: Let A =
⊕n
i=1 ki =

⊕m
j=1 k

′
j. and a1, ..., an, b1, ..., bn be the corre-

sponding idempotents. Then the pairwise products {aibj} give a family of

udempotents which satisfies
∑
aibj = (

∑
ai)

(∑
bj
)

= 1 and aibjai′bj′ = 0 un-

less i = i′, j = j′. Unless all udempotents aibj are equal to ai, this gives a

direct sum decomposition for each subfield ki, which is impossible. Therefore,

the sets {bj} and {ai} coincide.

6



Complex analytic spaces, lecture 9 M. Verbitsky

Bilinear invariant forms

DEFINITION: Let R be a k-algebra, and g : R × R−→ k a k-bilinear sym-

metric form on R. The form g is called invariant if g(x, yz) = g(xy, z) for all

x, y, z ∈ R.

REMARK: If R has unity, for any invariant form g we have g(x, y) = h(xy,1),

hence g is determined by a linear functional a−→ g(a,1).

EXAMPLE: Consider the ring R[x, y]/(xn+1, yn+1), and let ε
(∑

aijx
iyj
)

:=

ann. The corresponding bilinear invariant form g(x, y) := ε(xy) is non-

derenerate (prove this).

CLAIM: Let [K : k] be a field extension, and ε a non-zero k-linear functional

on K. Then the bilinear form g(x, y) := ε(xy) is non-degenerate.

Proof: Suppose ε(a) 6= 0. Then g(x, x−1a) 6= 0.
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The trace form

DEFINITION: Trace tr(A) of a linear operator A ∈ Endk(kn) represented by

a matrix (aij) is
∑n
i=1 aii.

DEFINITION: Let R be an Artinian algebra over k. Consider the bilinear

form a, b−→ tr(ab), mapping a, b to the trace of endomorphism Lab ∈ EndkR,

where lab(x) = abx. This form is called the trace form, and denoted as

trk(ab).

REMARK: Let [K : k] be a finite field extension. As shown above, the trace

form trk(ab) is non-degenerate, unless trk is identically 0.
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Separable extensions

DEFINITION: A field extension [K : k] is called separable if the trace form

trk(ab) is non-zero.

REMARK: If char k = 0, every field extension is separable, because

trk(1) = dimkK.

THEOREM: Let R be an Artinian algebra over k with non-degenerate trace

form. Then R is semisimple.

Proof: Since trk(ab) = 0 for any nilpotent a (indeed, the trace of a nilpotent

operator vanishes), the ring R contains no non-zero nilpotents.
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Tensor product of field extensions

LEMMA: Let R, R′ be Artinian k-algebras. Denote the corresponding trace
forms by g, g′. Consider the tensor product R ⊗k R′ with a natural structure
of Artinian k-algebra. Then the trace form on R⊗kR′ is equal g⊗ g′, that
is,

trR⊗kR′(x⊗ y, z ⊗ t) = g(x, z)g′(y, t). (∗)

Proof: Let V,W be vector spaces over k, and µ, ρ endomorphisms of V,W .
Then tr(µ ⊗ ρ) = tr(µ) tr(ρ), which is clear from the block decomposition of
the matrix µ ⊗ ρ. This gives the trace for any decomposable vector
r ⊗ r′ ∈ R⊗k R′. The equation (*) is extended to the rest of R⊗k R′ because
decomposable vectors generate R⊗k R′.

COROLLARY: Let [K1 : k], [K2 : k] be separable extensions. Then the
Artinian k-algebra K1 ⊗k K2 is semisimple, that is, isomorphic to a direct
sum of fields.

Proof: The trace form on K1 ⊗k K2 is non-degenerate, because g ⊗ g′ is
non-degenerate whenever g, g′ is non-degenerate.

REMARK: In particular, if char k = 0, the product of finite extensions of
the field k is always a direct sum of fields.
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Tensor product of fields: examples and exercises

PROPOSITION: Let P (t) ∈ k[t] be a polynomial over k, [K : k] an extension,
and K1 = k[t]/P (t). Then K1 ⊗K ∼= K[t]/P (t).

COROLLARY: Let P (t) be a polynomial over k, [K : k] an extension,
and K1 = k[t]/P (t). Assume that P (t) is a product of n distinct degree 1
polynomials over K. Then K1 ⊗K ∼= K[t]/P (t) = K⊕n.

Proof: Let P = (t − a1)(t − a2)...(t − an). The natural map K[t]/(P )
τ−→⊕

iK[t]/(t − ai) = K⊕nK is injective, because any polynomial which vanishes
in a1, a2, ..., an is divisible by P . Since the spaces K[t]/(P ) and K[t]/(t−ai) = K

are n-dimensional, τ is an isomorphism.

REMARK: Surjectivity of τ is known as “Chinese remainders theorem”.

EXERCISE: Let P (t) ∈ Q[t] be a polynomial which has exactly r real roots
and 2s complex, non-real roots. Prove that (Q[t]/P )⊗Q R =

⊕
sC⊕

⊕
r R.

REMARK: Similarly, let P (t) ∈ k[t] be an irreducible polynomial which
has irreducible decomposition P (t) =

∏
i Pi(t) in K[t], with all Pi(t) co-

prime. Then k[t]/(P ) ⊗k K ∼= K[t]/P (t) ∼=
⊕
iK[t]/Pi(t). The proof is the

same.
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Existence of algebraic closure

REMARK: Algebraic closure [k : k] is obtained by taking a succession

of increasing algebraic extensions, adding to each the roots of irreducible

polynomials, and using the Zorn lemma to prove that this will end up in a

field which has no non-trivial extensions.
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Tensor product of fields and algebraic closure

THEOREM: Let [k : k] be the algebraic closure of k, and [K : k] a separable
finite extension. Then K ⊗k k =

⊕
k.

Proof. Step 1: Consider a homomorphism K ↪→ k, acting as identity on k.
Such a homomorphism exists by construction of the algebraic closure. Then

K ⊗k k = (K ⊗k K)⊗K k

by associativity of tensor product.

Step 2: Since [K : k] is separable, K⊗kK =
⊕
Ki. There are at least 2 non-

trivial summands in
⊕
Ki, because for each irreducible polynomial P (t) ∈ k[t]

which has roots in K, one has K ⊃ k[t]/(P ), but K⊗k k[t]/(P ) =
⊕
iK[t]/(Pi),

where Pi(t) ∈ K[t] are irreducible components in the prime decomposition
of P (t) over K, with P (t) =

∏
i Pi(t). This gives non-trivial idempotents in

K ⊗k k[t]/(P ), hence in K ⊗k K ⊃ K ⊗k (k[t]/(P )).

Step 3: By associativity of tensor product,

K ⊗k k = (K ⊗k K)⊗K k =
⊕

Ki ⊗K k. (∗)
Since dimkK =

∑
i dimKKi > maxi dimKKi, the equation K ⊗k k =

⊕
k

follows from (*) and induction on dimkK.
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Primitive element theorem

LEMMA: Let k be a field, and A :=
⊕n
i=1 k. Then A contains only finitely

many different k-algebras.

Proof: Let e1, ..., en be the units in the summands of A. Then any idempotent
a ∈ A is a sum of idempotents a =

∑
eia, but eia belongs to the i-th summand

of A. Then eia = 0 or eia = ei, because k contains only two idempotents.
This implies that any k-algebra Ai ⊂ A is generated by an idempotent a,
which is sum of some ai.

THEOREM: Let [K : k] be a finite field extension in char = 0. Then there
exists a primitive element x ∈ K, that is, an element which generates K.

Proof. Step 1: Let k be the algebraic closure of k. The number of
intermediate fields K ⊃ K′ ⊃ k is finite. Indeed, all such fields correspond
to k-subalgebras in K ⊗k k, and there are finitely many k-subalgebras in
K ⊗k k because K ⊗k k =

⊕
i k.

Step 2: Take for x an element which does not belong to intermediate sub-
fields K ) K′ ⊃ k. Such an element exists, because k is infinite, and K′ belong
to a finite set of subspaces of positive codimension. Then x is primitive,
because it generates a subfield which is equal to K.
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