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Artinian algebras over a field

DEFINITION: A commutative, associative k-algebra R is called Artinian
algebra if it is finite-dimensional as a vector space over k. We don't assume
existence of a unity. Artinian algebra is called semisimple if it has no non-zero
nilpotents.

DEFINITION: Let Rq,..., Ry be k-algebras. Consider their direct sum &R,
with the natural (term by term) multiplication and addition. This algebra is
called direct sum of R;, and denoted ®R,;.

Today we are going to prove the following theorem.

THEOREM: Let A be a semisimple Artinian algebra. Then A is a direct
sum of fields, and this decomposition is uniquely defined.
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Idempotents

DEFINITION: Let v € R be an element of an algebra R satisfying v = .
Then v is called idempotent.

REMARK: A product of two idemponents is clearly an idempotent.
If e is an idemponent, then 1 — e is also an idempotent: (1 —¢e)? =
1—2€+€2:1—€.

COROLLARY: For each idemponent e € R, one has e(1—e) = 0. Therefore,
each idemponent e € A defines a decomposition of A into a direct sum:
A=eAD (1 —-¢e)A.



Complex analytic spaces, lecture 9 M. Verbitsky
All Artinian algebras contain idempotents

THEOREM: Let A be an Artinian k-algebra without nilpotents. Then A
contains an idempotent.

Proof. Step 1: Since A is finite-dimensional, every decreasing chain of ideals
stabilizes. Therefore, A contains an ideal I C A which has no non-zero
proper ideals. We shall consider I as a sub-algebra in A.

Step 2: Since A has no nilpotents, for each non-zero z € I we have 22 = 0.
Since I is minimal, we have zI = 1.

Step 3: Since I is finite-dimensional, all elements of I are invertible as
endomorphisms of /.

Step 4: Since I is finite-dimensional, the elements z,22,23,... € End I are
linearly dependent, which gives a polynomial relation P(z) = 0. If this
polynomial has zero constant term, we divide it by z, and obtain another
polynomial with the same property. Using induction, we obtain a polyno-
mial relation P(z) = 0 with non-zero constant term. This gives a relation
Id; = az + bz2 4+ c2z3 + ... in the ring End.(I), with a,b,c, ... € k.

Step 5: The element U := az + b22 4+ c23 4+ ... € I satisfies Uz = z for any
x € I. Therefore, U is an idempotent in A, and unity in /. m
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Structure theorem for semisimple Artinian algebras

REMARK: Step 5 proves the following useful statement. Let I be a commu-
tative Artinian algebra without zero divisors. Then I containes unit, that
IS, I is a field.

COROLLARY: Let A be a semisimple Artinian algebra, that is, a finite-
dimensional commutative k-algebra without nilpotents. Then A is a direct
sum of fields

Proof: Let I C A be a non-trivial ideal. As shown above, I contains a non-
zero idempotent a. Then a and b := 1 — a idempotents satisfying ab = O,
a+ b= 1. This gives a direct sum decomposition A = adA P (1 —a)A.
Using induction in dim A, we may assume already that aA and (1 —a)A are
direct sum of fields. =
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Structure theorem for semisimple Artinian algebras: uniqueness of de-
composition

LEMMA: Let A be a direct sum of fields, A = &; k;. Then the decompo-
sition A = @, k; is defined uniquely, up to permutation of summands.

Proof: Let A = @]_,k = D, kg and ai,...,an, b1,...,bp be the corre-
sponding idempotents. Then the pairwise products {aibj} give a family of
udempotents which satisfies > a;b; = (3 a;) (Z bj> = 1 and a;bjayby = 0 un-
less © = 4/,j = j/. Unless all udempotents a;b; are equal to a;, this gives a
direct sum decomposition for each subfield k;, which is impossible. Therefore,

the sets {b;} and {a;} coincide. m
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Bilinear invariant forms

DEFINITION: Let R be a k-algebra, and g: R x R— k a k-bilinear sym-
metric form on R. The form g is called invariant if g(x,yz) = g(zy, z) for all
x, vy, 2 € R.

REMARK: If R has unity, for any invariant form g we have g(x,y) = h(zy, 1),
hence g is determined by a linear functional a — g(a, 1).

EXAMPLE: Consider the ring R[z,y]/(z" 11, y*T1) and let e(z az-jxiyj) =
ann. T he corresponding bilinear invariant form g(z,y) := (xy) IS non-
derenerate (prove this).

CLAIM: Let [K : k] be a field extension, and £ a non-zero k-linear functional
on K. Then the bilinear form g(x,vy) := e(xy) IS non-degenerate.

Proof: Suppose e(a) # 0. Then g(z,z71a) # 0. =
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The trace form

DEFINITION: Trace tr(A) of a linear operator A € Endy (k™) represented by
a matrix (CLZ]) IS Z?’:l Qg

DEFINITION: Let R be an Artinian algebra over k. Consider the bilinear
form a,b — tr(ab), mapping a,b to the trace of endomorphism L, € End; R,
where [,;,(x) = abx. This form is called the trace form, and denoted as

trk(ab).

REMARK: Let [K : k] be a finite field extension. As shown above, the trace
form tri.(ab) is non-degenerate, unless tr; is identically O.
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Separable extensions

DEFINITION: A field extension [K : k] is called separable if the trace form
tr.(ab) is non-zero.

REMARK: If chark = 0, every field extension is separable, because
trk(l) = dimk K.

THEOREM: Let R be an Artinian algebra over k£ with non-degenerate trace
form. Then R is semisimple.

Proof: Since trip(ab) = 0 for any nilpotent a (indeed, the trace of a nilpotent
operator vanishes), the ring R contains no non-zero nilpotents. =
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Tensor product of field extensions

LEMMA: Let R, R’ be Artinian k-algebras. Denote the corresponding trace
forms by g, ¢’. Consider the tensor product R ®; R’ with a natural structure
of Artinian k-algebra. Then the trace form on R®;, R’ is equal g ® ¢’, that
IS,

trR®kR/(:E &) Yy, z 039 t) — g(xa Z)g/(y7 t) (*)

Proof: Let V,W be vector spaces over k, and u,p endomorphisms of V, W.
Then tr(u ® p) = tr(w) tr(p), which is clear from the block decomposition of
the matrix u ® p. This gives the trace for any decomposable vector
r®r € R®;, R'. The equation (*) is extended to the rest of R ®; R’ because
decomposable vectors generate R®;, R'. m

COROLLARY: Let [K1 : k], [Ko : k] be separable extensions. Then the
Artinian k-algebra K; ®;. Ko Is semisimple, that is, isomorphic to a direct
sum of fields.

Proof: The trace form on Kj ®; K> is non-degenerate, because g ® ¢’ is
non-degenerate whenever g, ¢’ is non-degenerate. m

REMARK: In particular, if chark = 0, the product of finite extensions of
the field £ is always a direct sum of fields.
10
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Tensor product of fields: examples and exercises

PROPOSITION: Let P(t) € k[t] be a polynomial over k, [K : k] an extension,
and K1 = k[t]/P(t). Then K1 ® K = K[t]/P(t). =

COROLLARY: Let P(t) be a polynomial over k, [K : k] an extension,
and K1 = k[t]/P(t). Assume that P(t) is a product of n distinct degree 1
polynomials over K. Then K{ ® K £ K|[t]/P(t) = K%,

Proof: Let P = (t —a1)(t — a3)...(t — an). The natural map K[t]/(P) —
@, K[t]/(t — a;) = KP"K is injective, because any polynomial which vanishes
inai,an,...,an is divisible by P. Since the spaces K|[t]/(P) and K|[t]/(t—a;) = K
are n-dimensional, 7 is an isomorphism. =

REMARK: Surjectivity of 7 is known as “Chinese remainders theorem”.

EXERCISE: Let P(t) € Q[t] be a polynomial which has exactly r real roots
and 2s complex, non-real roots. Prove that (Q[t]/P) ®gR = @;C D B, R.

REMARK: Similarly, let P(¢t) € k[t] be an irreducible polynomial which
has irreducible decomposition P(t) = [[; P;(t) in K]J[t], with all P;(t) co-
prime. Then k[t]/(P) ®, K = K[t]/P(t) = &, K[t]/P;(t). The proof is the
same.

11
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EXistence of algebraic closure

REMARK: Algebraic closure [k : k] is obtained by taking a succession
of increasing algebraic extensions, adding to each the roots of irreducible
polynomials, and using the Zorn lemma to prove that this will end up in a
field which has no non-trivial extensions.

12
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Tensor product of fields and algebraic closure

THEOREM: Let [k : k] be the algebraic closure of k, and [K : k] a separable
finite extension. Then K Q. k = @ k.

Proof. Step 1: Consider a homomorphism K < k, acting as identity on k.
Such a homomorphism exists by construction of the algebraic closure. Then

K®pk=(K®,K)®Kk
by associativity of tensor product.

Step 2: Since [K : k] is separable, K®,. K = @ K;. There are at least 2 non-
trivial summands in @ K;, because for each irreducible polynomial P(t) € k[¢]
which has roots in K, one has K D k[t]/(P), but K®,k[t]/(P) = &; K[t]/(F;),
where P;(t) € KI[t] are irreducible components in the prime decomposition
of P(t) over K, with P(t) = []; P;(t). This gives non-trivial idempotents in
K ®i k[t]/(P), hence in K ®, K D K ® (k[t]/(P)).

Step 3: By associativity of tensor product,

Since dim; K = Y,dimyg K; > max;dimg K;, the equation K . k = @k
follows from (*) and induction on dim;, K. =
13
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Primitive element theorem

LEMMA: Let k be a field, and A :=@]_; k. Then A contains only finitely
many different k-algebras.

Proof: Let eq,...,e, be the units in the summands of A. Then any idempotent
a € Ais asum of idempotents a = ) ¢;a, but e;a belongs to the +-th summand
of A. Then e;a = 0 or e;a = ¢;, because k contains only two idempotents.
This implies that any k-algebra A; C A is generated by an idempotent a,
which is sum of some qg;. =

THEOREM: Let [K : k] be a finite field extension in char = 0. Then there
exists a primitive element =z € K, that is, an element which generates K.

Proof. Step 1: Let k£ be the algebraic closure of k. The number of
intermediate fields K D K’ D k is finite. Indeed, all such fields correspond
to k-subalgebras in K ®; k, and there are finitely many k-subalgebras in
K ®i k because K @k = @, k.

Step 2: Take for x an element which does not belong to intermediate sub-
fields K O K’ D k. Such an element exists, because k is infinite, and K’ belong
to a finite set of subspaces of positive codimension. Then z is primitive,
because it generates a subfield which is equal to K. m
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