Complex analytic spaces

lecture 11: Discriminant

Misha Verbitsky

IMPA, sala 236,

September 11, 2023, 13:30

Regular coordinate systems (reminder)

Consider the ring of germs of functions on \mathbb{C}^n depending only on the first d coordinates. We identify this ring with $\mathcal{O}_d \subset \mathcal{O}_n$.

THEOREM: Let J be an ideal in \mathcal{O}_n . There exists a coordinate system $z_1, ..., z_d, z_{d+1}, ..., z_n$ in a neighbourhood of 0 such that

1. $J_d = 0$, where $J_d := \mathcal{O}_d \cap J$.

2. The ideal J is generated by a collection of Weierstrass polynomials in $\mathcal{O}_{i-1}[z_i]$, i = d+1, ..., n.

DEFINITION: In this situation, $z_1, ..., z_n$ is called a regular coordinate system for J.

REMARK: Let $J \,\subset\, \mathcal{O}_n$ be an ideal of functions vanishing in a germ of a complex analytic variety Z. Then the first condition is equivalent to the following. Let $P_d : \mathbb{C}^n \to \mathbb{C}^n$ be the projection to first d coordinates. The condition (1) means that $\prod_d(Z)$ is not contained in any proper analytic subset $Z' \subset \mathbb{C}^d$.

REMARK: In this situation, the second condition is an algebraic restatement of the following geometric observation. Consider the projection $\Pi_d: Z \longrightarrow \mathbb{C}^d$ to the first d coordinates. Then the preimage of every point is finite.

Finiteness theorem and primitive element theorem (reminder)

COROLLARY: (Finiteness theorem)

Let $z_1, ..., z_n$ be a regular coordinate system for an ideal $J \in \mathcal{O}_n$, and \mathcal{O}_d holomorphic functions, depending only on $z_1, ..., z_d$. Then the ring \mathcal{O}_n/J is finitely generated as a \mathcal{O}_d -module.

Proof: It is generated by a finite number of coordinate monomials.

THEOREM: (Primitive element theorem)

Let J be a prime ideal in \mathcal{O}_n , and $z_1, ..., z_d, ..., z_n$ a regular coordinate system for J. Assume that $u \coloneqq \sum_{i=d+1}^n \lambda_i z_i$ generates the fraction field $k(\mathcal{O}_n/J)$ over $k(\mathcal{O}_d)$. Define a map $\mathfrak{u} \colon \mathbb{C}^n \longrightarrow \mathbb{C}^{d+1}$, $\mathfrak{u}(z_1, ..., z_n) = (z_1, ..., z_d, u)$.

(1) The map \mathfrak{u} defines a holomorphic map $\varphi \colon Z \longrightarrow Z_u$ from the germ Z of common zeroes of J to a germ of a hypersurface $Z_u \subset \mathbb{C}^{d+1}$.

(2) The projection $\Pi_d: Z_u \longrightarrow \mathbb{C}^d$ to the first d coordinates is finite.

(3) The map $Z \xrightarrow{\mathfrak{u}} Z_u$ induces an isomorphism $k(\mathcal{O}_{d+1}/(P_u)) \xrightarrow{\sim} k(\mathcal{O}_n/J)$ on the fraction fields.

Banach fixed point theorem

LEMMA: (Banach fixed point theorem/ "contraction principle") Let $U \in \mathbb{R}^n$ be a closed subset, and $f: U \longrightarrow U$ a map which satisfies |f(x) - f(y)| < k|x - y|, where k < 1 is a real number (such a map is called "contraction"). Then f has a fixed point, which is unique.

Proof. Step 1: Uniqueness is clear because for two fixed points x_1 and x_2 $|f(x_1) - f(x_2)| = |x_1 - x_2| < k|x_1 - x_2|.$

Step 2: Existence follows because the sequence $x_0 = x, x_1 = f(x), x_2 = f(f(x)), ...$ satisfies $|x_i - x_{i+1}| \le k |x_{i-1} - x_i|$ which gives $|x_n - x_{n+1}| < k^n a$, where a = |x - f(x)|. Then $|x_n - x_{n+m}| < \sum_{i=0}^m k^{n+i}a \le k^n \frac{1}{1-k}a$, hence $\{x_i\}$ is a Cauchy sequence, and converges to a limit y, which is unique.

Step 3: f(y) is a limit of a sequence $f(x_0), f(x_1), \dots f(x_i), \dots$ which gives y = f(y).

EXERCISE: Find a counterexample to this statement when U is open and not closed.

Inverse function theorem

THEOREM: Let $U, V \in \mathbb{C}^n$ be open subsets, and $f: U \longrightarrow V$ a holomorphic map. Suppose that the differential of f is everywhere invertible. Then f is locally a diffeomorphism.

Proof. Step 1: Let $x \in U$. Without restricting generality, we may assume that x = 0, $U = B_r(0)$ is an open ball of radius r, and **in** U **one has** $\frac{|f(x_1) - \varphi(x_1)|}{|x - x_1|} < 1/2$. Replacing f with $-f \circ (D_0 f)^{-1}$, where $D_0 f$ is differential of f in 0, we may assume also that $D_0 f = -\text{Id}$.

Step 2: In these assumptions, |f(x) + x| < 1/2|x| in a sufficiently small neighbourhood, hence $\psi_s(x) \coloneqq f(x) + x - s$ is a contraction. This map maps $\overline{B}_{r/2}(0)$ to itself when s < r/4. By Banach fixed point theorem, $\psi_s(x) = x$ has a unique fixed point x_s , which is obtained as a solution of the equation f(x) + x - s = x, or, equivalently, f(x) = s. Denote the map $s \longrightarrow x_s$ by g.

Step 3: By construction, fg = Id. Applying the chain rule, we find that g is also differentiable.

REMARK: This proof works for real manifolds just as well as for complex manifolds.

Smooth points of a subvariety

DEFINITION: Let $Z \subset \mathbb{C}^n$ be a complex analytic subset. A point $z \in Z$ is called **smooth** if for an open neighbourhood U of z in \mathbb{C}^n , the intersection $U \cap Z$ is a smooth submanifold. A point which is not smooth is called **singular**.

CLAIM: A complex analytic subset $Z \subset \mathbb{C}^n$ is smooth as a real submanifold if and only if it is smooth as a complex submanifold.

Proof: Suppose that $Z \,\subset \, \mathbb{C}^n$ is a complex subvariety which is smooth as a real submanifold. Consider the projection $\varphi : \mathbb{C}^n \longrightarrow \mathbb{C}^k$ which induces an isomorphism $d\varphi : T_z Z \longrightarrow \mathbb{C}^k$. Such a projection exists because Z is smooth. Then $\varphi : Z \longrightarrow \mathbb{C}^k$ is a complex analytic diffeomorphism in a neighbourhood of z, by (a holomorphic version of) inverse function theorem.

REMARK: Today we shall prove that the set of smooth point on any complex variety is Zariski open and dense.

Discriminant of a Weierstrass polynomial

REMARK: Let $P(t) = t^n + a_{n-1}t^{n-1} + ... + a_0$ be a polynomial, α_i its roots, and $Q(\alpha_1, ..., \alpha_n)$ a symmetric polynomial on α_i . Since any symmetric polynomial can be expressed polynomially through elementary symmetric polynomial, $Q(\alpha_1, ..., \alpha_n)$ can be expressed polynomially through the coefficients a_i .

DEFINITION: Let $P(t) = \prod_i (t - \alpha_i) = t^n + a_{n-1}t^{n-1} + ... + a_0$ be a polynomial. The discriminant D_P of P is the product $\prod_{i < j} (\alpha_i - \alpha_j)^2$ expressed as a polynomial on the coefficients of P(t): $\prod_{i < j} (\alpha_i - \alpha_j)^2 = D_P(a_{n-1}, a_{n-2}, ..., a_0)$.

REMARK: Let $P(z_n) \in \mathcal{O}_{n-1}[z_n]$ be a Weierstrass polynomial, and D_P its discriminant. Since D_P is polynomially expressed through the coefficients of P, and coefficients belong to \mathcal{O}_{n-1} , we can (and will) consider the discriminant as a function on \mathbb{C}^{n-1} .

Weierstrass polynomial, its derivative and its discriminant

Lemma 1: Let $P(z_n) \in \mathcal{O}_{n-1}[z_n]$ be a Weierstrass polynomial, $P(0,0,...,0,z_n) = z^k$, and D_P its discriminant, considered an element in \mathcal{O}_{n-1} . Assume that $D_p = 0$. Then the polynomials $P(z_n), P'(z_n) \in \mathcal{O}_{n-1}[z_n]$ are not coprime.

Proof. Step 1: Since $\lim_{z_n \to 0} \frac{P(0,z_n)}{z_n^k} = 1$, in a certain polydisc $\Delta(n-1,1) := B_r(z_1,...z_{n-1}) \times \Delta_{r'}(z_n)$ we have $P(z,z_n) \neq 0$ when $|z_n| = r'$. Fix $z \in B_r(z_1,...z_{n-1})$ Then the function $t \to P(z,t)$ has precisely k zeros $\alpha_1,...,\alpha_k$ on a disc $\Delta_{r'}$, and $D_P(z) = \prod_{i < j} (\alpha_i - \alpha_j)^2$. If $D_P = 0$ on the disc $B_r(z_1,...z_{n-1})$, the polynomial P(z,t) is not coprime with $\frac{d}{dt}P(z,t)$ because P(z,t), considered as a function of t, has multiple roots.

Step 2: Consider the polynomials $P(z_n), P'(z_n) \in \mathcal{O}_{n-1}[z_n]$. Using the Euclidean algorithm, we can express their largest common denominator as $Q(z_n) = A(z_n)P(z_n) + B(z_n)P'(z_n)$, where $A, B \in \mathcal{O}_{n-1}[z_n]$. If P, P' are coprime, $Q \in \mathcal{O}_{n-1}$ is a non-zero germ of a function independent from z_n . Take $z \in \mathbb{C}^{n-1}$ such that $Q(z) \neq 0$. In this point, $D_P(z) = \prod_{i < j} (\alpha_i - \alpha_j)^2 \neq 0$, hence the $D_P \neq 0$ when $P(z_n), P'(z_n)$ are coprime.

Discriminants and coverings

Theorem 1: Let $P(z_n) \in \mathcal{O}_{n-1}[z_n]$ be a Weierstrass polynomial, $P(0, 0, ..., 0, z_n) = z^k$, $X \in \mathbb{C}^n$ its zero set and D_P its discriminant, considered an element in \mathcal{O}_{n-1} . We assume that $D_P \neq 0$. Denote by Z_D the zero set of D_P , and Z_X its preimage under the projection $\Pi : X \longrightarrow \mathbb{C}^{n-1}$ to the first n-1 coordinates. Then $X \setminus Z_x$ is smooth and the projection $X \setminus Z_X \xrightarrow{\Pi} \mathbb{C}^{n-1} \setminus Z_D$ is a non-ramified *k*-sheeted covering.

DEFINITION: The sets Z_D and Z_X are called **the discriminant sets of** \square . The above theorem can be stated as " \square is a non-ramified *k*-sheeted **covering outside of its discriminant set.**"

Proof. Step 1: Since $\lim_{z_n \to 0} \frac{P(0,z_n)}{z_n^k} = 1$, in a certain polydisc $\Delta(n-1,1) := B_r(z_1,...z_{n-1}) \times \Delta_{r'}(z_n)$ we have $P(z,z_n) \neq 0$ when $|z_n| = r'$. In $\Delta(n-1,1)$, the projection $X \xrightarrow{\prod} \mathbb{C}^{n-1}$ takes precisely k points to one, by Rouché theorem, if counted with multiplicities. The discriminant is the set of all z where $z_n \to P(z,z_n)$ has roots with multiplicities, hence $X \setminus Z_X \xrightarrow{\prod} \mathbb{C}^{n-1} \setminus Z_D$ restricted to $\Delta(n-1,1)$ takes precisely k points to one. It remains to prove that $X \setminus Z_X$ is smooth and $X \setminus Z_X \xrightarrow{\prod} \mathbb{C}^{n-1} \setminus Z_D$ a local diffeomorphism.

Discriminants and coverings (2)

Proof. Step 1: Since $\lim_{z_n \to 0} \frac{P(0,z_n)}{z_n^k} = 1$, in a certain polydisc $\Delta(n-1,1) := B_r(z_1,...z_{n-1}) \times \Delta_{r'}(z_n)$ we have $P(z,z_n) \neq 0$ when $|z_n| = r'$. In $\Delta(n-1,1)$, the projection $X \xrightarrow{\prod} \mathbb{C}^{n-1}$ takes precisely k points to one, by Rouché theorem, if counted with multiplicities. The discriminant is the set of all z where $z_n \to P(z,z_n)$ has roots with multiplicities, hence $X \setminus Z_x \xrightarrow{\prod} \mathbb{C}^{n-1} \setminus Z_D$ restricted to $\Delta(n-1,1)$ takes precisely k points to one. It remains to prove that $X \setminus Z_x$ is smooth and $X \setminus Z_x \xrightarrow{\prod} \mathbb{C}^{n-1} \setminus Z_D$ is a local diffeomorphism.

Step 2: By the inverse function theorem, the zero set of a function F on \mathbb{C}^n is smooth at every point where dF is non-zero. However, the 1-form dP evaluated on $\frac{d}{dz_n}$ if equal to $P'(z_n)$, and it is non-zero on a point $(z, z_n) \in X \setminus Z_x$.

Step 3: To prove that $X \setminus Z_x \xrightarrow{\Pi} \mathbb{C}^{n-1} \setminus Z_D$ is a local diffeomorphism, it remains to show that the differential of the projection $X \setminus Z_x \xrightarrow{\Pi} \mathbb{C}^{n-1} \setminus Z_D$ is an isomorphism. The tangent space to X in any $(z, z_n) \in X \setminus Z_x$ is equal to ker dP. Clearly, ker dP does not intersect the space $(0, 0, ...0, *) = \ker d\Pi$ in any point of $X \setminus Z_x$ because $dP(\frac{d}{dz_n}) = P'(z_n) \neq 0$.

Discriminant of the minimal polynomial

LEMMA: Let $Z \subset \mathbb{C}^n$ be a germ of an irreducible complex variety, $z_1, ..., z_d, z_{d+1}, ..., z_n$ the regular coordinates, $u = \sum_{i=d+1}^n \lambda_i z_i$ the primitive element

which generates the fraction field $k(\mathcal{O}_n/J)$ over $k(\mathcal{O}_d)$, and $\mathcal{P}_u(t) \in \mathcal{O}_d[t]$ its minimal polynomial. Consider its discriminant D_{P_u} as a holomorphic function on \mathbb{C}^d . Then $D_{P_u} \neq 0$.

Proof: If $D_{P_u} = 0$, this means that $P_u(t)$ and $P'_u(t)$ are not coprime (Lemma 1). Then $P_u(t)$ is not irreducible, which is impossible, because $P_u(t)$ is a minimal polynomial, and $\frac{k(\mathcal{O}_d)[t]}{(P_u(t))}$ has no zero divisors.

COROLLARY: In these assumptions, let Z_u be the zero set of $P_u(t)$. Then, in a sufficiently small neighbourhood of 0, the projection $Z_u \rightarrow \mathbb{C}^d$ is a non-ramified *k*-sheeted covering outside of the discriminant set. **Proof:** Theorem 1.