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Regular coordinate systems (reminder)

Consider the ring of germs of functions on C" depending only on the first d
coordinates. We identify this ring with O4c O,.

THEOREM: Let J be an ideal in ©,. There exists a coordinate system
21y -5 Zds Zdels -y 2n 1IN @ Neighbourhood of O such that

1. JdZO, where Jd:: @dﬂJ.

2. The ideal J is generated by a collection of Weierstrass polynomials
in (97;_1[27;], 1=d+1,...,n.

DEFINITION: In this situation, z1,...,2, is called a regular coordinate sys-
tem for J.

REMARK: Let J c ©, be an ideal of functions vanishing in a germ of a
complex analytic variety Z. Then the first condition is equivalent to the
following. Let P;: C*— C™ be the projection to first d coordinates. The
condition (1) means that N, (Z) is not contained in any proper analytic
subset 7’/ c Cq,

REMARK: In this situation, the second condition is an algebraic restatement
of the following geometric observation. Consider the projection [1;: 7 —(Cd
to the first d coordinates. Then the preimage of every point is finite.
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Finiteness theorem and primitive element theorem (reminder)

COROLLARY: (Finiteness theorem)

Let 2q,...,2n, De a regular coordinate system for an ideal J c ©y,, and O, holo-
morphic functions, depending only on z1,...,z4. Then the ring ©,/J is finitely
generated as a O;-module.

Proof: It is generated by a finite number of coordinate monomials. =

THEOREM: (Primitive element theorem)
Let J be a prime ideal in Oy, and zq,...,24,...,2n, @ regular coordinate system
for J. Assume that u:= Y ; \;z; generates the fraction field k(O,/J) over
k(O,). Define a map u: C* — CH1, u(zq,...,2n) = (21, ..., 24, u).
(1) The map u defines a holomorphic map ¢: Z— Z, from the germ
Z of common zeroes of J to a germ of a hypersurface 7, c Cd+1,
(2) The projection N,: Z, — C? to the first d coordinates is finite.
(3) The map Z — Z, induces an isomorphism k(Qy.1/(Py)) = k(Op/J)

on the fraction fields.
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Banach fixed point theorem

LEMMA: (Banach fixed point theorem/ “contraction principle’)

Let U c R™ be a closed subset, and f: U— U a map which satisfies |f(x) -
f(y)| < k|z —y|, where k<1 is a real number (such a map is called “contrac-
tion” ). Then f has a fixed point, which is unique.

Proof. Step 1: Uniqueness is clear because for two fixed points 1 and z»
[f(z1) - f(z2)] = |z1 — 22| < Kk|z1 — 2.

Step 2: Existence follows because the sequence zg=z,x1 = f(z),z2 = f(f(x)),...
satisfies |x; — x;41| < klz;—1 - ;| which gives |z), — z,,41| < k™a, where a = |x - f(x)|.
Then |y — zpim| < 2320 kntig k‘”ﬁa, hence {x;} is a Cauchy sequence, and
converges to a limit y, which is unique.

Step 3: f(y) is a limit of a sequence f(xq), f(x1),...f(x;),... which gives y = f(y).
u

EXERCISE: Find a counterexample to this statement when U is open
and not closed.
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Inverse function theorem

THEOREM: Let U,V c C" be open subsets, and f: U —V a holomorphic
map. Suppose that the differential of f is everywhere invertible. Then f is
locally a diffeomorphism.

Proof. Step 1: Let x ¢ U. Without restricting generality, we may assume that

r =0, U=B,(0) is an open ball of radius r, and in U one has |f(x|1v)__fl(|x1)| <1/2.

Replacing f with —fo (Dof)~1, where Dyf is differential of f in 0, we may
assume also that Dgf = -1Id.

Step 2: In these assumptions, |f(x) + x| < 1/2|x| in a sufficiently small neigh-
bourhood, hence vgs(x) := f(x) +x —s is a contraction. This map maps EP/Q(O)
to itself when s < /4. By Banach fixed point theorem, ¥s(x) = x has a
unique fixed point zs, which is obtained as a solution of the equation
f(x)+x-s=x, or, equivalently, f(x)=s. Denote the map s— x5 by g.

Step 3: By construction, fg=1d. Applying the chain rule, we find that g is
also differentiable. =

REMARK: This proof works for real manifolds just as well as for com-

plex manifolds.
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Smooth points of a subvariety

DEFINITION: Let Z c C"* be a complex analytic subset. A point z¢ Z is
called smooth if for an open neighbourhood U of z in C", the intersection
UnZ is a smooth submanifold. A point which is not smooth is called singular.

CLAIM: A complex analytic subset Z c C" is smooth as a real submanifold
iIf and only if it is smooth as a complex submanifold.

Proof: Suppose that Z ¢ C" is a complex subvariety which is smooth as
a real submanifold. Consider the projection ¢ : C" — Ck which induces an
isomorphism dyp : T.7Z — Ck. Such a projection exists because Z is smooth.
Then ¢: 7 — Ck is a complex analytic diffeomorphism in a neighbourhood of
z, by (a holomorphic version of) inverse function theorem. =

REMARK: Today we shall prove that the set of smooth point on any
complex variety is Zariski open and dense.
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Discriminant of a Weierstrass polynomial

REMARK: Let P(t) = t" + a,,_1t" 1 + ... + ag be a polynomial, «; its roots,
and Q(aq,...,an) a symmetric polynomial on «;. Since any symmetric polyno-
mial can be expressed polynomially through elementary symmetric polynomial,
Q(a1,...,an) can be expressed polynomially through the coefficients a;.

DEFINITION: Let P(t) = [1;(t-o;) = t"+a,,_1t" 1 +...+ag be a polynomial. The
discriminant Dp of P is the product ]_[,L-<j(ozi—ozj)2 expressed as a polynomial
on the coefficients of P(t): [T<j(e; - ;)% =Dp(an-1,an-2,..,a0).

REMARK: Let P(zp) € O,_1[2zn] be a Weierstrass polynomial, and Dp its
discriminant. Since Dp is polynomially expressed through the coefficients
of P, and coefficients belong to ©,_1, we can (and will) consider the
discriminant as a function on Cn 1,
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Weierstrass polynomial, its derivative and its discriminant

Lemma 1: Let P(z,) € O,_1[2n]| be a Weierstrass polynomial, P(0,0,...,0,z,) =
2k and Dp its discriminant, considered an element in ©O,,_;. Assume that
D, =0. Then the polynomials P(zy), P'(zn) € O,_1[2n] are not coprime.

Proof. Step 1: Since lim, g P(S,’j’”) =1, in a certain polydisc A(n-1,1) :=
Br(z1,...2n-1) x A(zn) We have P(;, zn) # 0 when |zp|=7'. FiX ze€ By(21,...2p-1)
Then the function t - P(z,t) has precisely k zeros ai,...,ap on a disc A,
and Dp(z) = Hz-<j(ozi—ozj)2. If Dp=0 on the disc B,(z1,...2,-1), the polyno-
mial P(z,t) is not coprime with %P(z,t) because P(z,t), considered as a

function of ¢, has multiple roots.

Step 2: Consider the polynomials P(zp),P'(zn) € O,_1]2zn]. Using the Eu-
clidean algorithm, we can express their largest common denominator as Q(zy,) =
A(zn)P(zn) + B(zn)P'(2zr), where A, B € ©,,_1[zn]. If P,P’ are coprime, Q € O,,_1
is a non-zero germ of a function independent from z,. Take z e C* 1 such
that Q(z) # 0. In this point, Dp(z) = [1;«;(a; - o;)? # 0, hence the Dp + 0
when P(zy), P'(z,) are coprime. =
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Discriminants and coverings

Theorem 1: Let P(z,) € O,_1[2n] be a Weierstrass polynomial, P(0,0,...,0,z,) =
2k, X c C" its zero set and Dp its discriminant, considered an element in ©,,_1.

We assume that Dp # 0. Denote by Zp the zero set of Dp, and Zx its preim-

age under the projection MN: X — C? 1 to the first n—1 coordinates. Then

X\Z, is smooth and the projection X\Zy BN cr-1\Zp is a non-ramified

k-sheeted covering.

DEFINITION: The sets Zp and Zyx are called the discriminant sets of
[1. The above theorem can be stated as “Il is a non-ramified k-sheeted
covering outside of its discriminant set.”

Proof. Step 1: Since Iimznéow =1, in a certain polydisc A(n-1,1) :=
Br(21,2n-1) x Au(z) We have P(z,zp) %0 when |zn| = . In A(n-1,1), the
projection X l Cn-1 takes precisely k points to one, by Rouché theorem,
if counted with multiplicities. The discriminant is the set of all z where
zn = P(z,zn) has roots with multiplicities, hence X\Zx A, Cr-1\Zp restricted
to A(n-1,1) takes precisely k points to one. It remains to prove that X\Zy

Is smooth and X\Zx A, Ccr-1\Zp a local diffeomorphism.
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Discriminants and coverings (2)

Proof. Step 1: Since lim, o P(S,’:’”) =1, in a certain polydisc A(n-1,1) :=

Br(z1,...2n-1) x Ai(2zn) We have P(z,zp) +#+ 0 when |z, =7". In A(n-1,1), the
projection X l Cn-1 takes precisely k points to one, by Rouché theorem,
if counted with multiplicities. The discriminant is the set of all z where
zn = P(z,zn) has roots with multiplicities, hence X\Z, 1, Ccr-1\Zp restricted
to A(n-1,1) takes precisely k points to one. It remains to prove that X\~7,

is smooth and X\Z, A, cr-1\Zp is a local diffeomorphism.

Step 2: By the inverse function theorem, the zero set of a function F on
C™ is smooth at every point where dF is non-zero. However, the 1-form
dP evaluated on % if equal to P/(z,), and it is non-zero on a point

dzn
(z,2n) € X\Z.

Step 3: To prove that X\Z, M, C”—l\ZD is a local diffeomorphism, it re-

mains to show that the differential of the projection X\Z, LN cr-1\Zp
IS an isomorphism. The tangent space to X in any (z,z,) € X\Z; is equal to
kerdP. Clearly, kerdP does not intersect the space (0,0,...0,*) = kerdIll in any
point of X\Z, because dP(z%&) = P'(z;) #0. =
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Discriminant of the minimal polynomial

LEMMA: Let Zc(C" be a germ of an irreducible complex variety,

21y -5 25 2d+1s -+ #n th€ regular coordinates, u = ZZTL:dH A z; the primitive element
which generates the fraction field k(©,/J) over k(©Og4), and P,(t) € Oy4[t] its
minimal polynomial. Consider its discriminant Dp as a holomorphic function
on C4. Then Dp #0.

Proof: If Dp =0, this means that P,(t) and P, (t) are not coprime (Lemma 1).
Then P,(t) is not irreducible, which is impossible, because P,(t) is a minimal

polynomial, and k((]ggﬁgg] has no zero divisors. m

COROLLARY: In these assumptions, let Z, be the zero set of P,(t). Then,
in a sufficiently small neighbourhood of 0, the projection Z, — C? is a
non-ramified k-sheeted covering outside of the discriminant set.
Proof: Theorem 1. m
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