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Regular coordinate systems (reminder)

Consider the ring of germs of functions on Cn depending only on the first d
coordinates. We identify this ring with Od ⊂ On.

THEOREM: Let J be an ideal in On. There exists a coordinate system
z1, ..., zd, zd+1, ..., zn in a neighbourhood of 0 such that

1. Jd = 0, where Jd ∶= Od ∩ J.
2. The ideal J is generated by a collection of Weierstrass polynomials

in Oi−1[zi], i = d + 1, ..., n.

DEFINITION: In this situation, z1, ..., zn is called a regular coordinate sys-
tem for J.

REMARK: Let J ⊂ On be an ideal of functions vanishing in a germ of a
complex analytic variety Z. Then the first condition is equivalent to the
following. Let Pd ∶ CnÐ→Cn be the projection to first d coordinates. The
condition (1) means that Πd(Z) is not contained in any proper analytic
subset Z′ ⊂ Cd.

REMARK: In this situation, the second condition is an algebraic restatement
of the following geometric observation. Consider the projection Πd ∶ Z Ð→Cd
to the first d coordinates. Then the preimage of every point is finite.
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Finiteness theorem and primitive element theorem (reminder)

COROLLARY: (Finiteness theorem)

Let z1, ..., zn be a regular coordinate system for an ideal J ⊂ On, and Od holo-

morphic functions, depending only on z1, ..., zd. Then the ring On/J is finitely

generated as a Od-module.

Proof: It is generated by a finite number of coordinate monomials.

THEOREM: (Primitive element theorem)

Let J be a prime ideal in On, and z1, ..., zd, ..., zn a regular coordinate system

for J. Assume that u ∶= ∑ni=d+1λizi generates the fraction field k(On/J) over

k(Od). Define a map u ∶ CnÐ→Cd+1, u(z1, ..., zn) = (z1, ..., zd, u).
(1) The map u defines a holomorphic map ϕ ∶ Z Ð→Zu from the germ

Z of common zeroes of J to a germ of a hypersurface Zu ⊂ Cd+1.

(2) The projection Πd ∶ ZuÐ→Cd to the first d coordinates is finite.

(3) The map Z
uÐ→ Zu induces an isomorphism k(Od+1/(Pu)) Ð̃→ k(On/J)

on the fraction fields.

3



Complex analytic spaces, lecture 11 M. Verbitsky

Banach fixed point theorem

LEMMA: (Banach fixed point theorem/“contraction principle”)

Let U ⊂ Rn be a closed subset, and f ∶ U Ð→U a map which satisfies ∣f(x) −
f(y)∣ < k∣x − y∣, where k < 1 is a real number (such a map is called “contrac-

tion”). Then f has a fixed point, which is unique.

Proof. Step 1: Uniqueness is clear because for two fixed points x1 and x2

∣f(x1) − f(x2)∣ = ∣x1 − x2∣ < k∣x1 − x2∣.

Step 2: Existence follows because the sequence x0 = x,x1 = f(x), x2 = f(f(x)), ...
satisfies ∣xi − xi+1∣ ⩽ k∣xi−1 − xi∣ which gives ∣xn − xn+1∣ < kna, where a = ∣x − f(x)∣.
Then ∣xn − xn+m∣ < ∑mi=0 k

n+ia ⩽ kn 1
1−ka, hence {xi} is a Cauchy sequence, and

converges to a limit y, which is unique.

Step 3: f(y) is a limit of a sequence f(x0), f(x1), ...f(xi), ... which gives y = f(y).

EXERCISE: Find a counterexample to this statement when U is open

and not closed.
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Inverse function theorem

THEOREM: Let U,V ⊂ Cn be open subsets, and f ∶ U Ð→ V a holomorphic
map. Suppose that the differential of f is everywhere invertible. Then f is
locally a diffeomorphism.

Proof. Step 1: Let x ∈ U . Without restricting generality, we may assume that
x = 0, U = Br(0) is an open ball of radius r, and in U one has ∣f(x1)−ϕ(x1)∣

∣x−x1∣
< 1/2.

Replacing f with −f ○ (D0f)−1, where D0f is differential of f in 0, we may
assume also that D0f = − Id.

Step 2: In these assumptions, ∣f(x) + x∣ < 1/2∣x∣ in a sufficiently small neigh-
bourhood, hence ψs(x) ∶= f(x) + x − s is a contraction. This map maps Br/2(0)
to itself when s < r/4. By Banach fixed point theorem, ψs(x) = x has a
unique fixed point xs, which is obtained as a solution of the equation
f(x) + x − s = x, or, equivalently, f(x) = s. Denote the map sÐ→ xs by g.

Step 3: By construction, fg = Id. Applying the chain rule, we find that g is
also differentiable.

REMARK: This proof works for real manifolds just as well as for com-
plex manifolds.
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Smooth points of a subvariety

DEFINITION: Let Z ⊂ Cn be a complex analytic subset. A point z ∈ Z is

called smooth if for an open neighbourhood U of z in Cn, the intersection

U∩Z is a smooth submanifold. A point which is not smooth is called singular.

CLAIM: A complex analytic subset Z ⊂ Cn is smooth as a real submanifold

if and only if it is smooth as a complex submanifold.

Proof: Suppose that Z ⊂ Cn is a complex subvariety which is smooth as

a real submanifold. Consider the projection ϕ ∶ CnÐ→Ck which induces an

isomorphism dϕ ∶ TzZ Ð→Ck. Such a projection exists because Z is smooth.

Then ϕ ∶ Z Ð→Ck is a complex analytic diffeomorphism in a neighbourhood of

z, by (a holomorphic version of) inverse function theorem.

REMARK: Today we shall prove that the set of smooth point on any

complex variety is Zariski open and dense.
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Discriminant of a Weierstrass polynomial

REMARK: Let P (t) = tn + an−1t
n−1 + ... + a0 be a polynomial, αi its roots,

and Q(α1, ...,αn) a symmetric polynomial on αi. Since any symmetric polyno-

mial can be expressed polynomially through elementary symmetric polynomial,

Q(α1, ...,αn) can be expressed polynomially through the coefficients ai.

DEFINITION: Let P (t) =∏i(t−αi) = tn+an−1t
n−1+...+a0 be a polynomial. The

discriminant DP of P is the product ∏i<j(αi −αj)2 expressed as a polynomial

on the coefficients of P (t): ∏i<j(αi −αj)2 =DP (an−1, an−2, ..., a0).

REMARK: Let P (zn) ∈ On−1[zn] be a Weierstrass polynomial, and DP its

discriminant. Since DP is polynomially expressed through the coefficients

of P , and coefficients belong to On−1, we can (and will) consider the

discriminant as a function on Cn−1.
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Weierstrass polynomial, its derivative and its discriminant

Lemma 1: Let P (zn) ∈ On−1[zn] be a Weierstrass polynomial, P (0,0, ...,0, zn) =
zk, and DP its discriminant, considered an element in On−1. Assume that

Dp = 0. Then the polynomials P (zn),P ′(zn) ∈ On−1[zn] are not coprime.

Proof. Step 1: Since limzn→0
P (0,zn)
zkn

= 1, in a certain polydisc ∆(n − 1,1) ∶=
Br(z1, ...zn−1) ×∆r′(zn) we have P (z, zn) ≠ 0 when ∣zn∣ = r′. Fix z ∈ Br(z1, ...zn−1)
Then the function t → P (z, t) has precisely k zeros α1, ...,αk on a disc ∆r′,

and DP (z) =∏i<j(αi −αj)2. If DP = 0 on the disc Br(z1, ...zn−1), the polyno-

mial P (z, t) is not coprime with d
dtP (z, t) because P (z, t), considered as a

function of t, has multiple roots.

Step 2: Consider the polynomials P (zn),P ′(zn) ∈ On−1[zn]. Using the Eu-

clidean algorithm, we can express their largest common denominator as Q(zn) =
A(zn)P (zn) +B(zn)P ′(zn), where A,B ∈ On−1[zn]. If P,P ′ are coprime, Q ∈ On−1

is a non-zero germ of a function independent from zn. Take z ∈ Cn−1 such

that Q(z) ≠ 0. In this point, DP (z) = ∏i<j(αi − αj)2 ≠ 0, hence the DP ≠ 0

when P (zn),P ′(zn) are coprime.
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Discriminants and coverings

Theorem 1: Let P (zn) ∈ On−1[zn] be a Weierstrass polynomial, P (0,0, ...,0, zn) =
zk, X ⊂ Cn its zero set and DP its discriminant, considered an element in On−1.

We assume that DP ≠ 0. Denote by ZD the zero set of DP , and ZX its preim-

age under the projection Π ∶ X Ð→Cn−1 to the first n − 1 coordinates. Then

X/Zx is smooth and the projection X/ZX
ΠÐ→ Cn−1/ZD is a non-ramified

k-sheeted covering.

DEFINITION: The sets ZD and ZX are called the discriminant sets of

Π. The above theorem can be stated as “Π is a non-ramified k-sheeted

covering outside of its discriminant set.”

Proof. Step 1: Since limzn→0
P (0,zn)
zkn

= 1, in a certain polydisc ∆(n − 1,1) ∶=
Br(z1, ...zn−1) × ∆r′(zn) we have P (z, zn) ≠ 0 when ∣zn∣ = r′. In ∆(n − 1,1), the

projection X
ΠÐ→ Cn−1 takes precisely k points to one, by Rouché theorem,

if counted with multiplicities. The discriminant is the set of all z where

zn → P (z, zn) has roots with multiplicities, hence X/ZX
ΠÐ→ Cn−1/ZD restricted

to ∆(n−1,1) takes precisely k points to one. It remains to prove that X/ZX
is smooth and X/ZX

ΠÐ→ Cn−1/ZD a local diffeomorphism.
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Discriminants and coverings (2)

Proof. Step 1: Since limzn→0
P (0,zn)
zkn

= 1, in a certain polydisc ∆(n − 1,1) ∶=
Br(z1, ...zn−1) × ∆r′(zn) we have P (z, zn) ≠ 0 when ∣zn∣ = r′. In ∆(n − 1,1), the

projection X
ΠÐ→ Cn−1 takes precisely k points to one, by Rouché theorem,

if counted with multiplicities. The discriminant is the set of all z where

zn → P (z, zn) has roots with multiplicities, hence X/Zx
ΠÐ→ Cn−1/ZD restricted

to ∆(n−1,1) takes precisely k points to one. It remains to prove that X/Zx
is smooth and X/Zx

ΠÐ→ Cn−1/ZD is a local diffeomorphism.

Step 2: By the inverse function theorem, the zero set of a function F on

Cn is smooth at every point where dF is non-zero. However, the 1-form

dP evaluated on d
dzn

if equal to P ′(zn), and it is non-zero on a point

(z, zn) ∈X/Zx.

Step 3: To prove that X/Zx
ΠÐ→ Cn−1/ZD is a local diffeomorphism, it re-

mains to show that the differential of the projection X/Zx
ΠÐ→ Cn−1/ZD

is an isomorphism. The tangent space to X in any (z, zn) ∈X/Zx is equal to

kerdP . Clearly, kerdP does not intersect the space (0,0, ...0,∗) = kerdΠ in any

point of X/Zx because dP ( d
dzn

) = P ′(zn) ≠ 0.
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Discriminant of the minimal polynomial

LEMMA: Let Z ⊂ Cn be a germ of an irreducible complex variety,

z1, ..., zd, zd+1, ..., zn the regular coordinates, u = ∑ni=d+1λizi the primitive element

which generates the fraction field k(On/J) over k(Od), and Pu(t) ∈ Od[t] its

minimal polynomial. Consider its discriminant DPu as a holomorphic function

on Cd. Then DPu ≠ 0.

Proof: If DPu = 0, this means that Pu(t) and P ′
u(t) are not coprime (Lemma 1).

Then Pu(t) is not irreducible, which is impossible, because Pu(t) is a minimal

polynomial, and k(Od)[t]
(Pu(t)) has no zero divisors.

COROLLARY: In these assumptions, let Zu be the zero set of Pu(t). Then,

in a sufficiently small neighbourhood of 0, the projection ZuÐ→Cd is a

non-ramified k-sheeted covering outside of the discriminant set.

Proof: Theorem 1.

11


