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Pole divisor

DEFINITION: Let Z be a germ of a variety, f a non-zero holomorphic
function on Z, and Df its zero set. Assume that f is not identically zero on
any of the irreducible components of Z. Then Df is called the zero divisor
of f .

DEFINITION: A meromorphic function on a complex analytic variety Z is
a function, defined outside of a closed, nowhere Zariski dense complex analytic
subset D ⊂ Z, and locally equal to a fraction f

g , where f, g are holomorphic
functions, and Dg =D.

DEFINITION: Let f, g be germs of functions on a germ of complex variety
Z. We say that f, g are coprime if they have no common divizors, vanishing
in x. Let h be a meromorphic function on a germ Z of a variety, represented
as f

g , where f, g are coprime. The pole divisor of h is the zero divisor of g.

CLAIM: Let h be a meromorphic function on a complex analytic variety Z.
Then there exists a subvariety Ph ⊂ Z such that locally on each germ,
Ph is the pole divisor of Z.
Proof: Left as an exercise.

DEFINITION: In these assumptions, Ph is called the pole divisor of Z.
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Meromorphic maps

DEFINITION: Meromorphic map ϕ ∶ Z ⇢ Z1 of complex analytic vari-

eties is a map, defined outside of a nowhere dense subvariety, which in local

coordinates can be expressed by meromorphic functions.

EXAMPLE: Consider the map ϕ ∶ Z Ð→Zu constructed in the primitive el-

ement theorem. Since ϕ induces an isomorphism of the fraction field, the

inverse map ϕ−1 is meromorphic: the coordinate functions zd+1, ..., zn on

Z belong to the fraction field of the ring Od[u] = OZu, hence there exists

a meromorphic map Zu ⇢ Z taking (z1, ..., zd, u) to (z1, ..., zd, zd+1, ..., zn).

DEFINITION: A meromorphic map ϕ ∶ X ⇢ Y is called bimeromorphic if

there exists a meromorphic map ψ ∶ Y ⇢ X such that ϕ ○ ψ and ψ ○ ϕ are

identities in each point where these compositions are defined.
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Exceptional set of a bimeromorphic map

Let ϕ ∶ X ⇢ Y be a bimeromorphic map of irreducible subvarieties of Cn,Cm,

and ψ ∶ Y ⇢ X the inverse map. The map ϕ is by definition holomorphic

outside of an analytic subset ZX ⊂ X, which is called exceptional set of X,

and ϕ is holomorphic outside of an analytic subset ZY ⊂ U . Taking pullbacks

of coordinate functions x1, ..., xn, y1, ..., ym we may express ϕ∗ as a collection of

meromorphic functions ϕ∗(yi) = Φi(x1, ..., xn) and ψ∗(xi) = Ψi(y1, ..., ym); restric-

tions of these functions to X,Y are holomorphic on X/ZX and Y /ZY . Since

ϕ ○ψ and ψ ○ϕ are identity maps, we have

Ψi(Φ1(x1, ..., xn), ...Φm(x1, ..., xn)) = xi,

Φi(Ψ1(y1, ..., yn), ...Ψn(y1, ..., yn)) = yi
in all points where Φi(x1, ..., xn), Ψ1(y1, ..., yn) are defined, that is, outside of

the pole sets of these functions. These sets are complex analytic by defini-

tion. Therefore, the maps (Ψ1, ...,Ψn) and (Φ1, ...,Φm) induce an isomorphism

between Zariski open sets of X and Y . The complements to these sets are

called the exceptional sets of ϕ,ψ.
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Exceptional set of a bimeromorphic map (2)

Summing it up:

CLAIM: A bimeromorphic map ϕ ∶ X ⇢ Y induces an isomorphism between

a Zariski open subset of X and a Zariski open subset of Y . When X,Y

are irreducible, a bimeromorphic map is the same as an isomorphism

between the fraction fields k(OX) and k(OY )..

REMARK: Unlike it happens in algebraic geometry, not every isomorphism

between Zariski open sets of X and Y can be extended to a bimero-

morphic map ϕ ∶ X ⇢ Y . Indeed, there are uncountably many pairwise

non-bimeromorphic compact complex manifolds Xα with C2 ⊂Xα Zariski

open.

REMARK: The difference between algebraic and complex geometry can be

explained as follows. In algebraic category, for any Zariski open set U ⊂ Z,

k(OU) = k(OZ), and in the complex category, k(OU) is usually an extension

of infinite transcendence degree over k(OZ).
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Regular coordinate systems (reminder)

Consider the ring of germs of functions on Cn depending only on the first d
coordinates. We identify this ring with Od ⊂ On.

THEOREM: Let J be an ideal in On. There exists a coordinate system
z1, ..., zd, zd+1, ..., zn in a neighbourhood of 0 such that

1. Jd = 0, where Jd ∶= Od ∩ J.
2. The ideal J is generated by a collection of Weierstrass polynomials

Pi(zi) ∈ Oi−1[zi], i = d + 1, ..., n.

DEFINITION: In this situation, z1, ..., zn is called a regular coordinate sys-
tem for J.

THEOREM: (Primitive element theorem)
Let J be a prime ideal in On, and z1, ..., zd, ..., zn a regular coordinate system
for J. Assume that u ∶= ∑ni=d+1λizi generates the fraction field k(On/J) over
k(Od). Define a map u ∶ CnÐ→Cd+1, u(z1, ..., zn) = (z1, ..., zd, u).

(1) The map u defines a holomorphic map ϕ ∶ Z Ð→Zu from the germ
Z of common zeroes of J to a germ of a hypersurface Zu ⊂ Cd+1.

(2) The projection Πd ∶ ZuÐ→Cd to the first d coordinates is finite.
(3) The map Z

uÐ→ Zu induces an isomorphism k(Od+1/(Pu)) Ð̃→ k(On/J)
on the fraction fields.
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Discriminants and coverings (reminder)

DEFINITION: Let P (t) = ∏i(t−αi) = tn+an−1t
n−1+...+a0 be a polynomial. The

discriminant DP of P is the product ∏i<j(αi −αj)2 expressed as a polynomial

on the coefficients of P (t): ∏i<j(αi −αj)2 =DP (an−1, an−2, ..., a0).

REMARK: Let P (zn) ∈ On−1[zn] be a Weierstrass polynomial, and DP its

discriminant. Since DP is polynomially expressed through the coefficients

of P , and coefficients belong to On−1, we can (and will) consider the

discriminant as a function on Cn−1.

Theorem 1: Let P (zn) ∈ On−1[zn] be a Weierstrass polynomial, P (0,0, ...,0, zn) =
zk, X ⊂ Cn its zero set and DP its discriminant, considered an element in On−1.

We assume that DP ≠ 0. Denote by ZD the zero set of DP , and ZX its preim-

age under the projection Π ∶ X Ð→Cn−1 to the first n − 1 coordinates. Then

X/Zx is smooth and the projection X/ZX
ΠÐ→ Cn−1/ZD is a non-ramified

k-sheeted covering.

DEFINITION: The sets ZD and ZX are called the discriminant sets of

Π. The above theorem can be stated as “Π is a non-ramified k-sheeted

covering outside of its discriminant set.”
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Taking average of a function over a ramified cover

The following lemma is proven by the same argument as used to prove the
Weierstrass preparation theorem.

Let P (zn) ∈ On−1[zn] be a Weierstrass polynomial, X ⊂ Cn the germ of its zero
set, and Π ∶ X Ð→Cn−1 the projection to the first n − 1 coordinates. Assume
that P (0, ...,0, zn) = zkn As usual, we take polydisc ∆(n − 1,1) ∶= Br(z1, ...zn−1) ×
∆r′(zn) such that P (z, zn) ≠ 0 when ∣zn∣ = r′; by Rouché theorem, the set
Π−1(z)∩X∩∆(n−1,1) has precisely k points, if counted with multiplicities.

LEMMA: Consider the projection Π ∶ X Ð→Cn−1 as above, let z ∈ Br(z1, ...zn−1),
and {t1, ..., tk} the set Π−1(z), taken with multiplicities. Consider a function
f ∈ On, and let σ(f) be a germ of a function on Cn−1 which takes z to ∑ki=1 f(ti).
Then σ(f) is holomorphic.

Proof: Let ∆z ∶= Π−1(z) ∩∆(n − 1,1) be the disc of radius r′, obtained as the
preimage of z. Denote by Pz the restriction of P to ∆z. Then σ(f)(z) =

1
2π

√
−1 ∫∂∆z

f(ζ)P
′
z(ζ)
Pz(ζ)dζ. Indeed, P ′

z(ζ)
Pz(ζ) = d

dζ log(Pz(ζ)) is a function which has

simple poles at ti of the same multiplicity as ti, hence the residues of f(ζ)P
′
z(ζ)
Pz(ζ)

at ti are 2π
√
−1 f(ti)ki, where ki is the multiplicity of ti.
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Taking average of a function over a ramified cover (2)

LEMMA: Consider the projection Π ∶ X Ð→Cn−1 as above, let z ∈ Br(z1, ...zn−1),
and {t1, ..., tk} the set Π−1(z), taken with multiplicities. Consider a function

f ∈ On, and let σ(f) be a germ of a function on Cn−1 which takes z to ∑ki=1 f(ti).
Then σ(f) is holomorphic.

Proof: Let ∆z ∶= Π−1(z) ∩∆(n − 1,1) be the disc of radius r′, obtained as the

preimage of z. Denote by Pz the restriction of P to ∆z. Then σ(f)(z) =
1

2π
√
−1 ∫∂∆z

f(ζ)P
′
z(ζ)
Pz(ζ)dζ. Indeed, P ′

z(ζ)
Pz(ζ) = d

dζ log(Pz(ζ)) is a function which has

simple poles at ti of the same multiplicity as ti, hence the residues of f(ζ)P
′
z(ζ)
Pz(ζ)

at ti are 2π
√
−1 f(ti)ki, where ki is the multiplicity of ti.

Corollary 1: In these assumptions, let Er be an elementary symmetric poly-

nomial on f(t1), ..., f(tk). Then Er is holomorphic as a function of z.

Proof: Elementary symmetric polynomials on f(t1), ..., f(tk) are expressed

polynomially through the Newton polynomials σ(f l), where l ∈ Z⩾0. Since

σ(f l) is holomorphic as a function of z, the same is true about Er.
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Projection of a complex analytic set

REMARK: The following proposition is a weaker form of Remmert’s proper

image theorem: a proper image of a complex analytic set is complex

analytic.

PROPOSITION: Let P (zn) ∈ On−1[zn] be a Weierstrass polynomial, X ⊂ Cn

the germ of its zero set, and Π ∶ X Ð→Cn−1 the projection to the first n − 1

coordinates. Then for any complex analytic set Y ⊂ Z, the projection

Π(Y ) is also complex analytic.

Proof. Step 1: Let J ⊂ On be the ideal of Y , and Jn−1 ∶= On−1 ∩ J. We are

going to prove that Π(Y ) is the zero set ZJn−1
of Jn−1. Clearly, any f ∈ Jn−1

vanishes on Π(Y ), hence ZJn−1
⊃ Π(Y ).

Step 2: Conversely, let z ∈X be a point such that Π(z) ∉ Π(Y ). We need to

show that Π(z) ∉ ZJn−1
, that is, find a function f ∈ Jn−1 which does not

vanish in z.
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Projection of a complex analytic set (2)

Step 3: Let z = (z1, ..., zn−1), and let {t1, ..., tk} be the set Π−1(z), taken with

multiplicities. Consider any f ∈ On. Since ξ(f) ∶= ∏ki=1 f(ti) is an elementary

symmetric symmetric polynomial on f(t1), ..., f(tn), this expression is holomor-

phic as a function of z (Corollary 1).

For any f ∈ J, the function ξ(f) vanishes in all points of Π(Y ), because

it is a product of f(ti). Therefore, f ∈ Jn−1.

Step 4: Let z ∈ X be a point such that Π(z) ∉ Π(Y ). Take a function f ∉ J
such that f does not vanish anywhere on Π−1(Π(z)); such a function exists

because X is the set of common zeros of J. Then ξ(f) ≠ 0 in Π(z), but

ξ(f) ∈ Jn−1. We have constructed a function which belongs to Jn−1 and

does not vanish in x.

REMARK: The same argument also proves that an image of a divisor is

a divisor: indeed, the image of a divisor Zf is the zero set of the function

Er(f). Moreover, this argument works for any ramified covering map

ϕ ∶ X Ð→ Y , obtained when X is the set of zeroes of a Weierstrass polynomial,

without assuming that Y is smooth.
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A complex variety always has smooth points

Let Z ⊂ Cn be a germ of a complex analytic variety, and ϕ ∶ Z Ð→Zu ⊂ Cd+1

the map constructed in the primitive element theorem using the regular co-

ordinates. Since ϕ is bimeromorphic, it is invertible outside of the complex

subvariety E ⊂ Zu, called the exceptional set of ϕ−1.

Theorem 2: In these assumptions, let D ⊂ Zu be the discriminant set of

the projection Π ∶ ZuÐ→Cd, E0 ⊂ Cd be Π(E), E1 ⊂ Z the set Π−1(E0), and

D1 ∶= ϕ−1(D). Then Z/(E1 ∪D1) is a smooth subset, and its projection to

Cd a k-sheeted non-ramified covering.

Proof: The set Zu/(E0 ∪D) is smooth by Theorem 1. Its projection to its

image in Cd is a k-sheeted non-ramified covering, again by Theorem 1.

The projection Z/E1
ϕÐ→ Zu/E0 is an isomorphism, because ϕ is an isomor-

phism outside of its exceptional set.
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The set of singularities of a complex analytic variety

PROPOSITION: In assumptions of Theorem 2, the set E1 ∪D1 is closed

and nowhere dense in Z.

Proof. Step 1: Closedness is clear. Resricting Πd ∶ Z Ð→Cd to a compact

neighbourhood of a point, we obtain that all closed sets are compact, hence

the image of a closed set is closed. Then for any open set of form U =
Π−1
d

(Πd(U)), the image Π(U) is open; indeed, the image of its complement C

is closed, and Π(U) is the complement to Π(C). This implies, in particular,

that a closed set K ⊂ Zu, K = Π−1(Π(K)) is nowhere dense if and only if

its image in Cd is nowhere dense.

Step 2: To show that E1 ∪D1 are nowhere dense, we notice that both sets

satisfy K = Π−1
d

(Πd(K)) and their images in Cd are divisors. Since the divisors

in Cd are nowhere dense (prove this as an exercise), Step 1 implies that

the divisors E1 and D1 are nowhere dense.
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The set of singularities of a complex analytic variety

DEFINITION: Dimension of an irreducible complex variety is dimension of
the set of its smooth points.

REMARK: This definition is ambiguous because we did not prove yer
that this set is connected (it is, and we will prove it). Nevertheless, for
an irreducible germ, the dimension is well defined (prove this as an
exercise).

THEOREM: Let Z ⊂ Cn be a complex subvariety, and Zsing ⊂ Z the set of all
its singular points. Then Zsing ⊂ Z is a complex-analytic subset, and its
complement is dense and open in Z.

Proof. Step 1: Since the result is local, it suffices to prove it assuming that
Z is a germ of a subvariety. Choose regular coordinates, and let E1 ∪D1 be
the set defined in Theorem 2. Outside of E1∪D1, the variety Z is smooth,
and E1 ∪D1 is nowhere dense.

Step 2: Let f1, ..., fn be the generators of the ideal of germs of holomorphic
functions vanishing in Z. Then Zsing is the set of all z ∈ Z where the rank
of the matrix ⟨df1, ..., dfn⟩ is strictly less than codimZ, hence it is complex
analytic.

14


