Complex analytic spaces

lecture 13: Finite morphisms

Misha Verbitsky

IMPA, sala 236,

September 18, 2023, 13:30

M. Verbitsky

Finite homomorphism of the rings

DEFINITION: Let $A \rightarrow B$ be a homomorphism of rings. It is called **finite** if *B* is finitely generated as *A*-module.

```
EXAMPLE: Let J \subset A be an ideal. Then the quotient map A \longrightarrow A/J is finite.
```

```
EXAMPLE: \mathbb{Z}[\sqrt{-1}] is finite over \mathbb{Z}.
```

EXAMPLE: (Finiteness theorem)

```
Let z_1, ..., z_n be a regular coordinate system for an ideal J \subset \mathcal{O}_n, and \mathcal{O}_d holomorphic functions, depending only on z_1, ..., z_d. Then the ring \mathcal{O}_n/J is finitely generated as a \mathcal{O}_d-module.
```

Proof: Lecture 8. ■

In other words, the ring morphism $\mathcal{O}_d \longrightarrow \mathcal{O}_n/J$ is finite.

DEFINITION: Let $A \rightarrow B$ be an injective, finite morphism of Noetherian rings, where B has no zero divisors, and $x \in B$. The chain $1, \langle 1, x \rangle, \langle 1, x, x^2 \rangle, ...$ stabilizes by Noetherianity, which gives a polynomial relation in B: $P(x) = x^n + a_{n-1}x^{n-1} + ... + a_0 = 0$, where all $a_i \in A$. The polynomial P(x) is called the minimal polynomial for x.

EXERCISE: Let $A \rightarrow B$ and $B \rightarrow C$ be finite ring homomorphisms. **Prove** that the composition $A \rightarrow C$ is also finite.

Dominant morphisms

DEFINITION: Let Z, Z_1 be germs of complex varieties. Recall that a morphism $\varphi : Z \longrightarrow Z_1$ is a germ of a map which can is given in coordinates by holomorphic functions: if $Z \subset \mathbb{C}^n$ and $Z_1 \subset \mathbb{C}^m$ are germs of complex analytic subsets, φ is expressed by an *m*-tuple of holomorphic functions $\varphi_1, ..., \varphi_m \in \mathcal{O}_n$ taking $z \in Z$ to $(\varphi_1(z), ..., \varphi_m(z)) \in Z_1$.

DEFINITION: In this situation, the ring \mathcal{O}_Z of germs of functions on Z is a \mathcal{O}_{Z_1} -module. We say that φ is **finite** if \mathcal{O}_Z is finitely generated as a \mathcal{O}_{Z_1} module, and **dominant** if $\varphi(Z)$ does not belong to a proper complex-analytic subvariety of Z_1 .

CLAIM: A morphism $\varphi : Z \longrightarrow Z_1$ is dominant if and only if the corresponding ring morphism $\varphi^* \mathcal{O}_{Z_1} \longrightarrow \mathcal{O}_Z$ is injective.

Proof: If ker $\varphi^* \ni f \neq 0$, the image of φ belongs to the zero-set $Z_{(f)}$ of an ideal (f). This zero-set is non-trivial by Rückert Nullstellensatz. Conversely, if the image of φ belongs to a proper subvariety $Z_2 \not\subseteq Z_1$, and f vanishes on Z_2 , then $f \in \ker \varphi^*$.

Finiteness theorem and discriminants

Recall the following theorem (Lecture 8) **THEOREM: (Finiteness theorem)**

Let $z_1, ..., z_n$ be a regular coordinate system for an ideal $J \subset \mathcal{O}_n$, and \mathcal{O}_d holomorphic functions, depending only on $z_1, ..., z_d$. Then the ring \mathcal{O}_n/J is finitely generated as a \mathcal{O}_d -module.

Proof: Choose regular coordinates $z_1, ..., z_d, z_{d+1}, ..., z_n$ on Z. Then the ring \mathcal{O}_Z is generated over \mathcal{O}_d by a collection of coordinate functions which all satisfy equations $P_i(z_i) = 0$ where P_i is a monic polynomial, $P_i \in \mathcal{O}_i[z_i]$, i = d+1, d+2, ..., n.

THEOREM: In these assumptions, let $J_r := \mathcal{O}_r \cap J$, and let $Z_r \subset \mathbb{C}^r$ be the set of common zeros of J_r . Let D_r be the discriminant of the polynomial $P_r[z_r]$ restricted to Z_{r-1} . Then

(i) the coordinate projection $\pi_r \colon Z_r \longrightarrow Z_{r-1}$ to the first r-1 coordinates is a surjective map

(ii) any point of Z_{r-1} has a finite number of preimages,

(iii) the images of the coordinate projections $\prod_r (D_r) \subset \mathbb{C}^d$ to the first d variables are divisors

(iv) and outside of $\pi(D_r) \in Z_{r-1}$ the number of preimages $\#(\pi_{r-1}^{-1}(z))$ is deg P_r .

Finiteness theorem and discriminants (2)

THEOREM: In these assumptions, let $J_r := \mathcal{O}_r \cap J$, and let $Z_r \subset \mathbb{C}^r$ be the set of common zeros of J_r . Let D_r be the discriminant of the polynomial $P_r[z_r]$ restricted to Z_{r-1} . Then

(i) the coordinate projection $\pi_r \colon Z_r \longrightarrow Z_{r-1}$ to the first r-1 coordinates is a surjective map

(ii) any point of Z_{r-1} has a finite number of preimages,

(iii) the images of the coordinate projections $\prod_r (D_r) \in \mathbb{C}^d$ to the first d variables are divisors

(iv) and outside of $\pi(D_r) \in Z_{r-1}$ the number of preimages $\#(\pi_{r-1}^{-1}(z))$ is deg P_r .

Proof. Step 1: (i) and (ii) follow from the same "Rouché theorem" argument we used many times already: since $\pi_r : Z_r \rightarrow Z_{r-1}$ is the set of solutions of the equation $P_r(z, z_r) = 0$, around zero it has deg P_r preimages, counted with multiplicities.

(iii) is clear, because the discriminant is a divisor, and an image of a divisor under a finite regular projection is also a divisor (Lecture 12).

To prove (iv), we notice that for any given z near the origin, the roots of the equation $P_r(z, z_r) = 0$ are multiple if and only if $D_r(z) = 0$.

Finite morphisms

COROLLARY: Let Z be a germ of a complex analytic variety, and $z_1, ..., z_d, z_{d+1}, ..., z_n$ the regular coordinates. By definition, the ideal of Z is generated by Weierstrass polynomials $P_i \in \mathcal{O}_i[z_i]$, i = d+1, d+2, ..., n. Then, outside of the union of the images of the discriminant divisors, the projection $Z \longrightarrow \mathbb{C}^d$ to the first d coordinates is a covering of order $\prod_{i=d+1}^n \deg P_i$. Moreover, these divisors are nowhere dense.

Proof: Use the induction in n and apply the previous theorem, part (iv).

THEOREM: Let $\varphi : X \longrightarrow Y$ be a finite, dominant morphism of the germs of complex varieties. Then φ is a finite covering outside of a proper complex analytic subset of Y.

Proof. Step 1: Choose the regular coordinates $z_1, ..., z_d, ..., z_n$ for Y. Then \mathcal{O}_d is a subring of \mathcal{O}_Y . Since φ is dominant, $\varphi^*(\mathcal{O}_d)$ is a subring of \mathcal{O}_X . The ring \mathcal{O}_Y is generated over \mathcal{O}_d by a collection of Weierstrass polynomials $P_i \in \mathcal{O}_i[z_i]$, i = d+1, d+2, ..., n. The ring \mathcal{O}_X is generated over \mathcal{O}_Y by a collection of elements u_i which satisfy polynomial equations $Q_i[u_i] = 0$, $Q_i[t] \in \mathcal{O}_X(t)$ with leading term 1. Taking these u_i as extra coordinates, we obtain a compatible system of regular coordinates on X and Y, in such a way that Y is obtained as a projection of Y to the first n coordinates.

Step 2: The projection of X to the first n coordinates is a covering outside of the union of the discriminant varieties, as shown above.