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Finite homomorphism of the rings (reminder)

DEFINITION: Let AÐ→B be a homomorphism of rings. It is called finite
if B is finitely generated as A-module.

EXAMPLE: Let J ⊂ A be an ideal. Then the quotient map AÐ→A/J is
finite.
EXAMPLE: Z[

√
−1 ] is finite over Z.

EXAMPLE: (Finiteness theorem)
Let z1, ..., zn be a regular coordinate system for an ideal J ⊂ On, and Od holo-
morphic functions, depending only on z1, ..., zd. Then the ring On/J is finitely
generated as a Od-module.
Proof: Lecture 8.

In other words, the ring morphism OdÐ→On/J is finite.

DEFINITION: Let AÐ→B be an injective, finite morphism of Noetherian
rings, where B has no zero divisors, and x ∈ B. The chain 1, ⟨1, x⟩, ⟨1, x,x2⟩, ...
stabilizes by Noetherianity, which gives a polynomial relation in B: P (x) =
xn + an−1x

n−1 + ... + a0 = 0, where all ai ∈ A. The polynomial P (x) is called the
minimal polynomial for x.

EXERCISE: Let AÐ→B and BÐ→C be finite ring homomorphisms. Prove
that the composition AÐ→C is also finite.
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Averaging function on the preimages under a finite map (reminder)

Using the same arguments as in Lecture 12, we prove the following proposi-
tion.
PROPOSITION: Let X Ð→ Y be a finite map of germs of varieties, obtained
as a ramified covering of order k, and f a germ of a function on X. Denote
by σ(f) the function on Y which takes y ∈ Y to the sum ∑{ ti}f(ti), where
{ti} the k-tuple of preimages of y taken with multiplicities. Then σ(y) is
holomorphic.

Proof. Step 1: As shown in Lecture 13, any finite map is obtained as a
composition of coordinate projections πn ∶ A → B, where A ⊂ Cn, B ⊂ Cn−1,
and the ideal JA of A is obtained from JB by adding a Weierstrass polynomial
Pn ∈ On−1[zn]. Then ϕ−1(y) is identified with the set of roots of Pn on
the 1-dimensional disk ∆y ∶= {u ∈ π−1

n (y) ∣ ∣y∣ ⩽ r′}.

Step 2: The function σ(f) is written as a Cauchy integral

σ(f)(y) = 1
2π

√
−1 ∫∂∆y

f(ζ)P
′
n(ζ)
Pn(ζ)dζ (Lecture 12).

Exercise 1: Let α1, ...,αk be a collection of complex numbers, and α their
average, α = 1

k ∑
k
i=1αi. Suppose that ∣α∣ ⩾ max ∣αi∣. Prove that α = αi, for all

i.
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The maximum principle

LEMMA: Let U ⊂ C be a connected open set, and f ∶ U Ð→C a non-constant
function. Then f is open, that is, maps an open set to an open set.

Proof. Step 1: It would suffice to prove that for any x ∈ U , f(x) = y, there is
a neighbourhood V ∋ y such that V ⊂ f(U).

Step 2: Choose a small disk ∆ centered in x such that f(z) − y does not
vanish for all z ∈ ∂∆. Let c ∶= infz∈∂∆ ∣f(z) − y∣. Then for all t ∈ C such that
∣t∣ < c, the number of preimages of zero of a function f(z) − y − t is the
same as of f(z) − y, by Rouché theorem. This gives y + t ∈ f(U).

COROLLARY: (Maximum principle)
Let U ⊂ Cn be a connected open subset, and f ∶ U Ð→C a non-constant
function. Then ∣f ∣ does not reach a local maximum on U.
Proof. Step 1: It would suffice to prove that for any x ∈ U , f(x) = y, there is
a neighbourhood V ∋ y such that V ⊂ f(U).

Step 2: Since f is non-constant, there exist a point x′ in a convex
neighbourhood of x in U such that f(x) ≠ f(x′). Denote by ∆ a disk on a
complex line connecting x to x′. Then f ∣∆ is non-constant, and existence a
neighbourhood V ∋ y such that V ⊂ f(U) is guarantied by the previous lemma.
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The maximum principle for complex varieties

THEOREM: (the maximum principle)
Let f be a holomorphic function on a connected complex variety X. Assume
that ∣f ∣ attains a local maximum somewhere on X. Then f is constant.

Proof. Step 1: Let x ∈ X be a point where ∣f(x)∣ attains a local maximum.
Construct a finite projection π of a neighbourhood of X to Cd, such that the
preimage of 0 is x with multiplicity k. By the previous exercise ∣k−1σ(f)(y)∣ ⩽
maxti∈π−1(y) ∣f(ti)∣, and the inequality is strict only when all f(ti) are equal.

Therefore, ∣k−1σ(f)(0)∣ = ∣f(x)∣ reaches its local maximum in 0. By maximum
principle for a smooth subsets of Cd, the function σ(f) is constant.

Step 2: Now, for each y sufficiently close to x, we have

max
ti∈π−1(y)

∣f(ti)∣ ⩽ ∣f(x)∣ = ∣k−1 max
ti∈π−1(y)

∣f(ti)∣.

Applying the previous exercise again, we obtain that f(ti) = f(x).

COROLLARY: Let Z ⊂ Cn be a compact, connected complex submanifold.
Then Z is a point.
Proof: Indeed, the coordinate functions on Z attain a maximum, hence they
are constant.
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Constant rank theorem

DEFINITION: Let X be a complex manifold, and F ∶ X Ð→Cn a holomorphic
map. Rank of F in x ∈X is the number rkxF ∶= dimX − dim kerdF .

THEOREM: (Constant rank theorem)
Let F ∶ X Ð→ Y be a holomorphic map of complex varieties, where X is
smooth. Assume that F has constant rank. Then F −1(y) is a smooth
submanifold of X for all y ∈ F (X). Moreover, for any x ∈ X there is a
neighbourhood U ∋ x such that F (U) is a smooth manifold of dimension
rkF .
Proof. Step 1: If rkF = dimX = n in x ∈X, we compose F with a coordinate
projection in order to obtain a map F1 ∶ X Ð→Cn with dF1 invertible. Then
F1 defines a local diffeomorphism of a neighbourhood U ⊂X of x to an
open subset W ⊂ Cn by the inverse function theorem. Therefore, F (U),
which is biholomorphic to W , is a smooth subvariety in Y .

Step 2: If rkF = k < dimX = n, we replace X by a sufficiently small neighbour-
hood of x, and take another map G ∶ X Ð→Cn−k such that dG is invertible on
the space kerdF (which is (n−k)-dimensional). Then F ×G ∶ X Ð→ Y ×Cn−k is a
constant rank map which satisfies rkF ×G = dimX, and Step 1 implies that
it is biholomorphic to its image which is smooth and locally isomorphic
to imF ×Cn−k. Then imF is also smooth, and preimages of any y ∈ F (Y ) are
smooth by the inverse function theorem.

6



Complex analytic spaces, lecture 15 M. Verbitsky

Maps with finite fibers

We know that finite maps have finite fibers and preserve the dimension. Now

we can prove that the finiteness assumption can be dropped: all maps with

finite fibers preserve the dimension.

LEMMA: Let F ∶ X Ð→ Y be a holomorphic map of complex varieties. Assume

that F −1(y) is finite for all y ∈ Y . Then dimX ⩽ dimY .

Proof. Step 1: Using the finiteness theorem, we construct a finite map from

Y to a disk U of the same dimension. This map has finite fibers. Replacing

Y by U, we may assume that Y is a disk in Cn.

Step 2: Let x ∈X be a point where dF has maximal rank k. Clearly, rkdF ⩾ k
is equivalent to a non-vanishing of a k×k minor in the matrix dF . Locally in a

neighbourhood of x, this minor is non-zero, hence rkdF = k in a neighbourhood

U of x. Since the singular set is nowhere dense, we can always assume that

U is smooth. By the constant rank theorem, F (X) is smooth and has

the same dimension as X, which implies dimX ⩽ dimY .
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Dimension of an intersection with a subspace

Lemma 1: Let Z ⊂ Cn be an equidimensional subvariety, and V ⊂ Cn a k-
dimensional subset. Assume that dim(V ∩Z) = 0. Then dimZ ⩽ n − k.
Proof: As shown in Lecture 14, dimZf = dimZ − 1 for any divizor Zf ⊂ Z.
Then induction gives dim(Z ∩ V ) ⩾ dimZ − codimV .

Lemma 2: Let Z ⊂ Cn be an equidimensional subvariety of dimension d. Then
for all (n−d)-dimensional affine subspaces V outside of a measure zero set of
the relevant Grassmannian, the intersection Z ∩ V has dimension 0.
Proof. Step 1: Covering Z by a countable collection of open charts Ui, and
proving the result for these charts, we obtain that the set of all V such that
Z ∩ V has dimension 0 is a complement to a countable union of measure 0
sets. Therefore, it suffices to prove Lemma 1 locally for a sufficiently small
open set. We reduced Lemma 2 to a statement about a germ of a
variety.

Step 2: We assume that Z is a germ of a subvariety of Cn in 0. The set of
linear coordinate frames is naturally identified with GL(n,C). Outside of a
measure zero set in GL(n,C), all linear coordinate systems z1, ..., zn are
regular. Then the linear projection πd to Cd is finite, and every point in Cd
has finite preimage in Z. Outside of a measure 0 set, any (n− d)-dimensional
subspace V ⊂ Cn can be realized as a preimage π−1

d
(z) for an appropriate regular

coordinate system, and Z ∩ V has dimension 0 for all such V .
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Maps with finite fibers: semicontinuity

(*) PROPOSITION: Let F ∶ CnÐ→Cm be a holomorphic submersion

preserving 0, and Z ⊂ Cn a germ of a subvariety in 0, satisfying F −1(0) ∩Z = 0.

Then F is proper in a neighbourhood of 0 and has finite fibers.

Proof: Performing a local coordinate change, we may always assume that F

is a linear projection. Let U = D ×D′ be a polydisc neighbourhood of 0 ∈ Cn,

where F projects D ×D′ to D′ along D. Choosing D′ sufficiently small,

we can assume that Z ∩ ∂D ×D′ = ∅. Indeed, Z ∩ ∂D ×D′ is closed, and its

intersection with F −1(0) is empty.

Step 2: Let t ∈ D′. Since F −1(t) ∩ Z is a closed subset not intersecting the

boundary, it is compact in D × {t}. Then the restriction F ∣Z∩D×D′ ∶ Z ∩D ×
DÐ→D′ is proper. The fibers of F are compact closed subvarieties of a

disk; they are finite by maximum principle.
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