Complex analytic spaces

lecture 15: The maximum principle and the maps with finite fibers

Misha Verbitsky

IMPA, sala 236,

September 25, 2023, 13:30

Finite homomorphism of the rings (reminder)

DEFINITION: Let $A \rightarrow B$ be a homomorphism of rings. It is called **finite** if *B* is finitely generated as *A*-module.

```
EXAMPLE: Let J \subset A be an ideal. Then the quotient map A \longrightarrow A/J is finite.
```

```
EXAMPLE: \mathbb{Z}[\sqrt{-1}] is finite over \mathbb{Z}.
```

EXAMPLE: (Finiteness theorem)

```
Let z_1, ..., z_n be a regular coordinate system for an ideal J \subset \mathcal{O}_n, and \mathcal{O}_d holomorphic functions, depending only on z_1, ..., z_d. Then the ring \mathcal{O}_n/J is finitely generated as a \mathcal{O}_d-module.
```

Proof: Lecture 8. ■

In other words, the ring morphism $\mathcal{O}_d \longrightarrow \mathcal{O}_n/J$ is finite.

DEFINITION: Let $A \rightarrow B$ be an injective, finite morphism of Noetherian rings, where B has no zero divisors, and $x \in B$. The chain $1, \langle 1, x \rangle, \langle 1, x, x^2 \rangle, ...$ stabilizes by Noetherianity, which gives a polynomial relation in B: $P(x) = x^n + a_{n-1}x^{n-1} + ... + a_0 = 0$, where all $a_i \in A$. The polynomial P(x) is called **the minimal polynomial for** x.

EXERCISE: Let $A \rightarrow B$ and $B \rightarrow C$ be finite ring homomorphisms. **Prove** that the composition $A \rightarrow C$ is also finite.

Averaging function on the preimages under a finite map (reminder)

Using the same arguments as in Lecture 12, we prove the following proposition.

PROPOSITION: Let $X \to Y$ be a finite map of germs of varieties, obtained as a ramified covering of order k, and f a germ of a function on X. Denote by $\sigma(f)$ the function on Y which takes $y \in Y$ to the sum $\sum_{\{t_i\}} f(t_i)$, where $\{t_i\}$ the k-tuple of preimages of y taken with multiplicities. Then $\sigma(y)$ is holomorphic.

Proof. Step 1: As shown in Lecture 13, any finite map is obtained as a composition of coordinate projections $\pi_n : A \to B$, where $A \in \mathbb{C}^n$, $B \in \mathbb{C}^{n-1}$, and the ideal J_A of A is obtained from J_B by adding a Weierstrass polynomial $P_n \in \mathcal{O}_{n-1}[z_n]$. Then $\varphi^{-1}(y)$ is identified with the set of roots of P_n on the 1-dimensional disk $\Delta_y \coloneqq \{u \in \pi_n^{-1}(y) \mid |y| \leq r'\}$.

Step 2: The function $\sigma(f)$ **is written as a Cauchy integral** $\sigma(f)(y) = \frac{1}{2\pi\sqrt{-1}} \int_{\partial \Delta y} f(\zeta) \frac{P'_n(\zeta)}{P_n(\zeta)} d\zeta$ (Lecture 12).

Exercise 1: Let $\alpha_1, ..., \alpha_k$ be a collection of complex numbers, and α their average, $\alpha = \frac{1}{k} \sum_{i=1}^k \alpha_i$. Suppose that $|\alpha| \ge \max |\alpha_i|$. Prove that $\alpha = \alpha_i$, for all *i*.

The maximum principle

LEMMA: Let $U \subset \mathbb{C}$ be a connected open set, and $f: U \longrightarrow \mathbb{C}$ a non-constant function. Then f is open, that is, maps an open set to an open set.

Proof. Step 1: It would suffice to prove that for any $x \in U$, f(x) = y, there is a neighbourhood $V \ni y$ such that $V \subset f(U)$.

Step 2: Choose a small disk Δ centered in x such that f(z) - y does not vanish for all $z \in \partial \Delta$. Let $c \coloneqq \inf_{z \in \partial \Delta} |f(z) - y|$. Then for all $t \in \mathbb{C}$ such that |t| < c, the number of preimages of zero of a function f(z) - y - t is the same as of f(z) - y, by Rouché theorem. This gives $y + t \in f(U)$.

COROLLARY: (Maximum principle)

Let $U \in \mathbb{C}^n$ be a connected open subset, and $f : U \longrightarrow \mathbb{C}$ a non-constant function. Then |f| does not reach a local maximum on U. **Proof. Step 1:** It would suffice to prove that for any $x \in U$, f(x) = y, there is a neighbourhood $V \ni y$ such that $V \subset f(U)$.

Step 2: Since f is non-constant, there exist a point x' in a convex neighbourhood of x in U such that $f(x) \neq f(x')$. Denote by Δ a disk on a complex line connecting x to x'. Then $f|_{\Delta}$ is non-constant, and existence a neighbourhood $V \ni y$ such that $V \subset f(U)$ is guarantied by the previous lemma.

The maximum principle for complex varieties

THEOREM: (the maximum principle)

Let f be a holomorphic function on a connected complex variety X. Assume that |f| attains a local maximum somewhere on X. Then f is constant.

Proof. Step 1: Let $x \in X$ be a point where |f(x)| attains a local maximum. Construct a finite projection π of a neighbourhood of X to \mathbb{C}^d , such that the preimage of 0 is x with multiplicity k. By the previous exercise $|k^{-1}\sigma(f)(y)| \leq \max_{t_i \in \pi^{-1}(y)} |f(t_i)|$, and the inequality is strict only when all $f(t_i)$ are equal. Therefore, $|k^{-1}\sigma(f)(0)| = |f(x)|$ reaches its local maximum in 0. By maximum principle for a smooth subsets of \mathbb{C}^d , the function $\sigma(f)$ is constant.

Step 2: Now, for each y sufficiently close to x, we have

$$\max_{t_i \in \pi^{-1}(y)} |f(t_i)| \le |f(x)| = |k^{-1} \max_{t_i \in \pi^{-1}(y)} |f(t_i)|.$$

Applying the previous exercise again, we obtain that $f(t_i) = f(x)$.

COROLLARY: Let $Z \subset \mathbb{C}^n$ be a compact, connected complex submanifold. **Then** Z is a point.

Proof: Indeed, the coordinate functions on Z attain a maximum, hence they are constant.

M. Verbitsky

Constant rank theorem

DEFINITION: Let X be a complex manifold, and $F: X \longrightarrow \mathbb{C}^n$ a holomorphic map. Rank of F in $x \in X$ is the number $\operatorname{rk}_x F \coloneqq \dim X - \dim \ker dF$.

THEOREM: (Constant rank theorem)

Let $F : X \to Y$ be a holomorphic map of complex varieties, where X is smooth. Assume that F has constant rank. Then $F^{-1}(y)$ is a smooth submanifold of X for all $y \in F(X)$. Moreover, for any $x \in X$ there is a neighbourhood $U \ni x$ such that F(U) is a smooth manifold of dimension rkF.

Proof. Step 1: If $\operatorname{rk} F = \dim X = n$ in $x \in X$, we compose F with a coordinate projection in order to obtain a map $F_1 : X \longrightarrow \mathbb{C}^n$ with dF_1 invertible. Then F_1 defines a local diffeomorphism of a neighbourhood $U \subset X$ of x to an open subset $W \subset \mathbb{C}^n$ by the inverse function theorem. Therefore, F(U), which is biholomorphic to W, is a smooth subvariety in Y.

Step 2: If $\operatorname{rk} F = k < \dim X = n$, we replace X by a sufficiently small neighbourhood of x, and take another map $G: X \longrightarrow \mathbb{C}^{n-k}$ such that dG is invertible on the space ker dF (which is (n-k)-dimensional). Then $F \times G: X \longrightarrow Y \times \mathbb{C}^{n-k}$ is a constant rank map which satisfies $\operatorname{rk} F \times G = \dim X$, and **Step 1 implies that it is biholomorphic to its image which is smooth and locally isomorphic to** $\operatorname{im} F \times \mathbb{C}^{n-k}$. Then $\operatorname{im} F$ is also smooth, and preimages of any $y \in F(Y)$ are smooth by the inverse function theorem.

Maps with finite fibers

We know that finite maps have finite fibers and preserve the dimension. Now we can prove that the finiteness assumption can be dropped: **all maps with finite fibers preserve the dimension**.

LEMMA: Let $F: X \longrightarrow Y$ be a holomorphic map of complex varieties. Assume that $F^{-1}(y)$ is finite for all $y \in Y$. Then dim $X \leq \dim Y$.

Proof. Step 1: Using the finiteness theorem, we construct a finite map from Y to a disk U of the same dimension. This map has finite fibers. **Replacing** Y by U, we may assume that Y is a disk in \mathbb{C}^n .

Step 2: Let $x \in X$ be a point where dF has maximal rank k. Clearly, $\operatorname{rk} dF \ge k$ is equivalent to a non-vanishing of a $k \times k$ minor in the matrix dF. Locally in a neighbourhood of x, this minor is non-zero, hence $\operatorname{rk} dF = k$ in a neighbourhood U of x. Since the singular set is nowhere dense, we can always assume that U is smooth. By the constant rank theorem, F(X) is smooth and has the same dimension as X, which implies $\dim X \leq \dim Y$.

Dimension of an intersection with a subspace

Lemma 1: Let $Z \subset \mathbb{C}^n$ be an equidimensional subvariety, and $V \subset \mathbb{C}^n$ a k-dimensional subset. Assume that $\dim(V \cap Z) = 0$. Then $\dim Z \leq n - k$. **Proof:** As shown in Lecture 14, $\dim Z_f = \dim Z - 1$ for any divizor $Z_f \subset Z$. Then induction gives $\dim(Z \cap V) \geq \dim Z - \operatorname{codim} V$.

Lemma 2: Let $Z \in \mathbb{C}^n$ be an equidimensional subvariety of dimension d. Then for all (n-d)-dimensional affine subspaces V outside of a measure zero set of the relevant Grassmannian, **the intersection** $Z \cap V$ **has dimension 0**. **Proof. Step 1:** Covering Z by a countable collection of open charts U_i , and proving the result for these charts, we obtain that the set of all V such that $Z \cap V$ has dimension 0 is a complement to a countable union of measure 0 sets. Therefore, it suffices to prove Lemma 1 locally for a sufficiently small open set. We reduced Lemma 2 to a statement about a germ of a variety.

Step 2: We assume that Z is a germ of a subvariety of \mathbb{C}^n in 0. The set of linear coordinate frames is naturally identified with $GL(n,\mathbb{C})$. **Outside of a measure zero set in** $GL(n,\mathbb{C})$, **all linear coordinate systems** $z_1, ..., z_n$ **are regular.** Then the linear projection π_d to \mathbb{C}^d is finite, and every point in \mathbb{C}^d has finite preimage in Z. Outside of a measure 0 set, any (n-d)-dimensional subspace $V \subset \mathbb{C}^n$ can be realized as a preimage $\pi_d^{-1}(z)$ for an appropriate regular coordinate system, and $Z \cap V$ has dimension 0 for all such V.

Maps with finite fibers: semicontinuity

(*) **PROPOSITION:** Let $F : \mathbb{C}^n \to \mathbb{C}^m$ be a holomorphic submersion preserving 0, and $Z \subset \mathbb{C}^n$ a germ of a subvariety in 0, satisfying $F^{-1}(0) \cap Z = 0$. **Then** F **is proper in a neighbourhood of 0 and has finite fibers**.

Proof: Performing a local coordinate change, we may always assume that F is a linear projection. Let $U = D \times D'$ be a polydisc neighbourhood of $0 \in \mathbb{C}^n$, where F projects $D \times D'$ to D' along D. Choosing D' sufficiently small, we can assume that $Z \cap \partial D \times D' = \emptyset$. Indeed, $Z \cap \partial D \times D'$ is closed, and its intersection with $F^{-1}(0)$ is empty.

Step 2: Let $t \in D'$. Since $F^{-1}(t) \cap Z$ is a closed subset not intersecting the boundary, it is compact in $D \times \{t\}$. Then the restriction $F|_{Z \cap D \times D'} : Z \cap D \times D \to D'$ is proper. The fibers of F are compact closed subvarieties of a disk; they are finite by maximum principle.