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Group representations

DEFINITION: Representation of a group G is a homomorphism G— GL(V).
In this case, V is called representation space, and a representation.

DEFINITION: Irreducible representation is a representation having no G-
invariant subspaces. Semisimple representation is a direct sum of irreducible
ones.

Let V be a vector space over a field k. The space of bilinear maps VxV — &k
IS denoted V*® V*.

REMARK: If the group G acts on a vector space V, it G acts on V*@ V*
as g(h)(z,y)=h(g 1 (x),g71(y)), for any ge G, heV*e@V* and z,yeV.

DEFINITION: A metric h (Euclidean or Hermitian) on a vector space V is
called G-invariant if the corresponding tensor he V*®@ V* is G-invariant.
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G-invariant metrics

CLAIM:
A sum of two Hermitian (Euclidean) metrics is Hermitian (Euclidean).
|

COROLLARY: Let V be a representation of a finite group (over R or C).
Then V admits a G-invariant metric (Hermitian or Euclidean).

Proof: Let h be an arbitrary metric, and %degg(h) its average over the G
action. The previous claim implies that it is a metric. Since G acts on itself
bijectively, interchanging all terms in the sum, it is G-invariant. m

COROLLARY: Let EcV be a subrepresentation in a finite group represen-
tation over R or C. Then V can be decomposed onto a direct sum of
two G-representations V=W e W'.

Proof: Choose a G-invariant metric on V, and let Wl be the orthogonal
complement to W. Then W+ is also G-invariant (check this). This gives a
decomposition V=WeWi =

COROLLARY: Any finite-dimensional representation of a finite group
IS semisimple. =
3
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Exact functors

DEFINITION: An exact sequence is a sequence of vector spaces and maps
.— Ay — Ao — A3z — ... such the kernel of each map is the image of the

. . 7
previous one. A short exact sequence is exact sequence of form 0 — A —

B L. ¢ —0. Here “exact” means that i is injective, j surjective, and
the image of : is the kernel of ;.

DEFINITION: A functor A— FA on the category of R-modules or vector
spaces is called left exact if any exact sequence 0 — A B—C—0 is
mapped to an exact sequence

O—FA—FB— FC,
right exact if it is mapped to an exact sequence
FA—FB—FC—QO,
and exact if the sequence
O—FA—FB—FC—O0

IS exact.
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Invariants and coinvariants

DEFINITION: Let G be a finite group, and V its representation. Define
the space of G-invariants VG as the space of all G-invariant vectors, and
the space of coinvariants as the quotient of V by its subspace generated
by vectors v -g(v), where ge G,veV.

CLAIM: Let V be an irreducible representation of G. Then its invariants
and co-ivariants are equal O if it is non-trivial, and equal V if it is trivial.

COROLLARY: Let V be a semisimple representation of G. Then Vg = VG,

EXERCISE: Prove that the functor V — VG is left exact, and V — Vg
IS right exact.

COROLLARY: For any finite group G, the functor of G-invariants
vV — V& on the category of complex representations of G is exact.

REMARK: The averaging map

Y, 9(m)
|G| geG
gives a projection of V to VG, and the kernel of this map is the kernel of
the natural projection V — Vg
5
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Semisimplicity of representations of finite groups

PROPOSITION: Let Repi(G) be the category of representations of a finite
group G over a field k, with char(k) coprime with |G|. Then any short exact
sequence of G-representations splits.

Proof. Step 1: Let 0—A — B ., ¢ —0 be an exact sequence of G-
representations. Choose a basis {z;} in C, and let {Z;} be preimages of z; in
B. Axiom of Choice gives a way to chose these preimages even if the set {z;}
is infinite. Let ¢o: C— B take z; to z;. Then B=1i(A)® o(C). However, this
does not imply that (*) splits, because the map ¢ is not necessarily
G-invariant, and the space ¢(C') is not necessarily a subrepresentation.

Step 2: We are going to modify ¢ such that it becomes G-invariant. Consider
the action of G on Hom(C, B) taking g € G and u € Hom(C,B) to gug™! €
Hom(C, B); here the first “g" denotes the corresponding element in GL(B)
and the “g~1" denotes the element in GL(C). Then ¢ is a morphism of
G-representations if and only if ¢ is G-invariant.
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Semisimplicity of representations of finite groups (2)

PROPOSITION: Let Repr(G) be the category of representations of a finite
group G over a field k, with char(k) coprime with |G|. Then any short exact
sequence of G-representations splits.

Proof. Step 1: Let 0— A . B L C — 0 be an exact sequence of G-
representations. Consider 5 as a surjection of vector spaces and find a section
¢: C — B (not necessarily G-invariant) using a basis in C.

Step 2: To split this exact sequence of representations, ¢ should be chosen
G-invariant.

Step 3: Since chark is coprime with |G|, the number |G| is invertible in k. Let
00 = |—Cl;|2g€Gg(gp). This is a sum of all elements in a G-orbit, hence it is
G-invariant. For any ve (', one has

i(po(v)) = |G| > J(g(e)(g7tv) = |G| > g(e((g 1)) = |G| > g(g7t(v)) =,

geG geG geG
because ;j commutes with . This implies that ¢g is a G-invariant section

of j. m
Z
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Finite group action admits a linearization

THEOREM: Let GG be a finite group acting on U c C" by holomorphic auto-
morphisms preserving 0. Then there exist a coordinate system in which
G acts linearly.

Proof. Step 1: Consider the map é: Oy — T3U taking f to df|g. It would
suffice to show that there exists a finite-dimensional G-invariant sub-
space W c Oy such that o0: W —TjU is an isomorphism. Indeed, the
inverse function theorem would imply that the map ¢y : W — O, taking the
basis vectors &1,...,&, € W to their images in O defines a coordinate system,
and G acts on the image of this map linearly.

Step 2: The exact sequence of G-representations 0 — kero — O i> TSU —>0

splits, as shown above. Then there exists a G-equivariant map 75U — Oy
inverting 6. =

REMARK: We are going to show that the quotient U/G is well de-
fined as a complex variety. By the previous theorem, it would suffice to
construct the quotient in the category of affine algebraic varieties.

8
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Noether theorem (scheme of the proof)

THEOREM: Let R be a finitely generated ring over C, and G a finite group
acting on R by automorphisms. Then the ring RC of G-invariants is finitely
generated.

Scheme of the proof:

1. Noetheriannes of R is used to prove that RG is Noetherian.

2. Prove that RC is finite generated for R = C[z1,...,2n], Where R acts on
polynomials of degree 1 by linear automorphisms.

3. Deduce the general case from (2) and exactness of V — VG
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Ideals in R and RC

LEMMA: Let R be a ring, G a finite group acting on R, RG the ring of
G-invariants, and I ¢ R“ an ideal. Then the ideal RI satisfies Avg(RI) =
Avo(R)I = RGI =1, where Avs: R— RG denotes the averaging map.

Proof: Avg(xy) = Avg(x)y if y is G-invariant. =

COROLLARY: Let I7 ¢ I be ideals in RG. Then RI{ ¢ RI. =

COROLLARY 1: In these assumptions, if R is Noetherian, then RC is
also Noetherian.

Proof: Any infinite, strictly monotonous sequence Ig ¢ I7 ¢ ... of ideals in RG
gives a strictly monotonous sequence RIg¢ RI{ ... iIn R. =

10
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Graded rings

DEFINITION: A graded ring is a ring A*, A* =@, A?, with multiplication
which satisfies A*- AJ c A**J (‘“grading is multiplicative”). A graded ring is
called of finite type if all A* are finitely dimensional.

We will usually assume that A is the base field.

EXAMPLE: Polynomial ring C[V]=6&; SymiV IS clearly graded.

11
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Graded rings (2)

Claim 1: Let A* be a graded ring of finite type. Then A* is Noetherian <
it is finitely generated.

Proof. Step 1: If A* is finitely generated, it is Noetherian by Hilbert's basis
theorem.

Step 2: Conversely, suppose that A* is Noetherian. Then the ideal @;.q A’ c
A* is finitely generated. Let a; € A" be generators of this ideal over A*. We
are going to show that products of a; generate A*.

Step 3: Let z € A* be a graded element of smallest degree which is not
generated by products of a;. Since a; generate the ideal @;.9 A’ c A*, we can
express z as z =Y, f;a;, where f; e A*. However, deg f; < deg z, hence all f; are
generated by products of a;. Then all f; are generated by products of a;. =

A caution: In this argument, two notions of “finitely generated’” are present:
finitely generated ideals (an additive notion) and finitely generated rings over
C (multiplicative). These two notions are completely different! One is
defined for ideals (or R-modules), another for a ring over a field. Only the

name is the same (bad terminology).
12
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Proof of Noether theorem for polynomial invariants

DEFINITION: Let V be a vector space with basis z1,...,zn, and C[V] =
@iSymiV = C[z1,...,2n] the corresponding polynomial ring. Suppose that G
acts on V by linear automorphisms. We extend this action to the symmet-
ric tensors @iSymiV multiplicatively. This implies that G acts on C[V] by
automorphisms. Such action is called linear.

CLAIM: (Noether theorem for polynomial invariants)
Let G act linearly on the polynomial ring C[V]. Then the invariant ring
C[V]C is finitely generated.

Proof. Step 1: Since the action of G preserves the grading on C[V], the
ring C[V]¢ is graded and of finite type.

Step 2: C[V]% is Noetherian, because C[V] is Noetherian, and the ring of
invariants RG is Noetherian if R is Noetherian (Corollary 1).

Step 3: A finite type Noetherian graded ring is finitely generated by Claim
1. m
13
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Noether theorem

THEOREM: (Noether theorem)
Let R be a finitely generated ring over C, and G a finite group acting on R by
automorphisms. Then the ring RG of G-invariants is finitely generated.

Proof. Step 1: Let fq,..., fm be generators of R, and {g1,...,g9;} = G. Consider
the space V c R generated by all vectors g;f;. Clearly, V c R is V-invariant,
and the natural homomorphism C[V]|— R = C[V]/I is surjective and G-
invariant.

Step 2: The natural map C[V]¢ — RC is surjective, because the functor
W — WG is exact.

Step 3: The ring (C[V]G is finitely generated by Noether theorem for polyno-
mial invariants, hence its quotient RG is also finitely generated. =

14
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Tensor product of rings and preimage of a point

PROPOSITION: Let f: X —Y be a morphism of affine varieties, f* :
Oy — Ox the corresponding ring homomorphism, y € Y a point, and my its
maximal ideal. Denote by R; the quotient of R:= Oy ®9gy (Oy/m,) by its
nilradical. Then Spec(R7) = f~1(y).

Proof. Step 1: If a € Oy vanishes in y, f*(a) vanishes in all points of f~1(y).
This implies that the set V; of common zeros of the ideal [ :=Ox - f*my
contains f~1(y).

Step 2: If f(x) #y, take a function § e Oy vanishing in y and non-zero in f(x).
Since ¢*(B)(x) #+ 0 and B(y) =0, this gives z ¢ V;. We proved that the set of
common zeros of the ideal I =Ox - f*m, is equal to f~1(y).

Step 3: Now, strong Nullstellensatz implies that (Qf_l(y) IS a quotient of
R =0©x/I by nilradical. =

EXERCISE: Give an example when R = Ox/I is non-reduced (contains
nilpotents).
15
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Finite quotients

CLAIM: Let R be a Noetherian ring without zero divisors, G a finite group
acting by automorphisms on R, and RG the ring of G-invariants. Then
¢: Spec R— Spec RC is a finite, dominant morphism.

Proof. Step 1: For any g € G, consider the corresponding polynomial map
Py: R— R, and let r ¢ R. The polynomial P(t) :=[Igeq(t—g(r)) has G-invariant
coefficients for any r ¢ R, hence P(t) € RCG[t]

Step 2: The morphism ¢ is finite because each r € R satisfies the equation
P(r)=0, where P(t) = [1yec(t - g(r)). It is dominant, because R“c R. m

DEFINITION: Let G be a finite group acting on an affine variety X by
automorphisms. The quotient space X/G is Spec(@%).

EXAMPLE: C2?/{+1} = C[z?,y?, ay] = C[t1,t2,t3]/(t1t2 = t3). Indeed,
C2/{+1} = Spec A, where A =C[z,y]*1}: A is the ring of even polynomials.

EXAMPLE: Let G = Z/nZ act on C by multiplication by a primitive root
V1. Then C/G = Spec(C[t]¢) = Spec(C[t"]), hence the quotient space C/G
Is isomorphic to C.

16
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Finite quotients (2)

THEOREM: Consider the natural morphism SpecR L Spec RG. Then
o(x) = p(y) if and only if =z ¢ G-y, that is, the set of points in SpecRC is
identified with the space of G-orbits.

Proof. Step 1: If two maximal ideals of R are G-conjugated, their inter-
sections with RG c R are equal. This gives ¢(gz) = p(x): each G-orbit is
mapped to one point. It remains to show that the preimage of any point
IS exactly one G-orbit.

Step 2: For any ideal m c R&, one has (mR)% =m. Then AG = RG/m, where
A:= R®pg (RY/m) = R/mR.

Step 3: Let m be the maximal ideal of y ¢ Spec RG, and N the nilradical of
A:= R/mR. Since ¢ 1(y) = Spec(A/N), points of ¢ 1(y) are maximal ideals
of the ring A/N.

Step 4: A semisimple Artinian C-algebra A/N is a direct sum of finite ex-
tensions of C, which are all isomorphic to C, giving A/N =@C. Since AG =C
(Step 2), the group G acts on the summands of A/N = @C transitively.
Therefore, all points of ¢~1(y) belong to the same G-orbit. =
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