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Group representations

DEFINITION: Representation of a group G is a homomorphism GÐ→GL(V ).
In this case, V is called representation space, and a representation.

DEFINITION: Irreducible representation is a representation having no G-

invariant subspaces. Semisimple representation is a direct sum of irreducible

ones.

Let V be a vector space over a field k. The space of bilinear maps V ×V Ð→ k
is denoted V ∗ ⊗ V ∗.

REMARK: If the group G acts on a vector space V , it G acts on V ∗ ⊗ V ∗

as g(h)(x,y) = h(g−1(x), g−1(y)), for any g ∈G, h ∈ V ∗ ⊗ V ∗ and x,y ∈ V .

DEFINITION: A metric h (Euclidean or Hermitian) on a vector space V is

called G-invariant if the corresponding tensor h ∈ V ∗ ⊗ V ∗ is G-invariant.
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G-invariant metrics

CLAIM:
A sum of two Hermitian (Euclidean) metrics is Hermitian (Euclidean).

COROLLARY: Let V be a representation of a finite group (over R or C).
Then V admits a G-invariant metric (Hermitian or Euclidean).

Proof: Let h be an arbitrary metric, and 1
∣G∣∑g∈G g(h) its average over the G

action. The previous claim implies that it is a metric. Since G acts on itself
bijectively, interchanging all terms in the sum, it is G-invariant.

COROLLARY: Let E ⊂ V be a subrepresentation in a finite group represen-
tation over R or C. Then V can be decomposed onto a direct sum of
two G-representations V =W ⊕W ′.

Proof: Choose a G-invariant metric on V , and let W � be the orthogonal
complement to W . Then W � is also G-invariant (check this). This gives a
decomposition V =W ⊕W �.

COROLLARY: Any finite-dimensional representation of a finite group
is semisimple.
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Exact functors

DEFINITION: An exact sequence is a sequence of vector spaces and maps

...Ð→A1Ð→A2Ð→A3Ð→ ... such the kernel of each map is the image of the

previous one. A short exact sequence is exact sequence of form 0Ð→A iÐ→
B

jÐ→ C Ð→ 0. Here “exact” means that i is injective, j surjective, and

the image of i is the kernel of j.

DEFINITION: A functor AÐ→FA on the category of R-modules or vector

spaces is called left exact if any exact sequence 0Ð→AÐ→BÐ→C Ð→ 0 is

mapped to an exact sequence

0Ð→FAÐ→FBÐ→FC,

right exact if it is mapped to an exact sequence

FAÐ→FBÐ→FC Ð→ 0,

and exact if the sequence

0Ð→FAÐ→FBÐ→FC Ð→ 0

is exact.
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Invariants and coinvariants

DEFINITION: Let G be a finite group, and V its representation. Define
the space of G-invariants V G as the space of all G-invariant vectors, and
the space of coinvariants as the quotient of V by its subspace generated
by vectors v − g(v), where g ∈G,v ∈ V .

CLAIM: Let V be an irreducible representation of G. Then its invariants
and co-ivariants are equal 0 if it is non-trivial, and equal V if it is trivial.

COROLLARY: Let V be a semisimple representation of G. Then VG = V G.

EXERCISE: Prove that the functor V Ð→ V G is left exact, and V Ð→ VG
is right exact.

COROLLARY: For any finite group G, the functor of G-invariants
V Ð→ V G on the category of complex representations of G is exact.

REMARK: The averaging map

mÐ→ 1

∣G∣ ∑g∈G
g(m)

gives a projection of V to V G, and the kernel of this map is the kernel of
the natural projection V Ð→ VG
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Semisimplicity of representations of finite groups

PROPOSITION: Let Repk(G) be the category of representations of a finite

group G over a field k, with char(k) coprime with ∣G∣. Then any short exact

sequence of G-representations splits.

Proof. Step 1: Let 0Ð→A iÐ→ B
jÐ→ C Ð→ 0 be an exact sequence of G-

representations. Choose a basis {zi} in C, and let {z̃i} be preimages of zi in

B. Axiom of Choice gives a way to chose these preimages even if the set {zi}
is infinite. Let ϕ ∶ C Ð→B take zi to z̃i. Then B = i(A) ⊕ϕ(C). However, this

does not imply that (*) splits, because the map ϕ is not necessarily

G-invariant, and the space ϕ(C) is not necessarily a subrepresentation.

Step 2: We are going to modify ϕ such that it becomes G-invariant. Consider

the action of G on Hom(C,B) taking g ∈ G and u ∈ Hom(C,B) to gug−1 ∈
Hom(C,B); here the first “g” denotes the corresponding element in GL(B)
and the “g−1” denotes the element in GL(C). Then ϕ is a morphism of

G-representations if and only if ϕ is G-invariant.
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Semisimplicity of representations of finite groups (2)

PROPOSITION: Let Repk(G) be the category of representations of a finite

group G over a field k, with char(k) coprime with ∣G∣. Then any short exact

sequence of G-representations splits.

Proof. Step 1: Let 0Ð→A iÐ→ B
jÐ→ C Ð→ 0 be an exact sequence of G-

representations. Consider j as a surjection of vector spaces and find a section

ϕ ∶ C Ð→B (not necessarily G-invariant) using a basis in C.

Step 2: To split this exact sequence of representations, ϕ should be chosen

G-invariant.

Step 3: Since chark is coprime with ∣G∣, the number ∣G∣ is invertible in k. Let

ϕ0 ∶= 1
∣G∣∑g∈G g(ϕ). This is a sum of all elements in a G-orbit, hence it is

G-invariant. For any v ∈ C, one has

i(ϕ0(v)) =
1

∣G∣ ∑g∈G
j(g(ϕ))(g−1v) = 1

∣G∣ ∑g∈G
g(jϕ((g−1v))) = 1

∣G∣ ∑g∈G
g(g−1(v)) = v,

because j commutes with ϕ. This implies that ϕ0 is a G-invariant section

of j.
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Finite group action admits a linearization

THEOREM: Let G be a finite group acting on U ⊂ Cn by holomorphic auto-

morphisms preserving 0. Then there exist a coordinate system in which

G acts linearly.

Proof. Step 1: Consider the map δ ∶ OU Ð→ T ∗0U taking f to df ∣0. It would

suffice to show that there exists a finite-dimensional G-invariant sub-

space W ⊂ OU such that δ ∶ W Ð→ T ∗0U is an isomorphism. Indeed, the

inverse function theorem would imply that the map ϕW ∶ W Ð→OU , taking the

basis vectors ξ1, ..., ξn ∈W to their images in OU defines a coordinate system,

and G acts on the image of this map linearly.

Step 2: The exact sequence of G-representations 0Ð→ ker δÐ→OU
δÐ→ T ∗0U Ð→ 0

splits, as shown above. Then there exists a G-equivariant map T ∗0U Ð→OU

inverting δ.

REMARK: We are going to show that the quotient U/G is well de-

fined as a complex variety. By the previous theorem, it would suffice to

construct the quotient in the category of affine algebraic varieties.
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Noether theorem (scheme of the proof)

THEOREM: Let R be a finitely generated ring over C, and G a finite group

acting on R by automorphisms. Then the ring RG of G-invariants is finitely

generated.

Scheme of the proof:

1. Noetheriannes of R is used to prove that RG is Noetherian.

2. Prove that RG is finite generated for R = C[z1, ..., zn], where R acts on

polynomials of degree 1 by linear automorphisms.

3. Deduce the general case from (2) and exactness of V Ð→ V G
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Ideals in R and RG

LEMMA: Let R be a ring, G a finite group acting on R, RG the ring of

G-invariants, and I ⊂ RG an ideal. Then the ideal RI satisfies AvG(RI) =
AvG(R)I = RGI = I, where AvG ∶ RÐ→RG denotes the averaging map.

Proof: AvG(xy) = AvG(x)y if y is G-invariant.

COROLLARY: Let I1 ⊊ I be ideals in RG. Then RI1 ⊊ RI.

COROLLARY 1: In these assumptions, if R is Noetherian, then RG is

also Noetherian.

Proof: Any infinite, strictly monotonous sequence I0 ⊊ I1 ⊊ ... of ideals in RG

gives a strictly monotonous sequence RI0 ⊊ RI1 ⊊ ... in R.
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Graded rings

DEFINITION: A graded ring is a ring A∗, A∗ = ⊕∞
i=0A

i, with multiplication

which satisfies Ai ⋅ Aj ⊂ Ai+j (“grading is multiplicative”). A graded ring is

called of finite type if all Ai are finitely dimensional.

We will usually assume that A0 is the base field.

EXAMPLE: Polynomial ring C[V ] = ⊕iSymiV is clearly graded.
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Graded rings (2)

Claim 1: Let A∗ be a graded ring of finite type. Then A∗ is Noetherian ⇔
it is finitely generated.

Proof. Step 1: If A∗ is finitely generated, it is Noetherian by Hilbert’s basis
theorem.

Step 2: Conversely, suppose that A∗ is Noetherian. Then the ideal ⊕i>0A
i ⊂

A∗ is finitely generated. Let ai ∈ Ani be generators of this ideal over A∗. We
are going to show that products of ai generate A∗.

Step 3: Let z ∈ A∗ be a graded element of smallest degree which is not
generated by products of ai. Since ai generate the ideal ⊕i>0A

i ⊂ A∗, we can
express z as z = ∑i fiai, where fi ∈ A∗. However, degfi < degz, hence all fi are
generated by products of ai. Then all fi are generated by products of ai.

A caution: In this argument, two notions of “finitely generated” are present:
finitely generated ideals (an additive notion) and finitely generated rings over
C (multiplicative). These two notions are completely different! One is
defined for ideals (or R-modules), another for a ring over a field. Only the
name is the same (bad terminology).
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Proof of Noether theorem for polynomial invariants

DEFINITION: Let V be a vector space with basis z1, ..., zn, and C[V ] =
⊕iSymiV = C[z1, ..., zn] the corresponding polynomial ring. Suppose that G

acts on V by linear automorphisms. We extend this action to the symmet-

ric tensors ⊕iSymiV multiplicatively. This implies that G acts on C[V ] by

automorphisms. Such action is called linear.

CLAIM: (Noether theorem for polynomial invariants)

Let G act linearly on the polynomial ring C[V ]. Then the invariant ring

C[V ]G is finitely generated.

Proof. Step 1: Since the action of G preserves the grading on C[V ], the

ring C[V ]G is graded and of finite type.

Step 2: C[V ]G is Noetherian, because C[V ] is Noetherian, and the ring of

invariants RG is Noetherian if R is Noetherian (Corollary 1).

Step 3: A finite type Noetherian graded ring is finitely generated by Claim

1.
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Noether theorem

THEOREM: (Noether theorem)

Let R be a finitely generated ring over C, and G a finite group acting on R by

automorphisms. Then the ring RG of G-invariants is finitely generated.

Proof. Step 1: Let f1, ..., fm be generators of R, and {g1, ..., gk} =G. Consider

the space V ⊂ R generated by all vectors gifj. Clearly, V ⊂ R is V -invariant,

and the natural homomorphism C[V ] Ð→R = C[V ]/I is surjective and G-

invariant.

Step 2: The natural map C[V ]GÐ→RG is surjective, because the functor

W Ð→WG is exact.

Step 3: The ring C[V ]G is finitely generated by Noether theorem for polyno-

mial invariants, hence its quotient RG is also finitely generated.
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Tensor product of rings and preimage of a point

PROPOSITION: Let f ∶ X Ð→ Y be a morphism of affine varieties, f∗ ∶
OY Ð→OX the corresponding ring homomorphism, y ∈ Y a point, and my its

maximal ideal. Denote by R1 the quotient of R ∶= OX ⊗OY (OY /my) by its

nilradical. Then Spec(R1) = f−1(y).

Proof. Step 1: If α ∈ OY vanishes in y, f∗(α) vanishes in all points of f−1(y).
This implies that the set VI of common zeros of the ideal I ∶= OX ⋅ f∗my
contains f−1(y).

Step 2: If f(x) ≠ y, take a function β ∈ OY vanishing in y and non-zero in f(x).
Since ϕ∗(β)(x) ≠ 0 and β(y) = 0, this gives x ∉ VI. We proved that the set of

common zeros of the ideal I = OX ⋅ f∗my is equal to f−1(y).

Step 3: Now, strong Nullstellensatz implies that Of−1(y) is a quotient of

R = OX/I by nilradical.

EXERCISE: Give an example when R = OX/I is non-reduced (contains

nilpotents).
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Finite quotients

CLAIM: Let R be a Noetherian ring without zero divisors, G a finite group
acting by automorphisms on R, and RG the ring of G-invariants. Then
ϕ ∶ SpecRÐ→ SpecRG is a finite, dominant morphism.

Proof. Step 1: For any g ∈ G, consider the corresponding polynomial map
Pg ∶ RÐ→R, and let r ∈ R. The polynomial P (t) ∶= ∏g∈G(t−g(r)) has G-invariant
coefficients for any r ∈ R, hence P (t) ∈ RG[t]

Step 2: The morphism ϕ is finite because each r ∈ R satisfies the equation
P (r) = 0, where P (t) = ∏g∈G(t − g(r)). It is dominant, because RG ⊂ R.

DEFINITION: Let G be a finite group acting on an affine variety X by
automorphisms. The quotient space X/G is Spec(OGX).

EXAMPLE: C2/{±1} = C[x2, y2, xy] = C[t1, t2, t3]/(t1t2 = t23). Indeed,
C2/{±1} = SpecA, where A = C[x,y]{±1}: A is the ring of even polynomials.

EXAMPLE: Let G = Z/nZ act on C by multiplication by a primitive root
n
√

1. Then C/G = Spec(C[t]G) = Spec(C[tn]), hence the quotient space C/G
is isomorphic to C.
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Finite quotients (2)

THEOREM: Consider the natural morphism SpecR
ϕÐ→ SpecRG. Then

ϕ(x) = ϕ(y) if and only if x ∈ G ⋅ y, that is, the set of points in SpecRG is
identified with the space of G-orbits.

Proof. Step 1: If two maximal ideals of R are G-conjugated, their inter-
sections with RG ⊂ R are equal. This gives ϕ(gx) = ϕ(x): each G-orbit is
mapped to one point. It remains to show that the preimage of any point
is exactly one G-orbit.

Step 2: For any ideal m ⊂ RG, one has (mR)G = m. Then AG = RG/m, where
A ∶= R⊗RG (RG/m) = R/mR.

Step 3: Let m be the maximal ideal of y ∈ SpecRG, and N the nilradical of
A ∶= R/mR. Since ϕ−1(y) = Spec(A/N), points of ϕ−1(y) are maximal ideals
of the ring A/N .

Step 4: A semisimple Artinian C-algebra A/N is a direct sum of finite ex-
tensions of C, which are all isomorphic to C, giving A/N = ⊕C. Since AG = C
(Step 2), the group G acts on the summands of A/N = ⊕C transitively.
Therefore, all points of ϕ−1(y) belong to the same G-orbit.
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