Complex analytic spaces

lecture 16 $\frac{1}{2}$: Finite group quotients

Misha Verbitsky

IMPA, sala 236,

October 18, 2023, 17:00

Group representations

DEFINITION: Representation of a group G is a homomorphism $G \rightarrow GL(V)$. In this case, V is called representation space, and a representation.

DEFINITION: Irreducible representation is a representation having no *G*-invariant subspaces. **Semisimple representation** is a direct sum of irreducible ones.

Let V be a vector space over a field k. The space of bilinear maps $V \times V \longrightarrow k$ is denoted $V^* \otimes V^*$.

REMARK: If the group G acts on a vector space V, it G acts on $V^* \otimes V^*$ as $g(h)(x,y) = h(g^{-1}(x), g^{-1}(y))$, for any $g \in G$, $h \in V^* \otimes V^*$ and $x, y \in V$.

DEFINITION: A metric h (Euclidean or Hermitian) on a vector space V is called *G*-invariant if the corresponding tensor $h \in V^* \otimes V^*$ is *G*-invariant.

G-invariant metrics

CLAIM: A sum of two Hermitian (Euclidean) metrics is Hermitian (Euclidean).

COROLLARY: Let V be a representation of a finite group (over \mathbb{R} or \mathbb{C}). **Then** V admits a G-invariant metric (Hermitian or Euclidean).

Proof: Let *h* be an arbitrary metric, and $\frac{1}{|G|} \sum_{g \in G} g(h)$ its average over the *G* action. The previous claim implies that it is a metric. Since *G* acts on itself bijectively, interchanging all terms in the sum, it is *G*-invariant.

COROLLARY: Let $E \subset V$ be a subrepresentation in a finite group representation over \mathbb{R} or \mathbb{C} . Then V can be decomposed onto a direct sum of two *G*-representations $V = W \oplus W'$.

Proof: Choose a *G*-invariant metric on *V*, and let W^{\perp} be the orthogonal complement to *W*. Then W^{\perp} is also *G*-invariant (check this). This gives a decomposition $V = W \oplus W^{\perp}$.

COROLLARY: Any finite-dimensional representation of a finite group is semisimple. ■

Exact functors

DEFINITION: An exact sequence is a sequence of vector spaces and maps $\dots \rightarrow A_1 \rightarrow A_2 \rightarrow A_3 \rightarrow \dots$ such the kernel of each map is the image of the previous one. A short exact sequence is exact sequence of form $0 \rightarrow A \xrightarrow{i} B \xrightarrow{j} C \rightarrow 0$. Here "exact" means that *i* is injective, *j* surjective, and the image of *i* is the kernel of *j*.

DEFINITION: A functor $A \rightarrow FA$ on the category of *R*-modules or vector spaces is called **left exact** if any exact sequence $0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0$ is mapped to an exact sequence

 $0 \longrightarrow FA \longrightarrow FB \longrightarrow FC,$

right exact if it is mapped to an exact sequence

$$FA \longrightarrow FB \longrightarrow FC \longrightarrow 0$$
,

and **exact** if the sequence

$$0 \longrightarrow FA \longrightarrow FB \longrightarrow FC \longrightarrow 0$$

is exact.

Invariants and coinvariants

DEFINITION: Let *G* be a finite group, and *V* its representation. Define **the space of** *G*-invariants V^G as the space of all *G*-invariant vectors, and **the space of coinvariants** as the quotient of *V* by its subspace generated by vectors v - g(v), where $g \in G, v \in V$.

CLAIM: Let V be an irreducible representation of G. Then its invariants and co-ivariants are equal 0 if it is non-trivial, and equal V if it is trivial.

COROLLARY: Let V be a semisimple representation of G. Then $V_G = V^G$.

EXERCISE: Prove that the functor $V \rightarrow V^G$ is left exact, and $V \rightarrow V_G$ is right exact.

COROLLARY: For any finite group G, the functor of G-invariants $V \rightarrow V^G$ on the category of complex representations of G is exact.

REMARK: The averaging map

$$m \longrightarrow \frac{1}{|G|} \sum_{g \in G} g(m)$$

gives a projection of V to V^G , and the kernel of this map is the kernel of the natural projection $V \longrightarrow V_G$

Semisimplicity of representations of finite groups

PROPOSITION: Let $\Re e p_k(G)$ be the category of representations of a finite group G over a field k, with $\operatorname{char}(k)$ coprime with |G|. Then any short exact sequence of G-representations splits.

Proof. Step 1: Let $0 \rightarrow A \xrightarrow{i} B \xrightarrow{j} C \rightarrow 0$ be an exact sequence of G-representations. Choose a basis $\{z_i\}$ in C, and let $\{\tilde{z}_i\}$ be preimages of z_i in B. Axiom of Choice gives a way to chose these preimages even if the set $\{z_i\}$ is infinite. Let $\varphi : C \rightarrow B$ take z_i to \tilde{z}_i . Then $B = i(A) \oplus \varphi(C)$. However, this does not imply that (*) splits, because the map φ is not necessarily G-invariant, and the space $\varphi(C)$ is not necessarily a subrepresentation.

Step 2: We are going to modify φ such that it becomes *G*-invariant. Consider the action of *G* on Hom(*C*, *B*) taking $g \in G$ and $u \in \text{Hom}(C, B)$ to $gug^{-1} \in$ Hom(*C*, *B*); here the first "g" denotes the corresponding element in GL(B)and the " g^{-1} " denotes the element in GL(C). Then φ is a morphism of *G*-representations if and only if φ is *G*-invariant.

M. Verbitsky

Semisimplicity of representations of finite groups (2)

PROPOSITION: Let $\Re e p_k(G)$ be the category of representations of a finite group G over a field k, with $\operatorname{char}(k)$ coprime with |G|. Then any short exact sequence of G-representations splits.

Proof. Step 1: Let $0 \rightarrow A \xrightarrow{i} B \xrightarrow{j} C \rightarrow 0$ be an exact sequence of *G*-representations. Consider *j* as a surjection of vector spaces and find a section $\varphi: C \rightarrow B$ (not necessarily *G*-invariant) using a basis in *C*.

Step 2: To split this exact sequence of representations, φ **should be chosen** *G*-invariant.

Step 3: Since char k is coprime with |G|, the number |G| is invertible in k. Let $\varphi_0 \coloneqq \frac{1}{|G|} \sum_{g \in G} g(\varphi)$. This is a sum of all elements in a *G*-orbit, hence it is *G*-invariant. For any $v \in C$, one has

$$i(\varphi_0(v)) = \frac{1}{|G|} \sum_{g \in G} j(g(\varphi))(g^{-1}v) = \frac{1}{|G|} \sum_{g \in G} g(j\varphi((g^{-1}v))) = \frac{1}{|G|} \sum_{g \in G} g(g^{-1}(v)) = v,$$

because j commutes with φ . This implies that φ_0 is a *G*-invariant section of j.

Finite group action admits a linearization

THEOREM: Let *G* be a finite group acting on $U \in \mathbb{C}^n$ by holomorphic automorphisms preserving 0. Then there exist a coordinate system in which *G* acts linearly.

Proof. Step 1: Consider the map $\delta : \mathfrak{O}_U \longrightarrow T_0^*U$ taking f to $df|_0$. It would suffice to show that there exists a finite-dimensional G-invariant subspace $W \subset \mathfrak{O}_U$ such that $\delta : W \longrightarrow T_0^*U$ is an isomorphism. Indeed, the inverse function theorem would imply that the map $\varphi_W : W \longrightarrow \mathfrak{O}_U$, taking the basis vectors $\xi_1, ..., \xi_n \in W$ to their images in \mathfrak{O}_U defines a coordinate system, and G acts on the image of this map linearly.

Step 2: The exact sequence of *G*-representations $0 \rightarrow \ker \delta \rightarrow \mathcal{O}_U \xrightarrow{\delta} T_0^* U \rightarrow 0$ splits, as shown above. Then there exists a *G*-equivariant map $T_0^* U \rightarrow \mathcal{O}_U$ inverting δ .

REMARK: We are going to show that the quotient U/G is well defined as a complex variety. By the previous theorem, it would suffice to construct the quotient in the category of affine algebraic varieties.

Noether theorem (scheme of the proof)

THEOREM: Let R be a finitely generated ring over \mathbb{C} , and G a finite group acting on R by automorphisms. Then **the ring** R^G of G-invariants is finitely generated.

Scheme of the proof:

1. Noetheriannes of R is used to prove that R^G is Noetherian.

2. Prove that R^G is finite generated for $R = \mathbb{C}[z_1, ..., z_n]$, where R acts on polynomials of degree 1 by linear automorphisms.

3. Deduce the general case from (2) and exactness of $V \rightarrow V^G$

Ideals in R and R^G

LEMMA: Let R be a ring, G a finite group acting on R, R^G the ring of G-invariants, and $I \,\subset R^G$ an ideal. Then **the ideal** RI **satisfies** $Av_G(RI) = Av_G(R)I = R^GI = I$, where $Av_G : R \longrightarrow R^G$ denotes the averaging map.

Proof: $Av_G(xy) = Av_G(x)y$ if y is G-invariant.

COROLLARY: Let $I_1 \not\subseteq I$ be ideals in R^G . Then $RI_1 \not\subseteq RI$.

COROLLARY 1: In these assumptions, if R is Noetherian, then R^G is also Noetherian.

Proof: Any infinite, strictly monotonous sequence $I_0 \not\subseteq I_1 \not\subseteq ...$ of ideals in R^G gives a strictly monotonous sequence $RI_0 \not\subseteq RI_1 \not\subseteq ...$ in R.

Graded rings

DEFINITION: A graded ring is a ring A^* , $A^* = \bigoplus_{i=0}^{\infty} A^i$, with multiplication which satisfies $A^i \cdot A^j \subset A^{i+j}$ ("grading is multiplicative"). A graded ring is called **of finite type** if all A^i are finitely dimensional.

We will usually assume that A^0 is the base field.

EXAMPLE: Polynomial ring $\mathbb{C}[V] = \bigoplus_i \operatorname{Sym}^i V$ is clearly graded.

Graded rings (2)

Claim 1: Let A^* be a graded ring of finite type. Then A^* is Noetherian \Leftrightarrow it is finitely generated.

Proof. Step 1: If A^* is finitely generated, it is Noetherian by Hilbert's basis theorem.

Step 2: Conversely, suppose that A^* is Noetherian. Then the ideal $\bigoplus_{i>0} A^i \subset A^*$ is finitely generated. Let $a_i \in A^{n_i}$ be generators of this ideal over A^* . We are going to show that products of a_i generate A^* .

Step 3: Let $z \in A^*$ be a graded element of smallest degree which is not generated by products of a_i . Since a_i generate the ideal $\bigoplus_{i>0} A^i \subset A^*$, we can express z as $z = \sum_i f_i a_i$, where $f_i \in A^*$. However, deg $f_i < \text{deg } z$, hence all f_i are generated by products of a_i . Then all f_i are generated by products of a_i .

A caution: In this argument, two notions of "finitely generated" are present: finitely generated ideals (an additive notion) and finitely generated rings over \mathbb{C} (multiplicative). **These two notions are completely different!** One is defined for ideals (or *R*-modules), another for a ring over a field. Only the name is the same (bad terminology).

Proof of Noether theorem for polynomial invariants

DEFINITION: Let V be a vector space with basis $z_1, ..., z_n$, and $\mathbb{C}[V] = \bigoplus_i \operatorname{Sym}^i V = \mathbb{C}[z_1, ..., z_n]$ the corresponding polynomial ring. Suppose that G acts on V by linear automorphisms. We extend this action to the symmetric tensors $\bigoplus_i \operatorname{Sym}^i V$ multiplicatively. This implies that G acts on $\mathbb{C}[V]$ by automorphisms. Such action is called linear.

CLAIM: (Noether theorem for polynomial invariants) Let *G* act linearly on the polynomial ring $\mathbb{C}[V]$. Then the invariant ring $\mathbb{C}[V]^G$ is finitely generated.

Proof. Step 1: Since the action of *G* preserves the grading on $\mathbb{C}[V]$, the ring $\mathbb{C}[V]^G$ is graded and of finite type.

Step 2: $\mathbb{C}[V]^G$ is Noetherian, because $\mathbb{C}[V]$ is Noetherian, and the ring of invariants R^G is Noetherian if R is Noetherian (Corollary 1).

Step 3: A finite type Noetherian graded ring is finitely generated by Claim

■

Noether theorem

THEOREM: (Noether theorem)

Let R be a finitely generated ring over \mathbb{C} , and G a finite group acting on R by automorphisms. Then the ring R^G of G-invariants is finitely generated.

Proof. Step 1: Let $f_1, ..., f_m$ be generators of R, and $\{g_1, ..., g_k\} = G$. Consider the space $V \subset R$ generated by all vectors $g_i f_j$. Clearly, $V \subset R$ is V-invariant, and the natural homomorphism $\mathbb{C}[V] \longrightarrow R = \mathbb{C}[V]/I$ is surjective and G-invariant.

Step 2: The natural map $\mathbb{C}[V]^G \longrightarrow R^G$ is surjective, because the functor $W \longrightarrow W^G$ is exact.

Step 3: The ring $\mathbb{C}[V]^G$ is finitely generated by Noether theorem for polynomial invariants, hence its quotient R^G is also finitely generated.

Tensor product of rings and preimage of a point

PROPOSITION: Let $f: X \to Y$ be a morphism of affine varieties, $f^*: \mathfrak{O}_Y \to \mathfrak{O}_X$ the corresponding ring homomorphism, $y \in Y$ a point, and \mathfrak{m}_y its maximal ideal. Denote by R_1 the quotient of $R \coloneqq \mathfrak{O}_X \otimes_{\mathfrak{O}Y} (\mathfrak{O}_Y/\mathfrak{m}_y)$ by its nilradical. Then $\operatorname{Spec}(R_1) = f^{-1}(y)$.

Proof. Step 1: If $\alpha \in \mathcal{O}_Y$ vanishes in y, $f^*(\alpha)$ vanishes in all points of $f^{-1}(y)$. This implies that **the set** V_I **of common zeros of the ideal** $I := \mathcal{O}_X \cdot f^* \mathfrak{m}_y$ **contains** $f^{-1}(y)$.

Step 2: If $f(x) \neq y$, take a function $\beta \in \mathcal{O}_Y$ vanishing in y and non-zero in f(x). Since $\varphi^*(\beta)(x) \neq 0$ and $\beta(y) = 0$, this gives $x \notin V_I$. We proved that the set of common zeros of the ideal $I = \mathcal{O}_X \cdot f^* \mathfrak{m}_y$ is equal to $f^{-1}(y)$.

Step 3: Now, strong Nullstellensatz implies that $\mathcal{O}_{f^{-1}(y)}$ is a quotient of $R = \mathcal{O}_X/I$ by nilradical.

EXERCISE: Give an example when $R = O_X/I$ is non-reduced (contains nilpotents).

Finite quotients

CLAIM: Let R be a Noetherian ring without zero divisors, G a finite group acting by automorphisms on R, and R^G the ring of G-invariants. Then $\varphi : \operatorname{Spec} R \longrightarrow \operatorname{Spec} R^G$ is a finite, dominant morphism.

Proof. Step 1: For any $g \in G$, consider the corresponding polynomial map $P_g : R \longrightarrow R$, and let $r \in R$. The polynomial $P(t) := \prod_{g \in G} (t - g(r))$ has *G*-invariant coefficients for any $r \in R$, hence $P(t) \in R^G[t]$

Step 2: The morphism φ is finite because each $r \in R$ satisfies the equation P(r) = 0, where $P(t) = \prod_{q \in G} (t - g(r))$. It is dominant, because $R^G \subset R$.

DEFINITION: Let G be a finite group acting on an affine variety X by automorphisms. The quotient space X/G is $\text{Spec}(\mathcal{O}_X^G)$.

EXAMPLE: $\mathbb{C}^2/\{\pm 1\} = \mathbb{C}[x^2, y^2, xy] = \mathbb{C}[t_1, t_2, t_3]/(t_1t_2 = t_3^2)$. Indeed, $\mathbb{C}^2/\{\pm 1\} = \operatorname{Spec} A$, where $A = \mathbb{C}[x, y]^{\{\pm 1\}}$: A is the ring of even polynomials.

EXAMPLE: Let $G = \mathbb{Z}/n\mathbb{Z}$ act on \mathbb{C} by multiplication by a primitive root $\sqrt[n]{1}$. Then $\mathbb{C}/G = \operatorname{Spec}(\mathbb{C}[t]^G) = \operatorname{Spec}(\mathbb{C}[t^n])$, hence **the quotient space** \mathbb{C}/G **is isomorphic to** \mathbb{C} .

Finite quotients (2)

THEOREM: Consider the natural morphism $\operatorname{Spec} R \xrightarrow{\varphi} \operatorname{Spec} R^G$. Then $\varphi(x) = \varphi(y)$ if and only if $x \in G \cdot y$, that is, the set of points in $\operatorname{Spec} R^G$ is identified with the space of *G*-orbits.

Proof. Step 1: If two maximal ideals of R are G-conjugated, their intersections with $R^G \,\subset R$ are equal. This gives $\varphi(gx) = \varphi(x)$: each G-orbit is mapped to one point. It remains to show that the preimage of any point is exactly one G-orbit.

Step 2: For any ideal $\mathfrak{m} \subset R^G$, one has $(\mathfrak{m}R)^G = \mathfrak{m}$. Then $A^G = R^G/\mathfrak{m}$, where $A \coloneqq R \otimes_{R^G} (R^G/\mathfrak{m}) = R/\mathfrak{m}R$.

Step 3: Let \mathfrak{m} be the maximal ideal of $y \in \operatorname{Spec} R^G$, and N the nilradical of $A \coloneqq R/\mathfrak{m}R$. Since $\varphi^{-1}(y) = \operatorname{Spec}(A/N)$, points of $\varphi^{-1}(y)$ are maximal ideals of the ring A/N.

Step 4: A semisimple Artinian \mathbb{C} -algebra A/N is a direct sum of finite extensions of \mathbb{C} , which are all isomorphic to \mathbb{C} , giving $A/N = \bigoplus \mathbb{C}$. Since $A^G = \mathbb{C}$ (Step 2), the group G acts on the summands of $A/N = \bigoplus \mathbb{C}$ transitively. Therefore, all points of $\varphi^{-1}(y)$ belong to the same G-orbit.