Complex analytic spaces

lecture 17: Remmert and Remmert-Stein theorems

Misha Verbitsky

IMPA, sala 236,

October 1, 2023, 13:30

Remmert rank (reminder)

DEFINITION: Let $x \in X$ be a point on a complex variety. The dimension of X in x, denoted dim(X, x), is maximum of dimensions for all irreducible components of X containing x; this matters only when X is not equidimensional.

DEFINITION: Let $F : X \to Y$ be a holomorphic map of complex varieties. Define the Remmert rank of F in $x \in X$ as $\operatorname{Rrk}_x F := \dim(X, x) - \dim(F^{-1}(F(x)), x)$.

REMARK: Clearly, $\operatorname{Rrk}_x F = \operatorname{rk}_x F$ when x is smooth and F is a smooth submersion to its image.

Theorem 1: The rank $\operatorname{Rrk}_x F$ is upper semicontinuous as a function of x (that is, the set of $x \in X$ where $\operatorname{Rrk} > t$ is open).

Remmert rank theorem (reminder)

THEOREM: Let $F: X \to Y$ be a morphism of complex varieties, and $k := \sup_{x \in X} \operatorname{Rrk}_x F$. Then im F belongs to a union of complex varieties of dimension $\leq k$, but not in a union of complex varieties of dimension $\leq k - 1$. **Proof. Step 1:** Using induction, we may assume that this theorem is true for any map $F_1: X_1 \to Y_1$ for which dim $X_1 < \dim X$.

Step 2: The Remmert rank Rrk(F,x) is semicontinuous in x, hence it reaches its maximum on an open subset. The constant rank theorem implies that F is a smooth submersion on the set X_0 of smooth points of X where $rk dF|_{T_xX}$ is maximal, and, moreover, for a sufficiently small $U \subset X_0$, the image F(U) is a complex submanifold of dimension k.

Step 3: The complement $A \coloneqq X \setminus X_0$ is complex analytic and has dimension $< \dim X$. By induction assumption, the theorem is true for A. The Remmert rank of $F|_A$ in $a \in A$ is

$$\dim(A,a) - \dim F^{-1}(F(a)) < \dim(X,a) - \dim F^{-1}(F(a)) \le k = \sup_{x \in X} \operatorname{Rrk}_x F.$$

By induction assumption, F(A) belongs to a union of subvarieties of dimension $\leq k$.

COROLLARY: (Remmert rank theorem:)

Let $F: X \longrightarrow Y$ be a holomorphic, surjective map of complex varieties. Then dim $Y = \sup_{x \in X} \operatorname{Rrk}_x F$.

Reinhold Remmert (22 June 1930 - 9 March 2016) August 1983, Oberwolfach, photo by Paul Halmos.

Remmert and Remmert-Stein theorem

DEFINITION: A proper map is a continuous map such that a preimage of a compact is always compact.

THEOREM: (Remmert-Stein theorem)

Let X be a complex variety, $A \subset X$ a complex analytic subset, and Z an irreducible complex analytic subset in $X \setminus A$. Assume that dim Z > dim A. Then the closure of Z is complex analytic in X.

EXERCISE: Deduce the Riemann removable singularity theorem from Remmert-Stein, in the following form. Let f be a continuous function on \mathbb{C} , holo-morphic outside of a discrete set. Prove that f is holomorphic.

THEOREM: (Remmert proper map theorem)

Let $F: X \longrightarrow Y$ be a proper morphism of complex varieties. Then F(X) is complex analytic in Y.

M. Verbitsky

Karl Stein (1913-2000) Eichstätt, 1968

Bounded holomorphic functions

Extension lemma: Let $D \subset B$ be a divisor in a ball $B \subset \mathbb{C}^n$, and $f \in \mathcal{O}_{B \setminus D}$ a bounded holomorphic function on its complement. Then f can be extended to a holomorphic function on B.

Proof. Step 1: Let u be a holomorphic functions vanishing on D. Then fu^2 vanishes on D, and its derivative also vanishes on D, hence fu^2 is holomorphic on B.

Step 2: This implies that f is meromorphic, $f = \frac{g}{h}$. Using factoriality of the ring of germs, we may assume that g and h are coprime, and h is not divisible by the prime factors of g, denoted as g_i . It remains to show that h is invertible. On contrary, assume it is not invertible.

Step 3: Since *h* is coprime with *g*, it does not belong to the ideal (g_i) . Its zero divisor D_h has dimension (n-1), hence it cannot be properly contained in a union of irreducible divisors D_{g_i} . This implies that there is a point $x \in B$ where *h* vanishes and *g* does not vanish.

Step 3: In a neighbourhood of x, the fraction $f = \frac{g}{h}$ is not bounded, which brings a contradiction.

REMARK: This statement is also true when $D = A \cup Z$, where $A \in B$ is a divisor, and $Z \in B \setminus A$ a divisor in $B \setminus A$. Indeed, in this situation f can be holomorphically extended to $B \setminus A$, because Z is a divisor in $B \setminus A$, and then on B, because $A \subset B$ is a divisor. We will often use the extension lemma in this form.

Extension lemma for coverings

REMARK: Let G be a finite group acting on \mathbb{C}^n holomorphically. The quotient $X \coloneqq \mathbb{C}^n/G$ is a complex variety, with \mathcal{O}_X being G-invariant holomorphic functions on \mathbb{C}^n . We shall prove this result later.

DEFINITION: Let *B* be an open ball. The symmetric power $\text{Sym}^q B$ is a complex variety (generally speaking, singular). Its points can be encoded by unordered *q*-tuples $\alpha_1, ..., \alpha_q \in B$. The coordinates on this variety are given by certain symmetric polynomials on the coordinates of α_i .

Lemma 1: Let B_1, B_2 are open balls, $A \,\subset B_1$ a union of a divisor $D \,\subset B$ and a divisor $D' \,\subset B \setminus D$, and $Z \,\subset (B_1 \setminus A) \times B_2$ a closed submanifold, which is projected to B_2 as a *q*-sheeted unramified finite covering. Then the closure of Z in $B_1 \times B_2$ is complex analytic.

Proof: We interpret Z as a graph of a multivalued holomorphic function $\varphi: B_1 \setminus A \longrightarrow \operatorname{Sym}^q B_2$. Locally this map can be expressed as an unordered collection of maps $\zeta_1, ..., \zeta_q: B_1 \setminus A \longrightarrow B_2$. The coefficients of symmetric polynomials of the coordinates of $\zeta_1, ..., \zeta_q$ are holomorphic functions on $B_1 \setminus A$ which are bounded, hence, by extension lemma, can be extended to holomorphic functions on B_1 . Therefore, $\varphi: B_1 \setminus A \longrightarrow \operatorname{Sym}^q B_2$ can be extended to a holomorphic function $\tilde{\varphi}: B_1 \longrightarrow \operatorname{Sym}^q B_2$. The closure of Z is the graph of the corresponding multivalued function.

Remmert and Remmert-Stein theorem (scheme of the proof)

The proof follows from an elaborate induction argument.

(**RS**_m): the statement of Remmert-Stein is true when dim $X \leq m$. (**R**_m): the statement of Remmert proper map is true when dim $X \leq m$.

Today we prove two statements, which together bring forth the inductive argument.

A. (RS_m) and (R_{m-1}) implies (R_m). **B.** (R_{m-1}) implies (RS_m).

Remmert and Remmert-Stein theorem: implication A.

THEOREM: (Remmert proper map theorem) Let $F: X \rightarrow Y$ be a proper morphism of complex varieties. Then F(X) is complex analytic in Y.

(**RS**_m): the statement of Remmert-Stein is true when dim $X \leq m$. (**R**_m): the statement of Remmert proper map is true when dim $X \leq m$.

Proof of implication A: (RS_m) and (R_{m-1}) implies (R_m).

Step 1: Let $X_1 \,\subset X$ the set of all points where the Remmert rank $\operatorname{Rrk}_x(F)$ is not maximal. By constant rank theorem, F(X) is complex analytic in a neighbourhood of any point $y \in Y$ outside of $F(X_1) \cup F(X_{\operatorname{sing}})$. Indeed, the preimage of y is compact, and covered by a finite collection of open sets where the constant rank theorem holds.

Step 2: Using R_{m-1} , we obtain that **the images** $F(X_1)$ **and** $F(X_{sing})$ **are complex-analytic**. By Remmert rank theorem, its image has dimension $\leq \max_x \operatorname{Rrk}_x F|_{(X_1 \cup X_{sing})}$, and this inequality is never strict.

Remmert and Remmert-Stein theorem: implication A (2).

Proof of implication A: (RS_m) and (R_{m-1}) implies (R_m).

Step 1: Let $X_1 \,\subset X$ the set of all points where the Remmert rank $\operatorname{Rrk}_x(F)$ is not maximal. Then F(X) is complex analytic in a neighbourhood of any point $y \in Y$ outside of $F(X_1) \cup F(X_{\operatorname{sing}})$.

Step 2: Using R_{m-1} , we can assume that the images $F(X_1)$ and $F(X_{sing})$ are complex-analytic.

Step 3: Let $X' \coloneqq X \setminus F^{-1}(F(X_1 \cup X_{sing}))$. Remmert rank theorem gives

$$\dim F(X_{\text{sing}}) = \sup_{x \in X_{\text{sing}}} \operatorname{rk} \left(F \Big|_{X_{\text{sing}}}, x \right) = \\ \dim X_{\text{sing}} - \inf_{x \in X_{\text{sing}}} \dim F^{-1}(F(x)) < \operatorname{rk} \sup_{x \in X} \operatorname{rk}(F, x) = \dim F(X').$$

Similarly, dim $F(X_1) = \sup_{x \in X_1} \operatorname{rk}(F|_{X_1}, x) < \sup_{x \in X} \operatorname{rk}(F, x) = \dim F(X')$.

Step 4: Now \mathbb{R}_m is implied by applying \mathbb{RS}_m to Z = F(X') and $A = F(X_1) \cup F(X_{sing})$.

Remmert and Remmert-Stein theorem: implication B.

THEOREM: (Remmert-Stein theorem)

Let X be a complex variety, $A \subset X$ a complex analytic subset, and Z an irreducible complex analytic subset in $X \setminus A$. Assume that dim $Z > \dim A$. Then the closure of Z is complex analytic in X.

(**RS**_m): the statement of Remmert-Stein is true when dim $X \leq m$.

(\mathbb{R}_m): the statement of Remmert proper map is true when dim $X \leq m$.

Proof of implication B: (R_{m-1}) implies (RS_m).

Step 1: Using induction in dim A, we may assume that A is smooth. We can also assume that Z is irreducible: indeed, the intersection of irreducible components of Z has dimension < dim Z.

Step 2: Applying an appropriate holomorphic diffeomorphism and passing to a neighbourhood of a given point $a \in A$, we may assume that X is a subvariety of a ball $B \subset \mathbb{C}^n$, and $A \subset B$ is a linear subspace. Consider a linear function on B, which is not identically zero on Z. Its intersection with Z is a divisor. Using induction, we construct a linear projection $F : B \longrightarrow \mathbb{C}^{\dim Z}$ such that $F^{-1}(0) \cap (Z \cup A)$ is countable.

Remmert and Remmert-Stein theorem: implication B (2).

Step 2: Applying an appropriate holomorphic diffeomorphism and passing to a neighbourhood of a given point $a \in A$, we may assume that X is a subvariety of a ball $B \subset \mathbb{C}^n$, and $A \subset B$ is a linear subspace. Consider a linear function on B, which is not identically zero on Z. Its intersection with Z is a divisor. Using induction, we construct a linear projection $F : B \longrightarrow \mathbb{C}^{\dim Z}$ such that $F^{-1}(0) \cap (Z \cup A)$ is 0-dimensional.

Step 3: Choose a polydisk $D \times D' \in B$ such that **the projection** F **maps** $D \times D'$ **to** D', **and its restriction to** $(Z \cup A) \cap D \times D'$ **is proper and has countable fibers.** By taking a linear projection generic enough, we can always make sure that its restriction to A is finite, and its restriction to Z has 0-dimensional fibers. Then for all $t \in D' \setminus F(A)$ the intersection $F^{-1}(t) \cap (Z)$ is 0-dimensional. Choose the radius of D such that the intersection $F^{-1}(t) \cap (Z \cup A)$ is empty. Since the the distance from $(Z \cup A)$ to the boundary of $F^{-1}(0)$ is bigger than $\varepsilon > 0$, for all t in a sufficiently small neighbourhood of 0, the distance from $(Z \cup A)$ to the boundary of $F^{-1}(0)$ is bigger than $\frac{1}{2}\varepsilon$. Replacing D' by this neighbourhood, we make sure that $(Z \cup A) \cap \partial D \times D' = \emptyset$. Since $F^{-1}(t) \cap (Z)$ is 0-dimensional complex analytic for all $t \in D' \setminus F(A)$ and belongs to a compact subset of an open ball, this intersection is finite.

Remmert and Remmert-Stein theorem: implication B (3).

At this point we replace Z, A, X by their intersection with $D \times D'$.

Step 4: Let A' be the union of A and the set of all points where the differential of $F|_Z$ is not an isomorphism, and $Z' \coloneqq Z \setminus F^{-1}(F(A'))$. Then the map $F|_{Z'}$ is a finite covering. The intersection $A' \cap Z$ is the set of all $z \in Z$ where $dF|_Z$ is not of maximal rank, hence it is complex analytic in Z, of dimension $\leq m - 1$. **By** \mathbb{R}_{m-1} , the image $F(A' \cap Z)$ is complex analytic. The same is true for F(A), because A is a vector space and F is linear. We obtain that F(A') is a union of a complex subvariety and a linear subspace. This is a situation when one could apply the extension lemma.

Step 5: The subvariety $Z' \subset D \times D' \setminus F^{-1}(F(A'))$ is a graph of a *q*-sheeted covering $D' \setminus F(A') \longrightarrow \operatorname{Sym}^q(D)$. By Lemma 1 above, its closure in $D \times D'$ is complex analytic.