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Remmert rank (reminder)

DEFINITION: Let z € X be a point on a complex variety. The dimension
of X in z, denoted dim(X,x), is maximum of dimensions for all irreducible
components of X containing z; this matters only when X is not equidi-
mensional.

DEFINITION: Let F': X —Y Dbe a holomorphic map of complex vari-
eties. Define the Remmert rank of F in x ¢ X as Rrkz F := dim(X,x) -
dim(F-1(F(x)),z).

REMARK: Clearly, Rrk; F' =rk, FF when z is smooth and F' is a smooth
submersion to its image.

Theorem 1: The rank Rrk, F' is upper semicontinuous as a function of
x (that is, the set of x € X where Rrk >t is open).
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Remmert rank theorem (reminder)

THEOREM: Let FF: X —Y be a morphism of complex varieties, and k :=
sup,.x Rrky F. Then imF belongs to a union of complex varieties of
dimension <k, but not in a union of complex varieties of dimension <k-1.
Proof. Step 1: Using induction, we may assume that this theorem is true
for any map Fy: X1 — Y7 for which dim X7 <dim X,
Step 2: The Remmert rank Rrk(F,z) is semicontinuous in z, hence it reaches
its maximum on an open subset. The constant rank theorem implies that F
IS @ smooth submersion on the set Xg of smooth points of X where rde|TxX
is maximal, and, moreover, for a sufficiently small U c Xy, the image F(U)
IS a complex submanifold of dimension k.
Step 3: The complement A := X\Xg is complex analytic and has dimension
<dim X. BYy induction assumption, the theorem is true for A. The Remmert
rank of F|4 in ae A is

dim(A,a) -dim F1(F(a)) <dim(X,a) -dim F~1(F(a)) < k = sup Rrk; F.

reX
By induction assumption, F(A) belongs to a union of subvarieties of
dimension <k. =

COROLLARY: (Remmert rank theorem:)
Let F': X —Y be a holomorphic, surjective map of complex varieties. Then
dimY =sup,.x Rrk; F. =
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Reinhold Remmert (22 June 1930 - 9 March 2016)
August 1983, Oberwolfach, photo by Paul Halmos.
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Remmert and Remmert-Stein theorem

DEFINITION: A proper map is a continuous map such that a preimage of
a compact is always compact.

THEOREM: (Remmert-Stein theorem)

Let X be a complex variety, A c X a complex analytic subset, and Z an
irreducible complex analytic subset in X\A. Assume that dimZ >dim A. Then
the closure of 7 is complex analytic in X.

EXERCISE: Deduce the Riemann removable singularity theorem from Remmert-
Stein, in the following form. Let f be a continuous function on C, holo-
morphic outside of a discrete set. Prove that f is holomorphic.

THEOREM: (Remmert proper map theorem)
Let FF': X —Y be a proper morphism of complex varieties. Then F(X) is
complex analytic in Y.
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Karl Stein (1913-2000)
Eichstatt, 1968
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Bounded holomorphic functions

Extension lemma: Let D c B be a divisor in a ball BcC", and feOpgp a
bounded holomorphic function on its complement. Then f can be extended
to a holomorphic function on B.

Proof. Step 1: Let u be a holomorphic functions vanishing on D. Then
fu? vanishes on D, and its derivative also vanishes on D, hence fu? is
holomorphic on B.

Step 2: This implies that f is meromorphic, f = %. Using factoriality of the
ring of germs, we may assume that ¢ and A are coprime, and h is not
divisible by the prime factors of g, denoted as g;. It remains to show that
h is invertible. On contrary, assume it is not invertible.

Step 3: Since h is coprime with g, it does not belong to the ideal (g;). Its
zero divisor Dy has dimension (n-1), hence it cannot be properly contained
in @ union of irreducible divisors Dy,.. This implies that there is a point
x € B where h vanishes and g does not vanish.

Step 3: In a neighbourhood of x, the fraction f :% is not bounded, which
brings a contradiction. =

REMARK: This statement is also true when D= AuZ, where Ac B is
a divisor, and Z c B\A a divisor in B\A. Indeed, in this situation f can be
holomorphically extended to B\A, because Z is a divisor in B\A, and then on
B, because A c B is a divisor. We will often use the extension lemma in
this form.

Z
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Extension lemma for coverings

REMARK: Let GG be a finite group acting on C" holomorphically. The quo-
tient X :=C"/G is a complex variety, with Ox being G-invariant holomorphic
functions on C". We shall prove this result later.

DEFINITION: Let B be an open ball. The symmetric power Sym?B is a
complex variety (generally speaking, singular). Its points can be encoded by
unordered g-tuples ai,...,aq€ B. The coordinates on this variety are given by
certain symmetric polynomials on the coordinates of «;.

Lemma 1: Let By,B5 are open balls, Ac B1 a union of a divisor Dc B and a
divisor D' c B\D, and Z c (B1\A) x B> a closed submanifold, which is projected
to B, as a g-sheeted unramified finite covering. Then the closure of Z in
B1 x B> 1S complex analytic.

Proof: We interpret Z as a graph of a multivalued holomorphic function
¢ : B1\A— Sym?B5. Locally this map can be expressed as an unordered
collection of maps (i,...,{;: B1\A— By. The coefficients of symmetric poly-
nomials of the coordinates of (i,...,{; are holomorphic functions on Bj\A
which are bounded, hence, by extension lemma, can be extended to holomor-
phic functions on By. Therefore, ¢: B1\A— Sym? B, can be extended to a
holomorphic function ¢: By — Sym?B>. The closure of Z is the graph of
the corresponding multivalued function. m
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Remmert and Remmert-Stein theorem (scheme of the proof)
The proof follows from an elaborate induction argument.

(RS,,): the statement of Remmert-Stein is true when dim X <m.
(R,,): the statement of Remmert proper map is true when dimX <m.

Today we prove two statements, which together bring forth the inductive
argument.

A. (RS,,) and (R,,_1) implies (Ry,).
B. (R,,-1) implies (RS;,).
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Remmert and Remmert-Stein theorem: implication A.

THEOREM: (Remmert proper map theorem)
Let FF: X — Y be a proper morphism of complex varieties. Then F(X) is
complex analytic in Y.

(RS,,): the statement of Remmert-Stein is true when dim X < m.
(R;,): the statement of Remmert proper map is true when dim X < m.

Proof of implication A: (RS,,) and (R,,_1) implies (R;,).

Step 1: Let X7 c X the set of all points where the Remmert rank Rrky(F)
is not maximal. By constant rank theorem, F(X) is complex analytic in
a neighbourhood of any point y¢Y outside of F(Xq)u F(Xg). Indeed,
the preimage of y is compact, and covered by a finite collection of open sets
where the constant rank theorem holds.

Step 2: Using R;,,_1, we obtain that the images F(X;) and F(Xg,;) are
complex-analytic. By Remmert rank theorem, its image has dimension <
max, Rrk,; F' (X1UXging) and this inequality is never strict.

10
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Remmert and Remmert-Stein theorem: implication A (2).

Proof of implication A: (RS,,) and (R,,_1) implies (R;,).

Step 1: Let X7 c X the set of all points where the Remmert rank Rrk;(F) is
not maximal. Then F(X) is complex analytic in a neighbourhood of any

point ye¢Y outside of F(X1)u F(Xng)-

Step 2: Using R,,_1, we can assume that the images F(X;) and F(Xg,s)
are complex-analytic.

Step 3: Let X':= X\F1(F(X1UXpng)). Remmert rank theorem gives

dim F(Xgng) = sup rk (F Xsing,a;) =
LEAsing
dim Xgpg - inf dimF~}(F(z)) < rksup rk(F,z) = dim F(X").
T€Xging xeX

Similarly, dim F(X1) =SuUPgex, rk (F|x,, ) <supgcx rk(F,z) =dim F(X').

Step 4: Now R,, is implied by applying RS,, to 7 = F(X’) and A =
F(Xl)UF(Xsing)' o
11
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Remmert and Remmert-Stein theorem: implication B.

THEOREM: (Remmert-Stein theorem)

Let X be a complex variety, A c X a complex analytic subset, and Z an
irreducible complex analytic subset in X\ A. Assume that dimZ >dim A. Then
the closure of Z is complex analytic in X.

(RS,,): the statement of Remmert-Stein is true when dim X < m.

(R;,): the statement of Remmert proper map is true when dim X < m.

Proof of implication B: (R,,_1) implies (RS,,).

Step 1: Using induction in dim A, we may assume that A is smooth. We
can also assume that Z is irreducible: indeed, the intersection of irreducible
components of Z has dimension <dim Z.

Step 2: Applying an appropriate holomorphic diffeomorphism and passing to
a neighbourhood of a given point a € A, we may assume that X is a subvariety
of a ball Bc(C"”, and A c B is a linear subspace. Consider a linear function
on B, which is not identically zero on Z. Its intersection with Z is a divisor.
Using induction, we construct a linear projection F: B— CdmMZ such
that F-1(0)n(Zu A) is countable.

12
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Remmert and Remmert-Stein theorem: implication B (2).

Step 2: Applying an appropriate holomorphic diffeomorphism and passing to
a neighbourhood of a given point ae€ A, we may assume that X is a subvariety
of a ball BcC", and Ac B is a linear subspace. Consider a linear function
on B, which is not identically zero on Z. Its intersection with Z is a divisor.
Using induction, we construct a linear projection F: B— C9™MZ such
that F-1(0)n(Zu A) is O-dimensional.

Step 3: Choose a polydisk Dx D’ c B such that the projection ' maps Dx D’
to D/, and its restriction to (ZuA)n D x D' is proper and has countable
fibers. By taking a linear projection generic enough, we can always make sure
that its restriction to A is finite, and its restriction to Z has 0O-dimensional
fibers. Then for all te D'\F(A) the intersection F~1(t)n(Z) is 0O-dimensional.
Choose the radius of D such that the intersection F-1(t)n(Zu A) is empty.
Since the the distance from (Zu A) to the boundary of F~1(0) is bigger than
e >0, for all t in a sufficiently small neighbourhood of 0, the distance from
(Zu A) to the boundary of F~1(0) is bigger than %s. Replacing D’ by this
neighbourhood, we make sure that (ZuA)ndD x D' =g. Since F-1(t)n(2) is
O-dimensional complex analytic for all t € D'\F(A) and belongs to a compact

subset of an open ball, this intersection is finite.
13
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Remmert and Remmert-Stein theorem: implication B (3).
At this point we replace Z, A, X by their intersection with D x D’.

Step 4: Let A’ be the union of A and the set of all points where the differential
of F|z is not an isomorphism, and Z’:= Z\F~1(F(A’)). Then the map F|, is
a finite covering. The intersection A'nZ is the set of all z € Z where dF|, is
not of maximal rank, hence it is complex analytic in Z, of dimension <m - 1.
By R,,_1, the image F(A'nZ) is complex analytic. The same is true for
F(A), because A is a vector space and F' is linear. We obtain that F(A’) is
a union of a complex subvariety and a linear subspace. This is a situation
when one could apply the extension lemma.

Step 5: The subvariety Z/ ¢ D x D'\F-1(F(A4")) is a graph of a g¢-sheeted

covering D'\F(A") — Sym9(D). By Lemma 1 above, its closure in D x D’ is
complex analytic. m
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