
Complex analytic spaces, lecture 17 M. Verbitsky

Complex analytic spaces
lecture 17: Remmert and Remmert-Stein theorems

Misha Verbitsky

IMPA, sala 236,

October 1, 2023, 13:30

1



Complex analytic spaces, lecture 17 M. Verbitsky

Remmert rank (reminder)

DEFINITION: Let x ∈ X be a point on a complex variety. The dimension

of X in x, denoted dim(X,x), is maximum of dimensions for all irreducible

components of X containing x; this matters only when X is not equidi-

mensional.

DEFINITION: Let F ∶ X Ð→ Y be a holomorphic map of complex vari-

eties. Define the Remmert rank of F in x ∈ X as RrkxF ∶= dim(X,x) −

dim(F −1(F (x)), x).

REMARK: Clearly, RrkxF = rkxF when x is smooth and F is a smooth

submersion to its image.

Theorem 1: The rank RrkxF is upper semicontinuous as a function of

x (that is, the set of x ∈X where Rrk > t is open).
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Remmert rank theorem (reminder)

THEOREM: Let F ∶ X Ð→ Y be a morphism of complex varieties, and k ∶=
supx∈X RrkxF. Then imF belongs to a union of complex varieties of
dimension ⩽ k, but not in a union of complex varieties of dimension ⩽ k − 1.
Proof. Step 1: Using induction, we may assume that this theorem is true
for any map F1 ∶ X1Ð→ Y1 for which dimX1 < dimX.
Step 2: The Remmert rank Rrk(F,x) is semicontinuous in x, hence it reaches
its maximum on an open subset. The constant rank theorem implies that F
is a smooth submersion on the set X0 of smooth points of X where rkdF ∣TxX
is maximal, and, moreover, for a sufficiently small U ⊂X0, the image F (U)
is a complex submanifold of dimension k.
Step 3: The complement A ∶= X/X0 is complex analytic and has dimension
< dimX. By induction assumption, the theorem is true for A. The Remmert
rank of F ∣A in a ∈ A is

dim(A,a) − dimF −1(F (a)) < dim(X,a) − dimF −1(F (a)) ⩽ k = sup
x∈X

RrkxF.

By induction assumption, F (A) belongs to a union of subvarieties of
dimension ⩽ k.

COROLLARY: (Remmert rank theorem:)
Let F ∶ X Ð→ Y be a holomorphic, surjective map of complex varieties. Then
dimY = supx∈X RrkxF.

3



Complex analytic spaces, lecture 17 M. Verbitsky

Reinhold Remmert (22 June 1930 - 9 March 2016)

August 1983, Oberwolfach, photo by Paul Halmos.
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Remmert and Remmert-Stein theorem

DEFINITION: A proper map is a continuous map such that a preimage of

a compact is always compact.

THEOREM: (Remmert-Stein theorem)

Let X be a complex variety, A ⊂ X a complex analytic subset, and Z an

irreducible complex analytic subset in X/A. Assume that dimZ > dimA. Then

the closure of Z is complex analytic in X.

EXERCISE: Deduce the Riemann removable singularity theorem from Remmert-

Stein, in the following form. Let f be a continuous function on C, holo-

morphic outside of a discrete set. Prove that f is holomorphic.

THEOREM: (Remmert proper map theorem)

Let F ∶ X Ð→ Y be a proper morphism of complex varieties. Then F (X) is

complex analytic in Y .
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Karl Stein (1913-2000)

Eichstätt, 1968
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Bounded holomorphic functions

Extension lemma: Let D ⊂ B be a divisor in a ball B ⊂ Cn, and f ∈ OB/D a
bounded holomorphic function on its complement. Then f can be extended
to a holomorphic function on B.
Proof. Step 1: Let u be a holomorphic functions vanishing on D. Then
fu2 vanishes on D, and its derivative also vanishes on D, hence fu2 is
holomorphic on B.
Step 2: This implies that f is meromorphic, f =

g
h. Using factoriality of the

ring of germs, we may assume that g and h are coprime, and h is not
divisible by the prime factors of g, denoted as gi. It remains to show that
h is invertible. On contrary, assume it is not invertible.
Step 3: Since h is coprime with g, it does not belong to the ideal (gi). Its
zero divisor Dh has dimension (n − 1), hence it cannot be properly contained
in a union of irreducible divisors Dgi. This implies that there is a point
x ∈ B where h vanishes and g does not vanish.
Step 3: In a neighbourhood of x, the fraction f =

g
h is not bounded, which

brings a contradiction.

REMARK: This statement is also true when D = A ∪Z, where A ⊂ B is
a divisor, and Z ⊂ B/A a divisor in B/A. Indeed, in this situation f can be
holomorphically extended to B/A, because Z is a divisor in B/A, and then on
B, because A ⊂ B is a divisor. We will often use the extension lemma in
this form.
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Extension lemma for coverings

REMARK: Let G be a finite group acting on Cn holomorphically. The quo-
tient X ∶= Cn/G is a complex variety, with OX being G-invariant holomorphic
functions on Cn. We shall prove this result later.

DEFINITION: Let B be an open ball. The symmetric power SymqB is a
complex variety (generally speaking, singular). Its points can be encoded by
unordered q-tuples α1, ...,αq ∈ B. The coordinates on this variety are given by
certain symmetric polynomials on the coordinates of αi.

Lemma 1: Let B1,B2 are open balls, A ⊂ B1 a union of a divisor D ⊂ B and a
divisor D′ ⊂ B/D, and Z ⊂ (B1/A)×B2 a closed submanifold, which is projected
to B2 as a q-sheeted unramified finite covering. Then the closure of Z in
B1 ×B2 is complex analytic.

Proof: We interpret Z as a graph of a multivalued holomorphic function
ϕ ∶ B1/AÐ→ SymqB2. Locally this map can be expressed as an unordered
collection of maps ζ1, ..., ζq ∶ B1/AÐ→B2. The coefficients of symmetric poly-
nomials of the coordinates of ζ1, ..., ζq are holomorphic functions on B1/A
which are bounded, hence, by extension lemma, can be extended to holomor-
phic functions on B1. Therefore, ϕ ∶ B1/AÐ→ SymqB2 can be extended to a
holomorphic function ϕ̃ ∶ B1Ð→ SymqB2. The closure of Z is the graph of
the corresponding multivalued function.
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Remmert and Remmert-Stein theorem (scheme of the proof)

The proof follows from an elaborate induction argument.

(RSm): the statement of Remmert-Stein is true when dimX ⩽m.

(Rm): the statement of Remmert proper map is true when dimX ⩽m.

Today we prove two statements, which together bring forth the inductive

argument.

A. (RSm) and (Rm−1) implies (Rm).

B. (Rm−1) implies (RSm).

9



Complex analytic spaces, lecture 17 M. Verbitsky

Remmert and Remmert-Stein theorem: implication A.

THEOREM: (Remmert proper map theorem)

Let F ∶ X Ð→ Y be a proper morphism of complex varieties. Then F (X) is

complex analytic in Y .

(RSm): the statement of Remmert-Stein is true when dimX ⩽m.

(Rm): the statement of Remmert proper map is true when dimX ⩽m.

Proof of implication A: (RSm) and (Rm−1) implies (Rm).

Step 1: Let X1 ⊂ X the set of all points where the Remmert rank Rrkx(F )

is not maximal. By constant rank theorem, F (X) is complex analytic in

a neighbourhood of any point y ∈ Y outside of F (X1) ∪ F (Xsing). Indeed,

the preimage of y is compact, and covered by a finite collection of open sets

where the constant rank theorem holds.

Step 2: Using Rm−1, we obtain that the images F (X1) and F (Xsing) are

complex-analytic. By Remmert rank theorem, its image has dimension ⩽

maxxRrkxF ∣(X1∪Xsing)
, and this inequality is never strict.
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Remmert and Remmert-Stein theorem: implication A (2).

Proof of implication A: (RSm) and (Rm−1) implies (Rm).

Step 1: Let X1 ⊂X the set of all points where the Remmert rank Rrkx(F ) is

not maximal. Then F (X) is complex analytic in a neighbourhood of any

point y ∈ Y outside of F (X1) ∪F (Xsing).

Step 2: Using Rm−1, we can assume that the images F (X1) and F (Xsing)

are complex-analytic.

Step 3: Let X ′ ∶=X/F −1(F (X1 ∪Xsing)). Remmert rank theorem gives

dimF (Xsing) = sup
x∈Xsing

rk (F ∣Xsing
, x) =

dimXsing − inf
x∈Xsing

dimF −1(F (x)) < rk sup
x∈X

rk(F,x) = dimF (X ′).

Similarly, dimF (X1) = supx∈X1
rk (F ∣X1

, x) < supx∈X rk(F,x) = dimF (X ′).

Step 4: Now Rm is implied by applying RSm to Z = F (X ′) and A =

F (X1) ∪F (Xsing).
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Remmert and Remmert-Stein theorem: implication B.

THEOREM: (Remmert-Stein theorem)

Let X be a complex variety, A ⊂ X a complex analytic subset, and Z an

irreducible complex analytic subset in X/A. Assume that dimZ > dimA. Then

the closure of Z is complex analytic in X.

(RSm): the statement of Remmert-Stein is true when dimX ⩽m.

(Rm): the statement of Remmert proper map is true when dimX ⩽m.

Proof of implication B: (Rm−1) implies (RSm).

Step 1: Using induction in dimA, we may assume that A is smooth. We

can also assume that Z is irreducible: indeed, the intersection of irreducible

components of Z has dimension < dimZ.

Step 2: Applying an appropriate holomorphic diffeomorphism and passing to

a neighbourhood of a given point a ∈ A, we may assume that X is a subvariety

of a ball B ⊂ Cn, and A ⊂ B is a linear subspace. Consider a linear function

on B, which is not identically zero on Z. Its intersection with Z is a divisor.

Using induction, we construct a linear projection F ∶ BÐ→CdimZ such

that F −1(0) ∩ (Z ∪A) is countable.
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Remmert and Remmert-Stein theorem: implication B (2).

Step 2: Applying an appropriate holomorphic diffeomorphism and passing to

a neighbourhood of a given point a ∈ A, we may assume that X is a subvariety

of a ball B ⊂ Cn, and A ⊂ B is a linear subspace. Consider a linear function

on B, which is not identically zero on Z. Its intersection with Z is a divisor.

Using induction, we construct a linear projection F ∶ BÐ→CdimZ such

that F −1(0) ∩ (Z ∪A) is 0-dimensional.

Step 3: Choose a polydisk D×D′ ⊂ B such that the projection F maps D×D′

to D′, and its restriction to (Z ∪A) ∩D ×D′ is proper and has countable

fibers. By taking a linear projection generic enough, we can always make sure

that its restriction to A is finite, and its restriction to Z has 0-dimensional

fibers. Then for all t ∈ D′/F (A) the intersection F −1(t) ∩ (Z) is 0-dimensional.

Choose the radius of D such that the intersection F −1(t) ∩ (Z ∪A) is empty.

Since the the distance from (Z ∪A) to the boundary of F −1(0) is bigger than

ε > 0, for all t in a sufficiently small neighbourhood of 0, the distance from

(Z ∪ A) to the boundary of F −1(0) is bigger than 1
2ε. Replacing D′ by this

neighbourhood, we make sure that (Z ∪A) ∩ ∂D ×D′ = ∅. Since F −1(t) ∩ (Z) is

0-dimensional complex analytic for all t ∈ D′/F (A) and belongs to a compact

subset of an open ball, this intersection is finite.
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Remmert and Remmert-Stein theorem: implication B (3).

At this point we replace Z, A, X by their intersection with D ×D′.

Step 4: Let A′ be the union of A and the set of all points where the differential

of F ∣Z is not an isomorphism, and Z′ ∶= Z/F −1(F (A′)). Then the map F ∣Z′ is

a finite covering. The intersection A′ ∩Z is the set of all z ∈ Z where dF ∣Z is

not of maximal rank, hence it is complex analytic in Z, of dimension ⩽m − 1.

By Rm−1, the image F (A′ ∩Z) is complex analytic. The same is true for

F (A), because A is a vector space and F is linear. We obtain that F (A′) is

a union of a complex subvariety and a linear subspace. This is a situation

when one could apply the extension lemma.

Step 5: The subvariety Z′ ⊂ D × D′/F −1(F (A′)) is a graph of a q-sheeted

covering D′/F (A′) Ð→ Symq(D). By Lemma 1 above, its closure in D ×D′ is

complex analytic.
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