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Spectrum of a ring (reminder)

DEFINITION: Spectrum of a ring R is the set SpecR if its prime ideals.

DEFINITION: Let J ⊂ R be an ideal, and V (J) ⊂ SpecR be the set of all

prime ideals containing J. Zariski topology on SpecR is topology where

all V (J) (and only those) are closed. Clearly, V (J1) ∩ V (J2) = V (J1 + J2) and

V (J1) ∪ V (J2) = V (J1J2), hence finite unions and intersections of closed sets

are closed.

DEFINITION: Let R be a ring, Spec(R) its spectum and f ∈ R. Affine

open set is an open set Uf ∶= SpecR/V(f). We identify Uf with Spec(R[f−1])
(localization in f).

EXERCISE: Prove that finite intersection of affine open sets is affine,

Uf ∩Ug = Ufg.

EXERCISE: Prove that affine open sets give a base of Zariski topology.
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Affine schemes (reminder)

DEFINITION: The sheaf O of regular functions on SpecR is defined as

the sheaf which satisfies O∣Uf
= R[f−1], with restriction maps taking a function

to its restriction to an open set.

EXERCISE: Prove that O∣Uf
= R[f−1] is sufficient to define a sheaf, which

is reconstructed uniquely from this property.

DEFINITION: A scheme is a ringed space (M,O), which is locally isomor-

phic to an affine scheme with the sheaf of regular functions. In this situation

sheaf O is called the structure sheaf of the scheme, or the sheaf of regular

functions.

REMARK: The structure sheaf may contain nilpotents. An algebraic

variety is a scheme which does not have nilpotents in its structure sheaf.

DEFINITION: Morphism of affine schemes is a morphism of ringed spaces

SpecAÐ→ SpecB induced by a ring homomorphism BÐ→A. Morphism of

schemes is a map of schemes which is given by morphisms of affine schemes

in local affine charts.
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Zariski main theorem

We have used the following theorem.
THEOREM: Let f ∶ X Ð→ Y be a bijective morphism of complex projective
manifolds. Then f is an isomorphism of algebraic varieties.

Its proof is deduced from two results.

THEOREM: f ∶ X Ð→ Y be a dominant morphism of irreducible algebraic
varieties. Assume that f−1(Y ) is one point for a Zariski dense subset of Y .
Then f induces an isomorphism of fraction fields k(Y )Ð→ k(X).

THEOREM: (Zariski main theorem)
Let f ∶ X Ð→ Y be a regular, birational morphism of algebraic manifolds. Then
either f is an open embedding, or there exists a divisor E ⊂X such that
its image has dimension ⩽ dimX − 2.

Zariski main theorem is deduced from another fundamental theorem

THEOREM: (Auslander-Buchsbaum theorem)
Let x ∈M be a smooth point on an algebraic variety, and OM,x its local ring.
Then OM,x is factorial.

Today we prove Auslander-Buchsbaum.
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Maurice Auslander (1926-1994)

In 1958, Masayoshi Nagata has proven that all regular local rings are factorial if

all 3-dimensional regular local rings are factorial. In 1959, Maurice Auslander

and David Buchsbaum proved that all 3-dimensional regular local rings are

factorial.

Masayoshi Nagata (1927-2008)
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David Buchsbaum and Maurice Auslander

David Buchsbaum (1929-2021) Maurice Auslander (1926-1994)

David and Betty Buchsbaum, photo by Paul Halmos, Feb. 18, 1974
New York, 1950. Indiana University in Bloomington
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Smooth points of complex varieties

PROPOSITION: Let x ∈X be a point in an n-dimensional complex analytic
variety, and mx its maximal ideal. Then dimC

mx

m2
x
⩾ n. Moreover, x is a smooth

point if and only if dimC
mx

m2
x
= n.

Proof. Step 1: Assume that dimC
mx

m2
x
= n. We need to show that X is

smooth. Since the statement is local, we may assume that X ⊂ Cm is a closed
analytic subvariety. Let J ⊂ Om be the ideal of X, and h1, ..., hs its generators.
A point z ∈ X is smooth if the space generated by dh1∣z , ..., dhs∣z ∈ T ∗

zCn is
m − n-dimensional. Let f1, ..., fn ∈ m generate mx

m2
x
. Then the ideal of z ∈ Cm

is generated by h1, ..., hs and f1, ..., fn; therefore, the space generated by
dh1∣z , ..., dhs∣z and f1, ..., fn is m-dimensional. This gives dim⟨dh1∣z , ..., dhs∣z ⟩ ⩾
m−n. Then dim⟨dh1∣z , ..., dhs∣z ⟩ =m−n if and only if x is smooth (Lecture 12,
page 14, step 2)

Step 2: If dimC
mx

m2
x
< n, by the same argument we obtain that dim⟨dh1∣z , ..., dhs∣z ⟩ =

t > m − n. Assume that the first t differentials are linearly independent:
dim⟨dh1∣z , ..., dht∣z ⟩ = t. Then the map H(z) ∶= (h1(z), ..., ht(z)) is a holomor-
phic submersion, and X is a subvariety in m − t-dimensional manifold.
This is impossible because t >m −n and m − t < n.
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Regular local rings

DEFINITION: Recall that the Krull dimension dimR of a ring R is n, where
n + 1 the length of the largest chain of prime ideals

p1 ⊊ p2 ⊊ ... ⊊ pn+1 ⊊ R.

DEFINITION: A regular local ring is a Noetherian local ring R with max-
imal ideal m and the residue field k ∶= R/m such that dimk

m
m2 = dimR.

REMARK: By the previous proposition, a local ring OX,x of a complex
variety is regular if and only if x is smooth.

The Noetherianity is needed because we want to apply the Nakayama lemma
as follows.

THEOREM: (Nakayama’s lemma)
Let M be a finitely generated module over a Noetherian local ring R, and
m its maximal ideal. Then M is generated over R by any collection of
elements m1, ....,mn ∈M which generate M

mM .

This statement has a corollary
THEOREM: (Krull lemma)
Let m be the maximal ideal in a Noetherian local ring. Then ⋃im

i = 0.
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m-adic topology

DEFINITION: Let G be a group equipped with a left translation-invariant
topology. A Cauchy sequence is a sequence {ai} such that for any open
set U ⊂ G, there exists a left translation Lg such that almost all elements of
{ai} belong to Lg(U). A group is called complete if all Cauchy sequences
converge. The completion of a group G is the set of equivalence classes
of Cauchy sequences.

DEFINITION: The m-adic topology on G is topology where open sets are
obtained by translations of mi for all i ∈ Z>0.

EXERCISE: Assume that R is Noetherian. Prove that the m-adic comple-
tion of a ring R is equal to lim← R/mi.

Claim 1: Let A be a Noetherian local ring, and I ⊂ A an ideal. Then I is
closed with respect to the adic topology.

Proof: The closure I of I in A is by definition equal to ⋂n(I +mn). Then for
any x ∈ I, its image in A/I belongs to ⋂nmn. Krull lemma implies that x ∈ I.

COROLLARY: In these assumptions, one has A ∩ (I ⋅ Â) = I, where Â is
the completion of A.
Proof: Indeed, I ⋅ Â is contained in the closure of I in Â.
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Completions of regular local rings are rings of power series

PROPOSITION: Let R be a local ring, m its maximal ideal, and R̂ the m-

adic completion. Assume that R contains its residue field R/m as a subfield.

Then R̂ is isomorphic to a formal power series ring k[[t1, ..., tn]] if and

only if R is regular.

Proof. Step 1: Assume that m
m2 is n-dimensional, and let f1, ..., fn ∈ m be

elements which generate m
m2. By Nakayama lemma, f1, ..., fn generate m.

Step 2: Denote by Pd ⊂ R the vector subspace R generated degree d homo-

geneous polynomials on f1, ..., fn. Clearly, Pd generate md

md+1. Therefore, the

natural map ⊕n
i=0PiÐ→R/mn+1 is surjective. We obtained that the image

P{fi} of k[f1, ..., fn] in R is dense in m-adic topology.

Step 3: By Krull lemma, R is naturally embedded to R̂ (prove it). Since the

Krull dimension of a local ring is equal to the degree of its Hilbert polynomial

hR(n) = dimk
mn

mn+1, we obtain dimP{fi} = dimR = dim R̂.

Step 4: This implies that dimk[[t1, ..., tn]] = n, and this ring is regular.
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Completions of regular local rings are rings of power series

Step 5: Suppose that R̂ ≅ k[[t1, ..., tn]]. Then

dim R̂ = dimk[[t1, ..., tn]] = n = dim
m

m2
.

Since n = dim R̂ = dimR, we obtain that dimR = n and R is regular.

Step 6: Conversely, assume that R is regular. Since R̂ is a completion of

P{fi}, it would suffice to show that P{fi} is a polynomial algebra. However,

dimP{fi} = dimR = n (Step 3). If P{fi} is not a polynomial algebra, it is

isomorphic to k[t1, ..., tn]/J, for a non-zero ideal J, and then dimP{fi} < n,

contradicting dimP{fi} = dimR = n. Then P{fi} is a polynomial algebra, and

its completion R̂ = P̂{fi} is isomorphic to k[[t1, ..., tn]].
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Divisibility in the ring of germs

Lemma 1: Let x ∈ X be a smooth point on an algebraic variety, OX,x the

ring of germs of holomorhic functions, and O
reg
X,x the ring of germs of regular

functions. Assume that f ∈ Oreg
X,x ⊂ OX,x is divisible by g ∈ Oreg

X,x ⊂ OX,x in OX,x.

Then f is divisible by g in O
reg
X,x.

Proof. Step 1: Since O
reg
X,x is dense in OX,x, the function h ∶= f/g is a limit

h = limihi, where hi ∈ Oreg
X,x. Then f − hig ∈ mi.

Step 2: Consider the local ring A ∶=
O
reg
X,x

(g) , and let n be its maximal ideal.

Denote by f̌ the image of f in this ring. Step 1 gives f −hig ∈ mi. This implies

that f̌ ∈ ⋂i n
i; by Krull’s lemma, ⋂i n

i = 0, which implies f ∈ (g).
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Proof of Auslander-Buchsbaum theorem

Factoriality of O
reg
X,x is immediately implied by the following result.

THEOREM: Let x ∈X be a smooth point on an algebraic variety, and O
reg
X,x

the ring of germs of regular functions. Consider f, g,h ∈ O
reg
X,x such that f

divides gh (we denote it as f ∣gh). Then f = g1h1, where g1∣g and h1∣h.

Proof. Step 1: The ring of germs of holomorhic functions OX,x is factorial

(Lecture 5). Using factoriality, we decompose g and h in OX,x as g = g′d,

f = f ′d, where d is their greatest common divisor. Then fg′ = gf ′. Choose,

as above, sequences {g′i},{f
′
i} ⊂ O

reg
X,x converging to g′, f ′. Then fg′n − gf ′n =

f(g′ − g′n) − g(f ′ − f ′n) ∈ (f, g)mn, where (f, g) is the ideal generated by (f, g).

Step 2: The equation fg′n − gf ′n ∈ (f, g)mn was proven in OX,x, but in fact

it is true in O
reg
X,x as well. Claim 1 implies that for any ideal in I ⊂ O

reg
X,x,

we have O
reg
X,x ∩ (I ⋅ OX,x) = I. Applying this to I = (f, g)mn, we obtain that

fg′n − gf ′n = −fsn + grn, where sn, rn ∈ mn are elements of O
reg
X,x.
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Proof of Auslander-Buchsbaum theorem (2)

Step 3: Replacing g by dg′ and and f by df ′ and dividing by d, the equation
fg′n − gf ′n = −fsn + grn becomes f ′g′n − g′f ′n = −f ′sn + g′rn, equivalently, f ′(g′n + sn) =
g′(rn + f ′n). Since f ′, g′ are coprime, this implies that (g′n + sn) is divisible by
g′ and (rn + f ′n) is givisible by f ′.

Step 4: This gives (rn + f ′n) = uf ′. Choose n such that f ′ ≠ 0 mod mn. Since
f ′ = f ′n mod mn, the equation f ′ = uf ′ mod mn implies that u ∉ m, hence u is
invertible.

Step 5: We have shown that f ′
rn+f ′n

is invertible, hence F ′ ∶= rn + f ′n divides

f . Similarly, G′ ∶= sn + g′n divides g. Lemma 1 implies that F ′∣f and G′∣g in
O
reg
X,x. The elements G′ and F ′ are coprime in OX,x, because g′ and f ′ are

coprime. Let D ∈ O
reg
X,x be an element such that f = DF ′. From f ∣DG′h we

obtain F ′∣G′h. Since F ′ is coprime with G′, the function F ′ divides h in OX,x.
Applying Lemma 1 again, we see that f =DF ′, where D∣g and F ′∣h in O

reg
X,x.

REMARK: We used factoriality of OX,x. However, we could give a purely
algebraic proof if we show that the ring of power series is factorial, and
apply the same argument to the completion of O

reg
X,x, which is isomorphic to

C[[t1, ..., tn]], instead of OX,x ≅ On.
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