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Spectrum of a ring (reminder)
DEFINITION: Spectrum of a ring R is the set SpecR if its prime ideals.

DEFINITION: Let Jc R be an ideal, and V(J) c SpecR be the set of all
prime ideals containing J. Zariski topology on SpecR is topology where
all V(J) (and only those) are closed. Clearly, V(J1)nV(J) =V (J1 +Jp) and
V(J1)uV(Jy) =V (J1J>), hence finite unions and intersections of closed sets
are closed.

DEFINITION: Let R be a ring, Spec(R) its spectum and f ¢ R. Affine
open set is an open set Uy := SpecR\V(f). We identify Uy with Spec(R[f1])
(localization in f).

EXERCISE: Prove that finite intersection of affine open sets is affine,
Uf N Ug = Ufg'

EXERCISE: Prove that affine open sets give a base of Zariski topology.
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Affine schemes (reminder)

DEFINITION: The sheaf © of regular functions on SpecR is defined as
the sheaf which satisfies @‘Uf = R[f~1], with restriction maps taking a function
to its restriction to an open set.

EXERCISE: Prove that O|y, = R[f1] is sufficient to define a sheaf, which
IS reconstructed uniquely from this property.

DEFINITION: A scheme is a ringed space (M,©), which is locally isomor-
phic to an affine scheme with the sheaf of regular functions. In this situation
sheaf © is called the structure sheaf of the scheme, or the sheaf of regular
functions.

REMARK: The structure sheaf may contain nilpotents. AnNn algebraic
variety is a scheme which does not have nilpotents in its structure sheaf.

DEFINITION: Morphism of affine schemes is a morphism of ringed spaces
Spec A — SpecB induced by a ring homomorphism B— A. Morphism of
schemes is a map of schemes which is given by morphisms of affine schemes

in local affine charts.
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Zariski main theorem

We have used the following theorem.
THEOREM: Let f: X — Y be a bijective morphism of complex projective
manifolds. Then f is an isomorphism of algebraic varieties.

Its proof is deduced from two results.

THEOREM: f: X —Y be a dominant morphism of irreducible algebraic
varieties. Assume that f-1(Y) is one point for a Zariski dense subset of Y.
Then f induces an isomorphism of fraction fields k(Y) — k(X).

THEOREM: (Zariski main theorem)

Let f: X — Y be a regular, birational morphism of algebraic manifolds. Then
either f is an open embedding, or there exists a divisor £ c X such that
its image has dimension <dim.X - 2.

Zariski main theorem is deduced from another fundamental theorem

THEOREM: (Auslander-Buchsbaum theorem)
Let x ¢ M be a smooth point on an algebraic variety, and @M,x its local ring.
Then Oy, is factorial.

Today we prove Auslander-Buchsbaum.
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Maurice Auslander (1926-1994)

In 1958, Masayoshi Nagata has proven that all regular local rings are factorial if

all 3-dimensional regular local rings are factorial. In 1959, Maurice Auslander

and David Buchsbaum proved that all 3-dimensional regular local rings are
factorial.

Masayoshi Nagata (1927-2008)
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David Buchsbaum and Maurice Auslander

David Buchsbaum (1929-2021) Maurice Auslander (1926-1994)

David and Betty Buchsbaum, photo by Paul Halmos, Feb. 18, 1974
New York, 1950. Indiana University in Bloomington



Complex analytic spaces, lecture 19 M. Verbitsky

Smooth points of complex varieties

PROPOSITION: Let £ € X be a point in an n-dimensional complex analytic
variety, and m, its maximal ideal. Then dim@%g >n. Moreover, x IS a smooth

point if and only if dim@%g =n.

Proof. Step 1: Assume that dim@% =n. We need to show that X is

smooth. Since the statement is local, we may assume that X c C™ is a closed
analytic subvariety. Let Jc ©,, be the ideal of X, and hq,...,hs its generators.
A point z € X is smooth if the space generated by dhi|;,...,dhs|, € T;C™ is

m — n-dimensional. Let fq,..., f,, € m generate % Then the ideal of z ¢ C™

is generated by hq,...,hg and fq,..., fn; thereforé, the space generated by
dhilz,...,dhs|, and fq,..., f Is m-dimensional. This gives dim(dhq|;,...,dhg|;) >
m-n. Then dim(dhi|z,...,dhs|;) =m—-n if and only if z is smooth (Lecture 12,
page 14, step 2)

Step 2: If dim@% <n, by the same argument we obtain that dim(dh1|,,...,dhg|,) =

t > m—-n. Assufne that the first t differentials are linearly independent:
dim(dh1|z,...,dht|;) =t. Then the map H(z):=(h1(2),...,ht(z)) IS a holomor-
phic submersion, and X is a subvariety in m - t-dimensional manifold.

This is impossible because t>m-n and m-t<n. n
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Regular local rings

DEFINITION: Recall that the Krull dimension dim R of a ring R is n, where
n+ 1 the length of the largest chain of prime ideals

PLEP2E ... EPps1 & R

DEFINITION: A regular local ring is a Noetherian local ring R with max-
imal ideal m and the residue field k:= R/m such that dimk% =dim R.

REMARK: By the previous proposition, a local ring Oy, of a complex
variety is regular if and only if z is smooth.

The Noetherianity is heeded because we want to apply the Nakayama lemma
as follows.

THEOREM: (Nakayama’s lemma)
Let M be a finitely generated module over a Noetherian local ring R, and
m its maximal ideal. Then M is generated over R by any collection of

elements my,....,my € M which generate 2.

This statement has a corollary

THEOREM: (Krull lemma)

Let m be the maximal ideal in a Noetherian local ring. Then |J;m’ = 0.
8
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m-adic topology

DEFINITION: Let G be a group equipped with a left translation-invariant
topology. A Cauchy sequence is a sequence {a;} such that for any open
set U c G, there exists a left translation L, such that almost all elements of
{a;} belong to L4(U). A group is called complete if all Cauchy sequences
converge. The completion of a group G is the set of equivalence classes
of Cauchy sequences.

DEFINITION: The m-adic topology on G is topology where open sets are
obtained by translations of mt¢ for all i€ Z>0,

EXERCISE: Assume that R is Noetherian. Prove that the m-adic comple-
tion of a ring R is equal to Iim R/mt,

Claim 1: Let A be a Noetherian local ring, and I c A an ideal. Then [ is
closed with respect to the adic topology.

Proof: The closure I of I in A is by definition equal to N,(I +m"). Then for
any x eI, its image in A/I belongs to N, m". Krull lemma implies that zel. =

COROLLARY: In these assumptions, one has An(I-A) =1, where A is
the completion of A.
Proof: Indeed, I-A is contained in the closure of I in A. m

9



Complex analytic spaces, lecture 19 M. Verbitsky

Completions of regular local rings are rings of power series

PROPOSITION: Let R be a local ring, m its maximal ideal, and R the m-
adic completion. Assume that R contains its residue field R/m as a subfield.
Then R is isomorphic to a formal power series ring k[[t1,...,t,]] if and
only if R is regular.

Proof. Step 1: Assume that % is n-dimensional, and let fq,...,fn, € m be

elements which generate % By Nakayama lemma, f1,..., fn generate m.
Step 2: Denote by P;c R the vector subspace R generated degree d homo-
geneous polynomials on fq,..., fn. Clearly, P; generate m‘g—i. Therefore, the
natural map @?:O PZ-—>R/m"+1 IS surjective. We obtained that the image

Pgsy of k[f1,...,fn] In R is dense in m-adic topology.

Step 3: By Krull lemma, R is naturally embedded to R (prove it). Since the
Krull dimension of a local ring is equal to the degree of its Hilbert polynomial
hg(n) =dim, 2 we obtain dim P, =dim R =dim R.

mn+1 ’

Step 4: This implies that dimk[[tq,...,tn]] =n, and this ring is regular.
10
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Completions of regular local rings are rings of power series

Step 5: Suppose that R=k[[t1,...,tn]]. Then

. ~ . . m
dimR=dimk[[tq1,...,tn]] =n=dim -

Since n=dim R=dim R, we obtain that dimR=n and R is regular.

Step 6: Conversely, assume that R is regular. Since R is a completion of
P{fi}' it would suffice to show that P{fi} iIs a polynomial algebra. However,
dimP(sy = dimR = n (Step 3). If Pgsy is not a polynomial algebra, it is
isomorphic to k[tq,...,ty]/J, for a non-zero ideal J, and then dim Py < m,
contradicting dim P{fi} =dimR=n. Then P{fz} IS a polynomial algebra, and
its completion R= P, is isomorphic to k[[ty,...,t,]]. m
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Divisibility in the ring of germs

Lemma 1: Let £ € X be a smooth point on an algebraic variety, @X,x the
ring of germs of holomorhic functions, and @reg the ring of germs of regular

reg

functions. Assume that fe Oy 7 c Ox, is divisible by g € O, ZC@XQU in Ox ;.

Then f is divisible by g in @Teg

Proof. Step 1: Since @regx is dense in Oy ,, the function h:= f/g is a limit
h=1im;h;, where h; e O%9. Then f - hg e mi.

reg

Step 2: Consider the local ring A := %, and let n be its maximal ideal.
Denote by f the image of f in this ring. Step 1 gives f-h,;gcmt. This implies
that fen;n; by Krull's lemma, N;n* =0, which implies fe(g). m
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Proof of Auslander-Buchsbaum theorem

Factoriality of ©? is immediately implied by the following result.
THEOREM: Let z¢ X be a smooth point on an algebraic variety, and @reg

the ring of germs of regular functions. Consider f,g,h € @rei such that f
divides gh (we denote it as flgh). Then f=g1h1, wWhere g1|g and hilh.

Proof. Step 1: The ring of germs of holomorhic functions Oy , is factorial
(Lecture 5). Using factoriality, we decompose g and h in Ox, as g = ¢d,
f = f'd, where d is their greatest common divisor. Then fqg’' = gf’. Choose,
as above, sequences {g!},{f/} c (9";?6 converging to ¢',f'. Then fg/, -gf! =
f(g"—agn)-9g(f" - f,) e (f,gm™, where (f,g) is the ideal generated by (f,g).

Step 2: The equation fg;, - gf5 € (f,g)m™ was proven in Ox 5 but in fact
it is true in @Tei as well. Claim 1 implies that for any ideal in I c (9”39

we have O n(I-Ox,)=1. Applying this to I = (f,g)m", we obtain that
fan—gfn = fSn"‘ngv where s,,r, em" are elements of O 7.

7
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Proof of Auslander-Buchsbaum theorem (2)

Step 3: Replacing g by dg’ and and f by df’ and dividing by d, the equation
fan—9fh=-Ffsn+grn becomes f'g, —g'fi, = —f'sn+g'rn, equivalently, f'(gy, +sn) =
g'(rn+ f1,). Since f’,g' are coprime, this implies that (g;, + s;,) is divisible by
g and (rn+ f},) is givisible by f’.

Step 4: This gives (rn + f5,) =uf’. Choose n such that f/+0 mod m”. Since
f''= fI mod m”, the equation f/=uf’ modm” implies that w ¢ m, hence u is
invertible.

Step 5: We have shown that I is invertible, hence F':=r, + f] divides

o+l

f. Similarly, G’ := s, + gy, divides g. Lemma 1 implies that F’'|f and G'|g in

(97;?6 The elements G’ and F’ are coprime in Ox,, because g’ and f’ are

coprime. Let D e Oy be an element such that f = DF’. From f|DG'h we
obtain F’|G'h. Since F’ is coprime with G', the function F’ divides h in Ox .

Applying Lemma 1 again, we see that f = DF’, where Dl|g and F’|h in @Tegj m

REMARK: We used factoriality of @X’x. However, we could give a purely
algebraic proof if we show that the ring of power series is factorial, and
apply the same argument to the completion of @Efg; which is isomorphic to
Cl[t1,-.-,tn]], instead of Ox , = Oy,
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