Complex analytic spaces

lecture 19: Regular local rings and Auslander-Buchsbaum theorem

Misha Verbitsky

IMPA, sala 236,

October 11, 2023, 17:00

Spectrum of a ring (reminder)

DEFINITION: Spectrum of a ring R is the set Spec R if its prime ideals.

DEFINITION: Let $J \,\subset R$ be an ideal, and $V(J) \subset \operatorname{Spec} R$ be the set of all prime ideals containing J. **Zariski topology** on $\operatorname{Spec} R$ is topology where all V(J) (and only those) are closed. Clearly, $V(J_1) \cap V(J_2) = V(J_1 + J_2)$ and $V(J_1) \cup V(J_2) = V(J_1J_2)$, hence finite unions and intersections of closed sets are closed.

DEFINITION: Let R be a ring, Spec(R) its spectum and $f \in R$. Affine open set is an open set $U_f := \text{Spec } R \setminus V_{(f)}$. We identify U_f with $\text{Spec}(R[f^{-1}])$ (localization in f).

EXERCISE: Prove that finite intersection of affine open sets is affine, $U_f \cap U_g = U_{fg}$.

EXERCISE: Prove that affine open sets give a base of Zariski topology.

Affine schemes (reminder)

DEFINITION: The sheaf \mathcal{O} of regular functions on Spec *R* is defined as the sheaf which satisfies $\mathcal{O}|_{U_f} = R[f^{-1}]$, with restriction maps taking a function to its restriction to an open set.

EXERCISE: Prove that $\mathcal{O}|_{U_f} = R[f^{-1}]$ is sufficient to define a sheaf, which is reconstructed uniquely from this property.

DEFINITION: A scheme is a ringed space (M, Θ) , which is locally isomorphic to an affine scheme with the sheaf of regular functions. In this situation sheaf Θ is called **the structure sheaf** of the scheme, or **the sheaf of regular** functions.

REMARK: The structure sheaf may contain nilpotents. An algebraic variety is a scheme which does not have nilpotents in its structure sheaf.

DEFINITION: Morphism of affine schemes is a morphism of ringed spaces Spec $A \rightarrow$ Spec B induced by a ring homomorphism $B \rightarrow A$. Morphism of schemes is a map of schemes which is given by morphisms of affine schemes in local affine charts.

Zariski main theorem

We have used the following theorem.

THEOREM: Let $f: X \rightarrow Y$ be a bijective morphism of complex projective manifolds. Then f is an isomorphism of algebraic varieties.

Its proof is deduced from two results.

THEOREM: $f: X \to Y$ be a dominant morphism of irreducible algebraic varieties. Assume that $f^{-1}(Y)$ is one point for a Zariski dense subset of Y. **Then** f **induces an isomorphism of fraction fields** $k(Y) \to k(X)$.

THEOREM: (Zariski main theorem)

Let $f: X \longrightarrow Y$ be a regular, birational morphism of algebraic manifolds. Then either f is an open embedding, or there exists a divisor $E \subset X$ such that its image has dimension $\leq \dim X - 2$.

Zariski main theorem is deduced from another fundamental theorem

THEOREM: (Auslander-Buchsbaum theorem)

Let $x \in M$ be a smooth point on an algebraic variety, and $\mathcal{O}_{M,x}$ its local ring. Then $\mathcal{O}_{M,x}$ is factorial.

Today we prove Auslander-Buchsbaum.

Maurice Auslander (1926-1994)

In 1958, Masayoshi Nagata has proven that all regular local rings are factorial if all 3-dimensional regular local rings are factorial. In 1959, Maurice Auslander and David Buchsbaum proved that all 3-dimensional regular local rings are factorial.

Masayoshi Nagata (1927-2008)

David Buchsbaum and Maurice Auslander

David Buchsbaum (1929-2021)

David and Betty Buchsbaum, New York, 1950.

Maurice Auslander (1926-1994)

photo by Paul Halmos, Feb. 18, 1974 Indiana University in Bloomington

Smooth points of complex varieties

PROPOSITION: Let $x \in X$ be a point in an *n*-dimensional complex analytic variety, and \mathfrak{m}_x its maximal ideal. Then $\dim_{\mathbb{C}} \frac{\mathfrak{m}_x}{\mathfrak{m}_x^2} \ge n$. Moreover, x is a smooth point if and only if $\dim_{\mathbb{C}} \frac{\mathfrak{m}_x}{\mathfrak{m}_x^2} = n$.

Proof. Step 1: Assume that $\dim_{\mathbb{C}} \frac{\mathfrak{m}_x}{\mathfrak{m}_x^2} = n$. We need to show that X is smooth. Since the statement is local, we may assume that $X \in \mathbb{C}^m$ is a closed analytic subvariety. Let $J \in \mathcal{O}_m$ be the ideal of X, and h_1, \dots, h_s its generators. A point $z \in X$ is smooth if the space generated by $dh_1|_z, \dots, dh_s|_z \in T_z^*\mathbb{C}^n$ is m - n-dimensional. Let $f_1, \dots, f_n \in \mathfrak{m}$ generate $\frac{\mathfrak{m}_x}{\mathfrak{m}_x^2}$. Then the ideal of $z \in \mathbb{C}^m$ is generated by $dh_1|_z, \dots, dh_s|_z$ and f_1, \dots, f_n is m-dimensional. This gives $\dim(dh_1|_z, \dots, dh_s|_z) \ge m - n$. Then $\dim(dh_1|_z, \dots, dh_s|_z) = m - n$ if and only if x is smooth (Lecture 12, page 14, step 2)

Step 2: If $\dim_{\mathbb{C}} \frac{\mathfrak{m}_x}{\mathfrak{m}_x^2} < n$, by the same argument we obtain that $\dim \langle dh_1 | z, ..., dh_s | z \rangle = t > m - n$. Assume that the first t differentials are linearly independent: $\dim \langle dh_1 | z, ..., dh_t | z \rangle = t$. Then the map $H(z) \coloneqq (h_1(z), ..., h_t(z))$ is a holomorphic submersion, and X is a subvariety in m - t-dimensional manifold. This is impossible because t > m - n and m - t < n.

Regular local rings

DEFINITION: Recall that the Krull dimension dim R of a ring R is n, where n+1 the length of the largest chain of prime ideals

 $\mathfrak{p}_1 \not\subseteq \mathfrak{p}_2 \not\subseteq \ldots \not\subseteq \mathfrak{p}_{n+1} \not\subseteq R.$

DEFINITION: A regular local ring is a Noetherian local ring R with maximal ideal \mathfrak{m} and the residue field $k \coloneqq R/\mathfrak{m}$ such that $\dim_k \frac{\mathfrak{m}}{\mathfrak{m}^2} = \dim R$.

REMARK: By the previous proposition, a local ring $\mathcal{O}_{X,x}$ of a complex variety is regular if and only if x is smooth.

The Noetherianity is needed because we want to apply the Nakayama lemma as follows.

THEOREM: (Nakayama's lemma)

Let M be a finitely generated module over a Noetherian local ring R, and \mathfrak{m} its maximal ideal. Then M is generated over R by any collection of elements $m_1, ..., m_n \in M$ which generate $\frac{M}{\mathfrak{m}M}$.

This statement has a corollary **THEOREM: (Krull lemma)**

Let \mathfrak{m} be the maximal ideal in a Noetherian local ring. Then $\bigcup_i \mathfrak{m}^i = 0$.

M. Verbitsky

m-adic topology

DEFINITION: Let *G* be a group equipped with a left translation-invariant topology. **A Cauchy sequence** is a sequence $\{a_i\}$ such that for any open set $U \subset G$, there exists a left translation L_g such that almost all elements of $\{a_i\}$ belong to $L_g(U)$. A group is called **complete** if all Cauchy sequences converge. **The completion of a group** *G* is the set of equivalence classes of Cauchy sequences.

DEFINITION: The m-adic topology on G is topology where open sets are obtained by translations of \mathfrak{m}^i for all $i \in \mathbb{Z}^{>0}$.

EXERCISE: Assume that R is Noetherian. Prove that the m-adic completion of a ring R is equal to $\lim R/\mathfrak{m}^i$.

Claim 1: Let A be a Noetherian local ring, and $I \subset A$ an ideal. Then I is closed with respect to the adic topology.

Proof: The closure \overline{I} of I in A is by definition equal to $\bigcap_n(I + \mathfrak{m}^n)$. Then for any $x \in \overline{I}$, its image in A/I belongs to $\bigcap_n \mathfrak{m}^n$. Krull lemma implies that $x \in I$.

COROLLARY: In these assumptions, one has $A \cap (I \cdot \hat{A}) = I$, where \hat{A} is the completion of A. **Proof:** Indeed, $I \cdot \hat{A}$ is contained in the closure of I in \hat{A} .

Completions of regular local rings are rings of power series

PROPOSITION: Let R be a local ring, \mathfrak{m} its maximal ideal, and \hat{R} the \mathfrak{m} -adic completion. Assume that R contains its residue field R/\mathfrak{m} as a subfield. Then \hat{R} is isomorphic to a formal power series ring $k[[t_1,...,t_n]]$ if and only if R is regular.

Proof. Step 1: Assume that $\frac{\mathfrak{m}}{\mathfrak{m}^2}$ is *n*-dimensional, and let $f_1, ..., f_n \in \mathfrak{m}$ be elements which generate $\frac{\mathfrak{m}}{\mathfrak{m}^2}$. By Nakayama lemma, $f_1, ..., f_n$ generate \mathfrak{m} .

Step 2: Denote by $P_d \,\subset R$ the vector subspace R generated degree d homogeneous polynomials on $f_1, ..., f_n$. Clearly, P_d generate $\frac{\mathfrak{m}^d}{\mathfrak{m}^{d+1}}$. Therefore, the natural map $\bigoplus_{i=0}^n P_i \longrightarrow R/\mathfrak{m}^{n+1}$ is surjective. We obtained that the image $P_{\{f_i\}}$ of $k[f_1, ..., f_n]$ in R is dense in m-adic topology.

Step 3: By Krull lemma, R is naturally embedded to \hat{R} (prove it). Since the Krull dimension of a local ring is equal to the degree of its Hilbert polynomial $h_R(n) = \dim_k \frac{\mathfrak{m}^n}{\mathfrak{m}^{n+1}}$, we obtain $\dim_{\{f_i\}} = \dim R = \dim \hat{R}$.

Step 4: This implies that dim $k[[t_1, ..., t_n]] = n$, and this ring is regular.

Completions of regular local rings are rings of power series

Step 5: Suppose that $\hat{R} \cong k[[t_1, ..., t_n]]$. Then

$$\dim \widehat{R} = \dim k[[t_1, ..., t_n]] = n = \dim \frac{\mathfrak{m}}{\mathfrak{m}^2}.$$

Since $n = \dim \hat{R} = \dim R$, we obtain that $\dim R = n$ and R is regular.

Step 6: Conversely, assume that R is regular. Since \hat{R} is a completion of $P_{\{f_i\}}$, it would suffice to show that $P_{\{f_i\}}$ is a polynomial algebra. However, dim $P_{\{f_i\}}$ = dim R = n (Step 3). If $P_{\{f_i\}}$ is not a polynomial algebra, it is isomorphic to $k[t_1, ..., t_n]/J$, for a non-zero ideal J, and then dim $P_{\{f_i\}} < n$, contradicting dim $P_{\{f_i\}}$ = dim R = n. Then $P_{\{f_i\}}$ is a polynomial algebra, and its completion $\hat{R} = \hat{P}_{\{f_i\}}$ is isomorphic to $k[[t_1, ..., t_n]]$.

Divisibility in the ring of germs

Lemma 1: Let $x \in X$ be a smooth point on an algebraic variety, $\mathcal{O}_{X,x}$ the ring of germs of holomorhic functions, and $\mathcal{O}_{X,x}^{reg}$ the ring of germs of regular functions. Assume that $f \in \mathcal{O}_{X,x}^{reg} \subset \mathcal{O}_{X,x}$ is divisible by $g \in \mathcal{O}_{X,x}^{reg} \subset \mathcal{O}_{X,x}$ in $\mathcal{O}_{X,x}$. **Then** f is divisible by g in $\mathcal{O}_{X,x}^{reg}$.

Proof. Step 1: Since $\mathcal{O}_{X,x}^{reg}$ is dense in $\mathcal{O}_{X,x}$, the function $h \coloneqq f/g$ is a limit $h = \lim_i h_i$, where $h_i \in \mathcal{O}_{X,x}^{reg}$. Then $f - h_i g \in \mathfrak{m}^i$.

Step 2: Consider the local ring $A := \frac{\bigcirc_{X,x}^{reg}}{(g)}$, and let \mathfrak{n} be its maximal ideal. Denote by \check{f} the image of f in this ring. Step 1 gives $f - h_i g \in \mathfrak{m}^i$. This implies that $\check{f} \in \bigcap_i \mathfrak{n}^i$; by Krull's lemma, $\bigcap_i \mathfrak{n}^i = 0$, which implies $f \in (g)$.

Proof of Auslander-Buchsbaum theorem

Factoriality of $\mathcal{O}_{X,x}^{reg}$ is immediately implied by the following result. **THEOREM:** Let $x \in X$ be a smooth point on an algebraic variety, and $\mathcal{O}_{X,x}^{reg}$ the ring of germs of regular functions. Consider $f, g, h \in \mathcal{O}_{X,x}^{reg}$ such that fdivides gh (we denote it as f|gh). Then $f = g_1h_1$, where $g_1|g$ and $h_1|h$.

Proof. Step 1: The ring of germs of holomorhic functions $\mathcal{O}_{X,x}$ is factorial (Lecture 5). Using factoriality, we decompose g and h in $\mathcal{O}_{X,x}$ as g = g'd, f = f'd, where d is their greatest common divisor. Then fg' = gf'. Choose, as above, sequences $\{g'_i\}, \{f'_i\} \in \mathcal{O}_{X,x}^{reg}$ converging to g', f'. Then $fg'_n - gf'_n = f(g' - g'_n) - g(f' - f'_n) \in (f,g)\mathfrak{m}^n$, where (f,g) is the ideal generated by (f,g).

Step 2: The equation $fg'_n - gf'_n \in (f,g)\mathfrak{m}^n$ was proven in $\mathcal{O}_{X,x}$, but in fact it is true in $\mathcal{O}_{X,x}^{reg}$ as well. Claim 1 implies that for any ideal in $I \subset \mathcal{O}_{X,x}^{reg}$, we have $\mathcal{O}_{X,x}^{reg} \cap (I \cdot \mathcal{O}_{X,x}) = I$. Applying this to $I = (f,g)\mathfrak{m}^n$, we obtain that $fg'_n - gf'_n = -fs_n + gr_n$, where $s_n, r_n \in \mathfrak{m}^n$ are elements of $\mathcal{O}_{X,x}^{reg}$.

Proof of Auslander-Buchsbaum theorem (2)

Step 3: Replacing g by dg' and and f by df' and dividing by d, the equation $fg'_n - gf'_n = -fs_n + gr_n$ becomes $f'g'_n - g'f'_n = -f's_n + g'r_n$, equivalently, $f'(g'_n + s_n) = g'(r_n + f'_n)$. Since f', g' are coprime, this implies that $(g'_n + s_n)$ is divisible by g' and $(r_n + f'_n)$ is givisible by f'.

Step 4: This gives $(r_n + f'_n) = uf'$. Choose *n* such that $f' \neq 0 \mod \mathfrak{m}^n$. Since $f' = f'_n \mod \mathfrak{m}^n$, the equation $f' = uf' \mod \mathfrak{m}^n$ implies that $u \notin \mathfrak{m}$, hence *u* is invertible.

Step 5: We have shown that $\frac{f'}{r_n+f'_n}$ is invertible, hence $F' \coloneqq r_n + f'_n$ divides f. Similarly, $G' \coloneqq s_n + g'_n$ divides g. Lemma 1 implies that F'|f and G'|g in $\mathcal{O}_{X,x}^{reg}$. The elements G' and F' are coprime in $\mathcal{O}_{X,x}$, because g' and f' are coprime. Let $D \in \mathcal{O}_{X,x}^{reg}$ be an element such that f = DF'. From f|DG'h we obtain F'|G'h. Since F' is coprime with G', the function F' divides h in $\mathcal{O}_{X,x}$. Applying Lemma 1 again, we see that f = DF', where D|g and F'|h in $\mathcal{O}_{X,x}^{reg}$.

REMARK: We used factoriality of $\mathcal{O}_{X,x}$. However, we could give a purely algebraic proof if we show that the ring of power series is factorial, and apply the same argument to the completion of $\mathcal{O}_{X,x}^{reg}$, which is isomorphic to $\mathbb{C}[[t_1,...,t_n]]$, instead of $\mathcal{O}_{X,x} \cong \mathcal{O}_n$.