Complex analytic spaces

lecture 20: Degree of a map and degree of a field extension

Misha Verbitsky

IMPA, sala 236,

October 16, 2023, 13:30

Spectrum of a ring (reminder)

DEFINITION: Spectrum of a ring R is the set Spec R if its prime ideals.

DEFINITION: Let $J \,\subset R$ be an ideal, and $V(J) \subset \operatorname{Spec} R$ be the set of all prime ideals containing J. **Zariski topology** on $\operatorname{Spec} R$ is topology where all V(J) (and only those) are closed. Clearly, $V(J_1) \cap V(J_2) = V(J_1 + J_2)$ and $V(J_1) \cup V(J_2) = V(J_1J_2)$, hence finite unions and intersections of closed sets are closed.

DEFINITION: Let R be a ring, Spec(R) its spectum and $f \in R$. Affine open set is an open set $U_f := \text{Spec } R \setminus V_{(f)}$. We identify U_f with $\text{Spec}(R[f^{-1}])$ (localization in f).

EXERCISE: Prove that finite intersection of affine open sets is affine, $U_f \cap U_g = U_{fg}$.

EXERCISE: Prove that affine open sets give a base of Zariski topology.

Affine schemes (reminder)

DEFINITION: The sheaf \bigcirc of regular functions on Spec *R* is defined as the sheaf which satisfies $\bigotimes_{U_f} = R[f^{-1}]$, with restriction maps taking a function to its restriction to an open set.

EXERCISE: Prove that $\mathcal{O}|_{U_f} = R[f^{-1}]$ is sufficient to define a sheaf, which is reconstructed uniquely from this property.

DEFINITION: A scheme is a ringed space (M, \mathcal{O}) , which is locally isomorphic to an affine scheme with the sheaf of regular functions. In this situation sheaf \mathcal{O} is called **the structure sheaf** of the scheme, or **the sheaf of regular functions**.

REMARK: The structure sheaf may contain nilpotents. An algebraic variety is a scheme which does not have nilpotents in its structure sheaf.

DEFINITION: Morphism of affine schemes is a morphism of ringed spaces Spec $A \rightarrow$ Spec B induced by a ring homomorphism $B \rightarrow A$. Morphism of schemes is a map of schemes which is given by morphisms of affine schemes in local affine charts.

Degree of a map and degree of the field extension

The main result of today's lecture:

THEOREM: Let $\varphi : X \to Y$ be a dominant regular map of *n*-dimensional irreducible complex algebraic varieties, and k(X), k(Y) their rational function fields. Let *d* be the degree of the field extension [k(X) : k(Y)] **Then there exists a Zariski open subset** $Y_0 \subset Y$ **such that each** $y \in Y_0$ **has precisely** *d* **preimages.**

Proof. Step 1: Replacing X, Y by Zariski open subsets, we can always assume that X, Y are affine subvarieties in \mathbb{C}^n . Let $X_1, ..., X_n$ be coordinate functions on X. By the primitive element theorem, an appropriate linear combination $u = \sum \alpha_i x_i$ generates k(X) over k(Y).

Step 2: Let $\Gamma \subset Y \times \mathbb{C}$ be the Zariski closure of the image of $\varphi \times u$. We decompose φ into a composition of $X \xrightarrow{\varphi \times u} \Gamma$ and the projection $\Gamma \longrightarrow Y$. Since u generates k(X) over k(Y), we have $k(\Gamma) = k(X)$.

Degree of a map and degree of the field extension (2)

Step 3: It remains to show that the projection $\Gamma \to Y$ is a degree d ramified covering, in other words, a general point in Y has [k(X) : k(Y)] preimages in Γ . Since dim Γ = dim Y, the field $k(\Gamma)$ has the same transcendence degree as k(Y). Therefore, the coordinate u satisfies a polynomial equation $P(u) = \sum_{i=0}^{r} u^{i}a_{i} = 0$, where a_{i} are regular functions on Y. Since Γ is irreducible, the polynomial P(u) is irreducible over k(Y); otherwise we would have several components over the general point, and their closure would give several irreducible components for Γ . This polynomial has degree d, because $k(X) = k(\Gamma) = k(Y)[u]$.

Step 4: The fiber of the projection $\Gamma \rightarrow Y$ is the set of all solutions of P(u) = 0. Since P(u) is irreducible, its discriminant is non-zero, and **outside** of its discriminant, there are precisely d different solutions.