Complex analytic spaces

lecture 22: The integral closure

Misha Verbitsky

IMPA, sala 236,

October 18, 2023, 17:00

Spectrum of a ring (reminder)

DEFINITION: Spectrum of a ring R is the set Spec R if its prime ideals.

DEFINITION: Let $J \,\subset R$ be an ideal, and $V(J) \subset \operatorname{Spec} R$ be the set of all prime ideals containing J. **Zariski topology** on $\operatorname{Spec} R$ is topology where all V(J) (and only those) are closed. Clearly, $V(J_1) \cap V(J_2) = V(J_1 + J_2)$ and $V(J_1) \cup V(J_2) = V(J_1J_2)$, hence finite unions and intersections of closed sets are closed.

DEFINITION: Let R be a ring, Spec(R) its spectum and $f \in R$. Affine open set is an open set $U_f := \text{Spec } R \setminus V_{(f)}$. We identify U_f with $\text{Spec}(R[f^{-1}])$ (localization in f).

EXERCISE: Prove that finite intersection of affine open sets is affine, $U_f \cap U_g = U_{fg}$.

EXERCISE: Prove that affine open sets give a base of Zariski topology.

Affine schemes (reminder)

DEFINITION: The sheaf \bigcirc of regular functions on Spec *R* is defined as the sheaf which satisfies $\bigotimes_{U_f} = R[f^{-1}]$, with restriction maps taking a function to its restriction to an open set.

EXERCISE: Prove that $\mathcal{O}|_{U_f} = R[f^{-1}]$ is sufficient to define a sheaf, which is reconstructed uniquely from this property.

DEFINITION: A scheme is a ringed space (M, Θ) , which is locally isomorphic to an affine scheme with the sheaf of regular functions. In this situation sheaf Θ is called **the structure sheaf** of the scheme, or **the sheaf of regular** functions.

REMARK: The structure sheaf may contain nilpotents. An algebraic variety is a scheme which does not have nilpotents in its structure sheaf.

DEFINITION: Morphism of affine schemes is a morphism of ringed spaces Spec $A \rightarrow$ Spec B induced by a ring homomorphism $B \rightarrow A$. Morphism of schemes is a map of schemes which is given by morphisms of affine schemes in local affine charts.

Dominant morphisms (reminder)

DEFINITION: Zariski topology on an algebraic variety is a topology where the closed subsets are algebraic subsets. **Zariski closure** of $Z \subset M$ is an intersection of all Zariski closed subsets containing Z.

EXERCISE: Prove that **Zariski topology on** \mathbb{C} **coincides with the cofinite topology.**

CAUTION: Zariski topology is non-Hausdorff.

DEFINITION: Dominant morphism is a morphism $f: X \rightarrow Y$, such that *Y* is a Zariski closure of f(X).

PROPOSITION: Let $f: X \to Y$ be a morphism of affine varieties. The morphism f is dominant if and only if the homomorphism $\mathcal{O}_Y \xrightarrow{f^*} \mathcal{O}_X$ is injective.

Field of fractions (reminder)

DEFINITION: Let $S \,\subset R$ be a subset of R, closed under multiplication and not containing 0. Localization of R in S is a ring, formally generated by symbols a/F, where $a \in R$, $F \in S$, and relations $a/F \cdot b/G = ab/FG$, $a/F + b/G = \frac{aG+bF}{FG}$ and $aF^k/F^{k+n} = a/F^n$.

DEFINITION: Let R be a ring without zero divisors, and S the set of all non-zero elements in R. Field of fractions of R is a localization of R in S.

CLAIM: Let $f: X \to Y$ be a dominant morphism, where X is irreducible. Then Y is also irreducible. Moreover, $f^*: \mathcal{O}_Y \to \mathcal{O}_X$ can be extended to a homomorphism of the fields of fractions. $k(Y) \to k(X)$.

DEFINITION: A dominant morphism of irreducible varieties is called **birational** if the corresponding homomorphism of the fields of fractions is an isomorphism.

Integral dependence

DEFINITION: Let $A \subset B$ be rings. An element $b \in B$ is called **integral over** A if the subring $A[b] = A \cdot \langle 1, b, b^2, b^3, ... \rangle$, generated by b and A, is finitely generated as A-module.

DEFINITION: Monic polynomial is a polynomial with leading coefficient 1.

CLAIM: An element $x \in B$ is integral over $A \subset B$ if and only if the chain of submodules

$$A \subset A \cdot \langle \mathbf{1}, x \rangle \subset A \cdot \langle \mathbf{1}, x, x^2 \rangle \subset A \cdot \langle \mathbf{1}, x, x^2, x^3 \rangle \subset \dots$$

terminates.

COROLLARY: An element $x \in B$ is integral over $A \subset B \Leftrightarrow x$ is a root of a monic polynomial with coefficients in A.

CLAIM: Let A
ightharpoondown B be Noetherian rings. Then sum and product of elements which are integral over A is also integral.

Integral closure

DEFINITION: Let $A \subset B$ be rings. The set of all elements in *B* which are integral over *A* is called **the integral closure of** *A* **in** *B*.

DEFINITION: Let *A* be the ring without zero divisors, and k(A) its field of fractions. The set of all elements $a \in k(A)$ which are integral over *A* is called **the integral closure of** *A*. A ring *A* is called **integrally closed** if *A* coincides with its interal closure in k(A).

REMARK: As shown above, the integral closure is a ring.

DEFINITION: An affine variety X is called **normal** if all its irreducible components X_i are disconnected, and the ring of functions \mathcal{O}_{X_i} for each of these irreducible components is integrally closed.

REMARK: Equivalently, X is normal if any finite, birational morphism $Y \rightarrow X$ is an isomorphism.

Factorial rings

DEFINITION: An element p of a ring R is called **prime** if the corresponding principal ideal (p) is prime.

DEFINITION: A ring R without zero divisors is called **factorial** if any element $r \in R$ can be represented as a product of prime elements, $r = \prod_i p_i^{\alpha_i}$, and this decomposition is unique up to invertible factors and permutation of p_i .

PROPOSITION: Let *A* be a factorial ring. Then it is integrally closed.

Proof. Step 1: Let $u, v \in A$, and $u/v \in k(A)$ a root of a monic polynomial $P(t) \in A[t]$ of degree n. Then u^n is divisible by v in A.

Step 2: Let $u/v \in k(A)$ be a root of a monic polynomial $P(t) \in A[t]$. Assume that u, v are coprime. Since u^n is divisible by v, and they are coprime, v is invertible by factoriality of A. Then $u/v \in A$.