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Spectrum of a ring (reminder)
DEFINITION: Spectrum of a ring R is the set SpecR if its prime ideals.

DEFINITION: Let Jc R be an ideal, and V(J) c SpecR be the set of all
prime ideals containing J. Zariski topology on SpecR is topology where
all V(J) (and only those) are closed. Clearly, V(J1)nV(J) =V (J1 +Jp) and
V(J1)uV(Jy) =V (J1J>), hence finite unions and intersections of closed sets
are closed.

DEFINITION: Let R be a ring, Spec(R) its spectum and f ¢ R. Affine
open set is an open set Uy := SpecR\V(f). We identify Uy with Spec(R[f1])
(localization in f).

EXERCISE: Prove that finite intersection of affine open sets is affine,
Uf N Ug = Ufg'

EXERCISE: Prove that affine open sets give a base of Zariski topology.
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Affine schemes (reminder)

DEFINITION: The sheaf © of regular functions on SpecR is defined as
the sheaf which satisfies @‘Uf = R[f~1], with restriction maps taking a function
to its restriction to an open set.

EXERCISE: Prove that O|y, = R[f1] is sufficient to define a sheaf, which
IS reconstructed uniquely from this property.

DEFINITION: A scheme is a ringed space (M,©), which is locally isomor-
phic to an affine scheme with the sheaf of regular functions. In this situation
sheaf © is called the structure sheaf of the scheme, or the sheaf of regular
functions.

REMARK: The structure sheaf may contain nilpotents. AnNn algebraic
variety is a scheme which does not have nilpotents in its structure sheaf.

DEFINITION: Morphism of affine schemes is a morphism of ringed spaces
Spec A — SpecB induced by a ring homomorphism B— A. Morphism of
schemes is a map of schemes which is given by morphisms of affine schemes

in local affine charts.
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Integral closure (reminder)

DEFINITION: Let Ac B be rings. The set of all elements in B which are
integral over A is called the integral closure of A Iin B.

DEFINITION: Let A be the ring without zero divisors, and k(A) its field of
fractions. The set of all elements a € k(A) which are integral over A is called
the integral closure of A. A ring A is called integrally closed if A coincides
with its interal closure in k(A).

REMARK: As shown above, the integral closure is a ring.

DEFINITION: An affine variety X is called normal if all its irreducible com-
ponents X; are disconnected, and the ring of functions Ox. for each of these
irreducible components is integrally closed.

REMARK: Equivalently, X is normal if any finite, birational morphism
Y — X 1S an isomorphism.

PROPOSITION: Let A be a factorial ring. Then it is integrally closed.
4
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Characteristic polynomial over a ring

DEFINITION: Let A be a Noetherian ring, [K : k(A)] a finite extension of its
field of fractions, and B the integral closure of A in K. For any be B, denote
by L;: K— K the map of multiplication by b. Consider L; as a k(A)-linear
endomorphism of the finite-dimensional space K over k(A), and define the
trace of b as Tr(b) :=Tr(Ly).

CLAIM: In these assumptions, Tr(b) is an element of A.

Proof. Step 1: The coefficients a; of the minimal polynomial of be B over
k(A) belong to A. Indeed, let B be the integral closure of k(A) in its algebraic
closure. Then a; € A are obtained as elementary polynomials on Galois
conjugates of b, which are all in B. Since A is integrally closed, we have
k(A)An B = A, which implies that a; € A.

Step 2: Let B’ c B be the algebra generated by b. Since b is finite, B’ is a
finitely-generated A-module, isomorphic to A[t]/P(t), where P(t) € k(A)[t] is
the minimal polynomial of P. Since A is integrally closed, the coefficients of
P(t) are elements of A. Let 1,b,b2,...,b™ be its generators over A, and (a;j) the
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matrix of L, written in this basis. Then B is decomposed as a k(A)-vector
space onto a sum of of d copies of B/, and on each of them L, acts as

(0O 1 0 ... 0 )
0 0 1 ... 0
(aij)=] + & i e
0 0 o ... 1
\-a0 -ai1 -az ... —Gp_1)

where P(t) =t"+ Y, a, ;""" This gives Tr(b)=da,-1¢A. u
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Finiteness of integral closure

THEOREM: Let A be an integrally closed Noetherian ring, [K : k(A)] a finite
extension of its field of fractions, and B the integral closure of A in K. Then
B is finitely generated as an A-module.

Proof. Step 1: The bilinear symmetric form z,y — Tr(xy) is non-degenerate.
Indeed, Tr(zz~1) =dimy4) K, and chark(A) = 0.

Step 2: Choose a basis eq,...,e, in the k(A)-vector space K. Let Pi(t) e k(A)[t]
be the minimal polynomials of e;. Write P;(t) = Ait"i+3 jp, aijtj, where A;,a;; €
A. Then Ase; is a root of a monic polynomial P;(t) = t"+¥ ;o A% Ja;;t). This
proves that the basis eq,...,e, iIn K:k(A) can be chosen such that all ¢;
are integral over A.

Step 3: Let e; e K be the dual basis with respect to the form Tr, with
Tr(e’e;j) = 4;;. Consider the A-module M c K generated by e’. Clearly, M :=
{be K | Tr(be;)e A},

Step 4: For any be B, the trace Tr(b) belongs to A, because b is integral over

A (Step 1). Then Bc M, and B is a submodule of a finitely generated

A-module M. Since A is Noetherian, B is finitely generated as A-module. m
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Finiteness of integral closure: first applications

COROLLARY: Let B be aring over C. Assume that there exists an injective
ring morphism from A =C|z1,...,x;] to B such that B is finitely generated as an
A-module. Then its integral closure B is a finitely generated A-module.
In particlular, B is a finitely generated ring.

Proof: Since A is factorial, it is integrally closed, and the previous theorem
applies. m

DEFINITION: Let X be an affine variety, and A the integral closure of its
ring of regular functions. Assume that A is a finitely generated ring. Then
X :=Spec(A) is called the normalization of X.

REMARK: Today we shall prove that A is always finitely generated, if A
is a finitely generated ring over C.



Complex analytic spaces, lecture 23 M. Verbitsky

Transcendence basis

DEFINITION: Let k(tq,...,tn,) be the field of rational functions of several
variables, that is, the fraction field for the polynomial ring k[tq,...,tn]. Then
the extension [k(t1,...,tn) : k] is called a purely transcendental extension of
k, and tq,...,t, are called algebraically independent.

REMARK: Clearly, tq,...,t, are algebraically independent if and only if
there are no alrebraic relations of form P(tq,...,t,) = 0, where P is a
polynomial of n variables.

DEFINITION: Transcendence basis of an extension [K : k| is a collection
z1,...,2n € K generating a purely trascendental extension K':=k(z1,...,2zn) Such
that [K : K'] is an algebraic extension. We call the number n the transcen-
dental degree of X.

CLAIM: Let X cC"” be an irreducible affine manifold, tq,...,t, coordinates on
Cn, and M : X — Ck the projection to the first k& coordinates. Then the
following are equivalent.

(i) Mg is dominant and the extension [k(X):k(t1,...,t;)] IS finite.

(ii) tq,...,t; is transcendence basis in £(X). =
9
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When the coordinate projection is finite

REMARK: Let X cC"™ be an irreducible affine subvariety, z; coordinates on
C", and z1,...,2, transcendence basis on k(X). The projection map I1,_;
is finite if and only if P(z,) = 0 in Oy, for some monic polynomial
P(t) e Ox[t] with coefficients which are polynomial in zq,...,z,_1. Indeed,
this is precisely what is needed for Ox to be a finitely generated module
over its subalgebra A = C[z1,...,2,-1]. Notice that a non-zero polynomial
P(t) € A[t] such that P(z,)=0 on X always exists, unless n=k and X =C",
pbut it i1s not necessarily monic.

CLAIM: In these assumptions, there exists a linear coordinate change

z; = 2; + A\jzn, such that z, is finite over z’l,...,zl’g.

Proof: Next slide.

REMARK: This immediately implies the Noether’s normalization lemma:
any affine manifold admits a finite, dominant map to C".
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When the coordinate projection is finite (2)

CLAIM: In these assumptions, there exists a linear coordinate change
z, = z; + Ajzn, SUCh that z, is finite over z7,..., 2.
Proof. Step 1: Let P(z1,...,2,t) be a non-zero polynomial such that P(zq,..., 2k, 2n) =
O in Ox. Such a polynomial exists because zq,...,2; IS a transcendence basis

in k(X), and z, is algebraic over z1,...,2, € Ox. Let F(zq,...,25,2n) be a homo-
geneous component of maximal degree in P(z1,...,2k,2n). VWe choose P to be

of minimal possible degree in zq,..., 2L, 2n.

Step 2: Consider a polynomial

Q(Zla ooy Rl Zn) "= F(Z]_ + )\]_Zn, ey Rl T )‘kzm Zn)

Then ©(0,0,...,0,1) = F(A1,...,A\t,1) is non-zero for general )\;,. Indeed,
if F'(\,...,\;, 1) is identically O for all )\;, the homogeneous polynomial F
vanishes.

Step 3: Let z;:= z;+\;zp. Thedegree d polynomial P(21,..., 2k, 2n) = Q(2], -, 21, 2n)
IS monic in z,, because its leading term z;% has non-zero coefficient by Step

2.
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Normalization of an affine variety

COROLLARY: Let X be an affine variety, and A the integral closure of its
ring of regular functions. Then A is finitely generated.

Proof: Let X — C9 be a finite, dominant map. Since all elements of Oy are
finite over @ccd' the ring Ox is contained in the integral closure A of @cd in
k(Ox). This implies that A c A. On the other hand, all elements of A are
finite over @Cd' hence they are finite over Oy, which implies AcA. m

DEFINITION: Let X be an affine variety, and A the integral closure of its
ring of regular functions. Then X := Spec(A) is called normalization of X.

REMARK: The normalization map is finite and birational; X is normal if for
any finite, birational ¢: X’'— X, the map ¢ is an isomorphism. Indeed,
in this case Ox/> Ox is finite with the same field of fractions.

COROLLARY: Normalization of X is a finite, birational morphism X' — X
such that for any other finite, birational ¢: X" — X'/, the map ¢ is an
iIsomorphism. In particular, any birational, finite map X’'— X with X'

normal IS a normalization. =
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Preimage and diagonal

Claim 2: Let f: X —Y be a morphism of algebraic varieties, f*: Oy — Oy
the corresponding ring homomorphism, Z c Y a subvariety, and [, its ideal.
Denote by R; the quotient of a ring R:=Ox ®9y (Oy/Iz) = Ox/f*(Iz) by its
nilradical. Then Spec(R;) = f~1(2).

Proof: Clearly, the set of common zeros of the ideal J := f*(I;) contains
f—l(Z). On the other hand, for any point x € X such that f(x) ¢ Z there
exist a function g € J such that g(z) #+ 0. Therefore, f~1(Z) = V;, and strong
Nullstellensatz implies that @f‘l(Z) =R{. =

Claim 3: Let M be an algebraic variety, A c M x M the diagonal, and I c
On ®c Opf the ideal generated by r@l -1 r for all re Oy, Then Op is
@M SC @M/I.

Proof. Step 1: By definition of the tensor product, Oy ®c Oy /1 = O @,
O = Oy, hence it is reduced. If we prove that A =Vj, the statement of the
claim would follow from strong Nullstellensatz.

Step 2: Clearly, A cV;. To prove the converse, let (m,m’)e M xM be a point
not on diagonal, and f € ©); a function which satisfies f(m) = 0, f(m') # 0.
Then fel-1® f is non-zero on (m,m'). =
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Fibered product

DEFINITION: Let X °% M, Y 2% M be maps of sets. Fibered product
X x)7 Y is the set of all pairs (x,y) e X xY such that nx(x) = 7y (y).

CLAIM: Let X X MY o, M be morphism of algebraic varieties, R :=
Ox ®9,, Oy, and R; the quotient of R by its nilradical. Then Spec(R;)
X XM Y.

Proof: Let [ be the ideal of diagonal in Oy; ®c ©Op;. Since I is generated by
rel-1ler (Claim 3), R=0Ox®cOy/(mx xmy)*(I). Applying Claim 2, we obtain
that Spec(Ry) = (ry x7my) 1H(A). =
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Functoriality of normalization

CLAIM: Let X be an affine variety, X its normalization, and U c X a
Zariski open subvariety. Then the normalization of U can be obtained as
Spec(Op ®g, Og)-

Proof. Step 1: Indeed, any element f e O B0y @X IS expressed as f=> a;f;,
where a; € Oy and f; € O¢ are finite over Oy, hence f is finite over Oy;.

Step 2: Conversely, any element f which is finite over O satisfies an equation
P(t) =0, where P(t) is a monic polynomial in O (t). Then there exists u e Oy,
invertible in O, such that uP(t) € Ox[t]. Let uP(t) = ut™ + Z?:‘ll a;t""*, where
aj€ Ox. Then uf satisfies an equation L= + Y71 a;(t/u)""?, equivalently,

tn+ Y11 g i-1¢n—i hence ufe©Oc. This gives fe O ®9. Oc¢. ®
i=1 % X U< O0x YX

REMARK: The intersection of open subsets is their fibered product. Since
Spec(Oy®o, Og) =Uxx X, the previous claim can be expressed as U =Uxy X.
Similarly, for two open set U, W c X, one has UnW =U xx W.
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Normalization of a scheme

REMARK: A scheme can be defined as a collection of affine charts {U;}
together with the open subvarieties U;; c U; and sz- - Uj and gluing maps,
iIsomorphisms %‘j Uy — Uy, which satisfy the cocycle condition: for any
triple of indices i, j, k, the restriction of ¢;;0v;, to U;; nUyy is equal to .

DEFINITION: Let X be a reduced, irreducible scheme, {U,} its affine cover-
ing, and UZ- the normalizations of every affine scheme U,;. Using the previous
claim, we obtain that (U;nU,) = U; xx U;. This implies that the gluing map
between the affine sets {U;} satisfy the cocycle condition, and these
affine sets can be glued together to a scheme. This scheme is called the
normalization of X.
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