Complex analytic spaces

lecture 23: Normalization of complex algebraic varieties

Misha Verbitsky

IMPA, sala 236,

October 20, 2023, 17:00

Spectrum of a ring (reminder)

DEFINITION: Spectrum of a ring R is the set Spec R if its prime ideals.

DEFINITION: Let $J \,\subset R$ be an ideal, and $V(J) \subset \operatorname{Spec} R$ be the set of all prime ideals containing J. **Zariski topology** on $\operatorname{Spec} R$ is topology where all V(J) (and only those) are closed. Clearly, $V(J_1) \cap V(J_2) = V(J_1 + J_2)$ and $V(J_1) \cup V(J_2) = V(J_1J_2)$, hence finite unions and intersections of closed sets are closed.

DEFINITION: Let R be a ring, Spec(R) its spectum and $f \in R$. Affine open set is an open set $U_f := \text{Spec } R \setminus V_{(f)}$. We identify U_f with $\text{Spec}(R[f^{-1}])$ (localization in f).

EXERCISE: Prove that finite intersection of affine open sets is affine, $U_f \cap U_g = U_{fg}$.

EXERCISE: Prove that affine open sets give a base of Zariski topology.

Affine schemes (reminder)

DEFINITION: The sheaf \bigcirc of regular functions on Spec *R* is defined as the sheaf which satisfies $\bigotimes_{U_f} = R[f^{-1}]$, with restriction maps taking a function to its restriction to an open set.

EXERCISE: Prove that $\mathcal{O}|_{U_f} = R[f^{-1}]$ is sufficient to define a sheaf, which is reconstructed uniquely from this property.

DEFINITION: A scheme is a ringed space (M, \mathcal{O}) , which is locally isomorphic to an affine scheme with the sheaf of regular functions. In this situation sheaf \mathcal{O} is called **the structure sheaf** of the scheme, or **the sheaf of regular functions**.

REMARK: The structure sheaf may contain nilpotents. An algebraic variety is a scheme which does not have nilpotents in its structure sheaf.

DEFINITION: Morphism of affine schemes is a morphism of ringed spaces Spec $A \rightarrow$ Spec B induced by a ring homomorphism $B \rightarrow A$. Morphism of schemes is a map of schemes which is given by morphisms of affine schemes in local affine charts.

Integral closure (reminder)

DEFINITION: Let $A \subset B$ be rings. The set of all elements in B which are integral over A is called **the integral closure of** A **in** B.

DEFINITION: Let *A* be the ring without zero divisors, and k(A) its field of fractions. The set of all elements $a \in k(A)$ which are integral over *A* is called **the integral closure of** *A*. A ring *A* is called **integrally closed** if *A* coincides with its interal closure in k(A).

REMARK: As shown above, the integral closure is a ring.

DEFINITION: An affine variety X is called **normal** if all its irreducible components X_i are disconnected, and the ring of functions \mathcal{O}_{X_i} for each of these irreducible components is integrally closed.

REMARK: Equivalently, X is normal if any finite, birational morphism $Y \rightarrow X$ is an isomorphism.

PROPOSITION: Let A be a factorial ring. Then it is integrally closed.

Characteristic polynomial over a ring

DEFINITION: Let *A* be a Noetherian ring, [K:k(A)] a finite extension of its field of fractions, and *B* the integral closure of *A* in *K*. For any $b \in B$, denote by $L_b: K \longrightarrow K$ the map of multiplication by *b*. Consider L_b as a k(A)-linear endomorphism of the finite-dimensional space *K* over k(A), and define the trace of *b* as $Tr(b) := Tr(L_b)$.

CLAIM: In these assumptions, Tr(b) is an element of A.

Proof. Step 1: The coefficients a_i of the minimal polynomial of $b \in B$ over k(A) belong to A. Indeed, let \tilde{B} be the integral closure of k(A) in its algebraic closure. Then $a_i \in A$ are obtained as elementary polynomials on Galois conjugates of b, which are all in \tilde{B} . Since A is integrally closed, we have $k(A)A \cap \tilde{B} = A$, which implies that $a_i \in A$.

Step 2: Let $B' \,\subset B$ be the algebra generated by b. Since b is finite, B' is a finitely-generated A-module, isomorphic to A[t]/P(t), where $P(t) \in k(A)[t]$ is the minimal polynomial of P. Since A is integrally closed, the coefficients of P(t) are elements of A. Let $1, b, b^2, ..., b^n$ be its generators over A, and (a_{ij}) the

matrix of L_b written in this basis. Then *B* is decomposed as a k(A)-vector space onto a sum of of *d* copies of *B'*, and on each of them L_b acts as

$$(a_{ij}) = \begin{pmatrix} 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 1 & \dots & 0 \\ \vdots & \vdots & \vdots & \dots & \vdots \\ 0 & 0 & 0 & \dots & 1 \\ -a_0 & -a_1 & -a_2 & \dots & -a_{n-1} \end{pmatrix}$$

where $P(t) = t^n + \sum_{i=1}^n a_{n-i}t^{n-i}$. This gives $Tr(b) = da_{n-1} \in A$.

Finiteness of integral closure

THEOREM: Let A be an integrally closed Noetherian ring, [K:k(A)] a finite extension of its field of fractions, and B the integral closure of A in K. Then B is finitely generated as an A-module.

Proof. Step 1: The bilinear symmetric form $x, y \rightarrow \text{Tr}(xy)$ is non-degenerate. Indeed, $\text{Tr}(xx^{-1}) = \dim_{k(A)} K$, and $\operatorname{char} k(A) = 0$.

Step 2: Choose a basis $e_1, ..., e_n$ in the k(A)-vector space K. Let $P_i(t) \in k(A)[t]$ be the minimal polynomials of e_i . Write $P_i(t) = A_i t^{n_i} + \sum_{j < n_i} a_{ij} t^j$, where $A_i, a_{ij} \in A$. Then $A_i e_i$ is a root of a monic polynomial $\tilde{P}_i(t) = t^{n_i} + \sum_{j < n_i} A^{n_i - j} a_{ij} t^j$. This proves that the basis $e_1, ..., e_n$ in K : k(A) can be chosen such that all e_i are integral over A.

Step 3: Let $e_i^* \in K$ be the dual basis with respect to the form Tr, with $\operatorname{Tr}(e_i^*e_j) = \delta_{ij}$. Consider the *A*-module $M \subset K$ generated by e_i^* . Clearly, $M := \{b \in K \mid \operatorname{Tr}(be_i) \in A\}$.

Step 4: For any $b \in B$, the trace Tr(b) belongs to A, because b is integral over A (Step 1). Then $B \subset M$, and B is a submodule of a finitely generated A-module M. Since A is Noetherian, B is finitely generated as A-module.

Finiteness of integral closure: first applications

COROLLARY: Let *B* be a ring over \mathbb{C} . Assume that there exists an injective ring morphism from $A = \mathbb{C}[x_1, ..., x_k]$ to *B* such that *B* is finitely generated as an *A*-module. Then its integral closure \hat{B} is a finitely generated *A*-module. In particlular, \hat{B} is a finitely generated ring.

Proof: Since *A* is factorial, it is integrally closed, and the previous theorem applies. ■

DEFINITION: Let X be an affine variety, and \hat{A} the integral closure of its ring of regular functions. Assume that \hat{A} is a finitely generated ring. Then $\hat{X} \coloneqq \operatorname{Spec}(\hat{A})$ is called **the normalization of** X.

REMARK: Today we shall prove that \hat{A} is always finitely generated, if A is a finitely generated ring over \mathbb{C} .

Transcendence basis

DEFINITION: Let $k(t_1, ..., t_n)$ be the field of rational functions of several variables, that is, the fraction field for the polynomial ring $k[t_1, ..., t_n]$. Then the extension $[k(t_1, ..., t_n) : k]$ is called a **purely transcendental extension of** k, and $t_1, ..., t_n$ are called **algebraically independent**.

REMARK: Clearly, $t_1, ..., t_n$ are algebraically independent if and only if there are no alrebraic relations of form $P(t_1, ..., t_n) = 0$, where P is a polynomial of n variables.

DEFINITION: Transcendence basis of an extension [K:k] is a collection $z_1, ..., z_n \in K$ generating a purely trascendental extension $K' \coloneqq k(z_1, ..., z_n)$ such that [K:K'] is an algebraic extension. We call the number *n* the transcendental degree of *X*.

CLAIM: Let $X \subset \mathbb{C}^n$ be an irreducible affine manifold, $t_1, ..., t_n$ coordinates on \mathbb{C}^n , and $\Pi_k : X \longrightarrow \mathbb{C}^k$ the projection to the first k coordinates. Then the following are equivalent.

(i) Π_k is dominant and the extension $[k(X):k(t_1,...,t_k)]$ is finite.

(ii) $t_1, ..., t_k$ is transcendence basis in k(X).

When the coordinate projection is finite

REMARK: Let $X \in \mathbb{C}^n$ be an irreducible affine subvariety, z_i coordinates on \mathbb{C}^n , and $z_1, ..., z_k$ transcendence basis on k(X). The projection map $\prod_{n=1} \mathbf{G}^{n-1}$ is finite if and only if $P(z_n) = 0$ in \mathcal{O}_X , for some monic polynomial $P(t) \in \mathcal{O}_X[t]$ with coefficients which are polynomial in $z_1, ..., z_{n-1}$. Indeed, this is precisely what is needed for \mathcal{O}_X to be a finitely generated module over its subalgebra $A = \mathbb{C}[z_1, ..., z_{n-1}]$. Notice that a non-zero polynomial $P(t) \in A[t]$ such that $P(z_n) = 0$ on X always exists, unless n = k and $X = \mathbb{C}^n$, but it is not necessarily monic.

CLAIM: In these assumptions, there exists a linear coordinate change $z'_i \coloneqq z_i + \lambda_i z_n$, such that z_n is finite over $z'_1, ..., z'_k$.

Proof: Next slide.

REMARK: This immediately implies the Noether's normalization lemma: any affine manifold admits a finite, dominant map to \mathbb{C}^n .

When the coordinate projection is finite (2)

CLAIM: In these assumptions, there exists a linear coordinate change $z'_i := z_i + \lambda_i z_n$, such that z_n is finite over $z'_1, ..., z'_k$.

Proof. Step 1: Let $P(z_1, ..., z_k, t)$ be a non-zero polynomial such that $P(z_1, ..., z_k, z_n) = 0$ in \mathcal{O}_X . Such a polynomial exists because $z_1, ..., z_k$ is a transcendence basis in k(X), and z_n is algebraic over $z_1, ..., z_k \in \mathcal{O}_X$. Let $F(z_1, ..., z_k, z_n)$ be a homogeneous component of maximal degree in $P(z_1, ..., z_k, z_n)$. We choose P to be of minimal possible degree in $z_1, ..., z_k, z_n$.

Step 2: Consider a polynomial

 $Q(z_1, \dots, z_k, z_n) \coloneqq F(z_1 + \lambda_1 z_n, \dots, z_k + \lambda_k z_n, z_n).$

Then $Q(0,0,...,0,1) = F(\lambda_1,...,\lambda_k,1)$ is non-zero for general λ_i . Indeed, if $F(\lambda_1,...,\lambda_k,1)$ is identically 0 for all λ_i , the homogeneous polynomial F vanishes.

Step 3: Let $z'_i \coloneqq z_i + \lambda_i z_n$. The degree *d* polynomial $P(z_1, ..., z_k, z_n) = Q(z'_1, ..., z'_k, z_n)$ is monic in z_n , because its leading term z_n^d has non-zero coefficient by Step 2.

Normalization of an affine variety

COROLLARY: Let X be an affine variety, and A the integral closure of its ring of regular functions. Then A is finitely generated.

Proof: Let $X \to \mathbb{C}^d$ be a finite, dominant map. Since all elements of \mathcal{O}_X are finite over $\mathcal{O}_{\mathbb{C}^d}$, the ring \mathcal{O}_X is contained in the integral closure \hat{A} of $\mathcal{O}_{\mathbb{C}^d}$ in $k(\mathcal{O}_X)$. This implies that $A \subset \hat{A}$. On the other hand, all elements of \hat{A} are finite over $\mathcal{O}_{\mathbb{C}^d}$, hence they are finite over \mathcal{O}_X , which implies $\hat{A} \subset A$.

DEFINITION: Let X be an affine variety, and \hat{A} the integral closure of its ring of regular functions. Then $\tilde{X} \coloneqq \operatorname{Spec}(\hat{A})$ is called **normalization of** X.

REMARK: The normalization map is finite and birational; X is normal if for any finite, birational $\varphi : X' \longrightarrow X$, the map φ is an isomorphism. Indeed, in this case $\mathcal{O}_{X'} \supset \mathcal{O}_X$ is finite with the same field of fractions.

COROLLARY: Normalization of *X* is a finite, birational morphism $X' \to X$ such that for any other finite, birational $\varphi : X'' \to X'$, the map φ is an isomorphism. In particular, any birational, finite map $X' \to X$ with X'normal is a normalization.

Preimage and diagonal

Claim 2: Let $f: X \to Y$ be a morphism of algebraic varieties, $f^*: \mathcal{O}_Y \to \mathcal{O}_X$ the corresponding ring homomorphism, $Z \in Y$ a subvariety, and I_Z its ideal. Denote by R_1 the quotient of a ring $R := \mathcal{O}_X \otimes_{\mathcal{O}Y} (\mathcal{O}_Y/I_Z) = \mathcal{O}_X/f^*(I_Z)$ by its nilradical. **Then** Spec $(R_1) = f^{-1}(Z)$.

Proof: Clearly, the set of common zeros of the ideal $J \coloneqq f^*(I_Z)$ contains $f^{-1}(Z)$. On the other hand, for any point $x \in X$ such that $f(x) \notin Z$ there exist a function $g \in J$ such that $g(x) \neq 0$. Therefore, $f^{-1}(Z) = V_J$, and strong Nullstellensatz implies that $\mathcal{O}_{f^{-1}(Z)} = R_1$.

Claim 3: Let M be an algebraic variety, $\Delta \subset M \times M$ the diagonal, and $I \subset \mathcal{O}_M \otimes_{\mathbb{C}} \mathcal{O}_M$ the ideal generated by $r \otimes 1 - 1 \otimes r$ for all $r \in \mathcal{O}_M$. Then \mathcal{O}_Δ is $\mathcal{O}_M \otimes_{\mathbb{C}} \mathcal{O}_M / I$.

Proof. Step 1: By definition of the tensor product, $\mathcal{O}_M \otimes_{\mathbb{C}} \mathcal{O}_M / I = \mathcal{O}_M \otimes_{\mathcal{O}_M} \mathcal{O}_M = \mathcal{O}_M$, hence it is reduced. If we prove that $\Delta = V_I$, the statement of the claim would follow from strong Nullstellensatz.

Step 2: Clearly, $\Delta \subset V_I$. To prove the converse, let $(m, m') \in M \times M$ be a point not on diagonal, and $f \in \mathcal{O}_M$ a function which satisfies $f(m) = 0, f(m') \neq 0$. Then $f \otimes 1 - 1 \otimes f$ is non-zero on (m, m').

Fibered product

DEFINITION: Let $X \xrightarrow{\pi_X} M, Y \xrightarrow{\pi_Y} M$ be maps of sets. **Fibered product** $X \times_M Y$ is the set of all pairs $(x, y) \in X \times Y$ such that $\pi_X(x) = \pi_Y(y)$.

CLAIM: Let $X \xrightarrow{\pi_X} M, Y \xrightarrow{\pi_Y} M$ be morphism of algebraic varieties, $R := \mathcal{O}_X \otimes_{\mathcal{O}_M} \mathcal{O}_Y$, and R_1 the quotient of R by its nilradical. Then $\operatorname{Spec}(R_1) = X \times_M Y$.

Proof: Let *I* be the ideal of diagonal in $\mathcal{O}_M \otimes_{\mathbb{C}} \mathcal{O}_M$. Since *I* is generated by $r \otimes 1 - 1 \otimes r$ (Claim 3), $R = \mathcal{O}_X \otimes_{\mathbb{C}} \mathcal{O}_Y / (\pi_X \times \pi_Y)^*(I)$. Applying Claim 2, we obtain that $\operatorname{Spec}(R_1) = (\pi_X \times \pi_Y)^{-1}(\Delta)$.

Functoriality of normalization

CLAIM: Let X be an affine variety, \hat{X} its normalization, and $U \subset X$ a Zariski open subvariety. Then the normalization of U can be obtained as $Spec(\mathcal{O}_U \otimes_{\mathcal{O}_X} \mathcal{O}_{\hat{X}})$.

Proof. Step 1: Indeed, any element $f \in \mathcal{O}_U \otimes_{\mathcal{O}_X} \mathcal{O}_{\widehat{X}}$ is expressed as $f = \sum a_i f_i$, where $a_i \in \mathcal{O}_U$ and $f_i \in \mathcal{O}_{\widehat{X}}$ are finite over \mathcal{O}_U , hence f is finite over \mathcal{O}_U .

Step 2: Conversely, any element f which is finite over \mathcal{O}_U satisfies an equation P(t) = 0, where P(t) is a monic polynomial in $\mathcal{O}_U(t)$. Then there exists $u \in \mathcal{O}_X$, invertible in \mathcal{O}_U , such that $uP(t) \in \mathcal{O}_X[t]$. Let $uP(t) = ut^n + \sum_{i=1}^{n-1} a_i t^{n-i}$, where $a_i \in \mathcal{O}_X$. Then uf satisfies an equation $\frac{t^n}{u^{n-1}} + \sum_{i=1}^{n-1} a_i (t/u)^{n-i}$, equivalently, $t^n + \sum_{i=1}^{n-1} a_i u^{i-1} t^{n-i}$ hence $uf \in \mathcal{O}_{\widehat{X}}$. This gives $f \in \mathcal{O}_U \otimes_{\mathcal{O}_X} \mathcal{O}_{\widehat{X}}$.

REMARK: The intersection of open subsets is their fibered product. Since $\operatorname{Spec}(\mathcal{O}_U \otimes_{\mathcal{O}_X} \mathcal{O}_{\widehat{X}}) = U \times_X \widehat{X}$, the previous claim can be expressed as $\widehat{U} = U \times_X \widehat{X}$. Similarly, for two open set $U, W \subset X$, one has $\widehat{U \cap W} = \widehat{U} \times_X \widehat{W}$.

Normalization of a scheme

REMARK: A scheme can be defined as a collection of affine charts $\{U_i\}$ together with the open subvarieties $U_{ij} \subset U_i$ and $U_{ji} \subset U_j$ and gluing maps, isomorphisms $\psi_{ij}: U_{ij} \longrightarrow U_{ji}$ which satisfy the cocycle condition: for any triple of indices i, j, k, the restriction of $\psi_{ij} \circ \psi_{jk}$ to $U_{ij} \cap U_{ik}$ is equal to ψ_{ik} .

DEFINITION: Let X be a reduced, irreducible scheme, $\{U_i\}$ its affine covering, and \hat{U}_i the normalizations of every affine scheme U_i . Using the previous claim, we obtain that $(\widehat{U_i \cap U_j}) = \hat{U}_i \times_X \hat{U}_j$. This implies that the gluing map between the affine sets $\{\hat{U}_i\}$ satisfy the cocycle condition, and these affine sets can be glued together to a scheme. This scheme is called the normalization of X.