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Spectrum of a ring (reminder)

DEFINITION: Spectrum of a ring R is the set SpecR if its prime ideals.

DEFINITION: Let J ⊂ R be an ideal, and V (J) ⊂ SpecR be the set of all

prime ideals containing J. Zariski topology on SpecR is topology where

all V (J) (and only those) are closed. Clearly, V (J1) ∩ V (J2) = V (J1 + J2) and

V (J1) ∪ V (J2) = V (J1J2), hence finite unions and intersections of closed sets

are closed.

DEFINITION: Let R be a ring, Spec(R) its spectum and f ∈ R. Affine

open set is an open set Uf ∶= SpecR/V(f). We identify Uf with Spec(R[f−1])
(localization in f).

EXERCISE: Prove that finite intersection of affine open sets is affine,

Uf ∩Ug = Ufg.

EXERCISE: Prove that affine open sets give a base of Zariski topology.
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Affine schemes (reminder)

DEFINITION: The sheaf O of regular functions on SpecR is defined as

the sheaf which satisfies O∣Uf = R[f−1], with restriction maps taking a function

to its restriction to an open set.

EXERCISE: Prove that O∣Uf = R[f−1] is sufficient to define a sheaf, which

is reconstructed uniquely from this property.

DEFINITION: A scheme is a ringed space (M,O), which is locally isomor-

phic to an affine scheme with the sheaf of regular functions. In this situation

sheaf O is called the structure sheaf of the scheme, or the sheaf of regular

functions.

REMARK: The structure sheaf may contain nilpotents. An algebraic

variety is a scheme which does not have nilpotents in its structure sheaf.

DEFINITION: Morphism of affine schemes is a morphism of ringed spaces

SpecAÐ→ SpecB induced by a ring homomorphism BÐ→A. Morphism of

schemes is a map of schemes which is given by morphisms of affine schemes

in local affine charts.
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Integral closure (reminder)

DEFINITION: Let A ⊂ B be rings. The set of all elements in B which are

integral over A is called the integral closure of A in B.

DEFINITION: Let A be the ring without zero divisors, and k(A) its field of

fractions. The set of all elements a ∈ k(A) which are integral over A is called

the integral closure of A. A ring A is called integrally closed if A coincides

with its interal closure in k(A).

REMARK: As shown above, the integral closure is a ring.

DEFINITION: An affine variety X is called normal if all its irreducible com-

ponents Xi are disconnected, and the ring of functions OXi for each of these

irreducible components is integrally closed.

REMARK: Equivalently, X is normal if any finite, birational morphism

Y Ð→X is an isomorphism.

PROPOSITION: Let A be a factorial ring. Then it is integrally closed.
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Characteristic polynomial over a ring

DEFINITION: Let A be a Noetherian ring, [K ∶ k(A)] a finite extension of its

field of fractions, and B the integral closure of A in K. For any b ∈ B, denote

by Lb ∶ K Ð→K the map of multiplication by b. Consider Lb as a k(A)-linear

endomorphism of the finite-dimensional space K over k(A), and define the

trace of b as Tr(b) ∶= Tr(Lb).

CLAIM: In these assumptions, Tr(b) is an element of A.

Proof. Step 1: The coefficients ai of the minimal polynomial of b ∈ B over

k(A) belong to A. Indeed, let B̃ be the integral closure of k(A) in its algebraic

closure. Then ai ∈ A are obtained as elementary polynomials on Galois

conjugates of b, which are all in B̃. Since A is integrally closed, we have

k(A)A ∩ B̃ = A, which implies that ai ∈ A.

Step 2: Let B′ ⊂ B be the algebra generated by b. Since b is finite, B′ is a

finitely-generated A-module, isomorphic to A[t]/P (t), where P (t) ∈ k(A)[t] is

the minimal polynomial of P . Since A is integrally closed, the coefficients of

P (t) are elements of A. Let 1, b, b2, ..., bn be its generators over A, and (aij) the
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matrix of Lb written in this basis. Then B is decomposed as a k(A)-vector

space onto a sum of of d copies of B′, and on each of them Lb acts as

(aij) =

⎛
⎜⎜⎜⎜⎜⎜
⎝

0 1 0 . . . 0
0 0 1 . . . 0
⋮ ⋮ ⋮ ⋯ ⋮
0 0 0 . . . 1
−a0 −a1 −a2 . . . −an−1

⎞
⎟⎟⎟⎟⎟⎟
⎠

where P (t) = tn +∑ni=1 an−it
n−i. This gives Tr(b) = dan−1 ∈ A.
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Finiteness of integral closure

THEOREM: Let A be an integrally closed Noetherian ring, [K ∶ k(A)] a finite
extension of its field of fractions, and B the integral closure of A in K. Then
B is finitely generated as an A-module.

Proof. Step 1: The bilinear symmetric form x,yÐ→ Tr(xy) is non-degenerate.
Indeed, Tr(xx−1) = dimk(A)K, and chark(A) = 0.

Step 2: Choose a basis e1, ..., en in the k(A)-vector space K. Let Pi(t) ∈ k(A)[t]
be the minimal polynomials of ei. Write Pi(t) = Aitni+∑j<ni aijtj, where Ai, aij ∈
A. Then Aiei is a root of a monic polynomial P̃i(t) = tni+∑j<niAni−jaijtj. This
proves that the basis e1, ..., en in K ∶ k(A) can be chosen such that all ei
are integral over A.

Step 3: Let e∗i ∈ K be the dual basis with respect to the form Tr, with
Tr(e∗i ej) = δij. Consider the A-module M ⊂ K generated by e∗i . Clearly, M ∶=
{b ∈K ∣ Tr(bei) ∈ A}.

Step 4: For any b ∈ B, the trace Tr(b) belongs to A, because b is integral over
A (Step 1). Then B ⊂ M , and B is a submodule of a finitely generated
A-module M. Since A is Noetherian, B is finitely generated as A-module.
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Finiteness of integral closure: first applications

COROLLARY: Let B be a ring over C. Assume that there exists an injective

ring morphism from A = C[x1, ..., xk] to B such that B is finitely generated as an

A-module. Then its integral closure B̂ is a finitely generated A-module.

In particlular, B̂ is a finitely generated ring.

Proof: Since A is factorial, it is integrally closed, and the previous theorem

applies.

DEFINITION: Let X be an affine variety, and Â the integral closure of its

ring of regular functions. Assume that Â is a finitely generated ring. Then

X̂ ∶= Spec(Â) is called the normalization of X.

REMARK: Today we shall prove that Â is always finitely generated, if A

is a finitely generated ring over C.
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Transcendence basis

DEFINITION: Let k(t1, ..., tn) be the field of rational functions of several
variables, that is, the fraction field for the polynomial ring k[t1, ..., tn]. Then
the extension [k(t1, ..., tn) ∶ k] is called a purely transcendental extension of
k, and t1, ..., tn are called algebraically independent.

REMARK: Clearly, t1, ..., tn are algebraically independent if and only if
there are no alrebraic relations of form P (t1, ..., tn) = 0, where P is a
polynomial of n variables.

DEFINITION: Transcendence basis of an extension [K ∶ k] is a collection
z1, ..., zn ∈K generating a purely trascendental extension K′ ∶= k(z1, ..., zn) such
that [K ∶K′] is an algebraic extension. We call the number n the transcen-
dental degree of X.

CLAIM: Let X ⊂ Cn be an irreducible affine manifold, t1, ..., tn coordinates on
Cn, and Πk ∶ X Ð→Ck the projection to the first k coordinates. Then the
following are equivalent.

(i) Πk is dominant and the extension [k(X) ∶ k(t1, ..., tk)] is finite.

(ii) t1, ..., tk is transcendence basis in k(X).
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When the coordinate projection is finite

REMARK: Let X ⊂ Cn be an irreducible affine subvariety, zi coordinates on

Cn, and z1, ..., zk transcendence basis on k(X). The projection map Πn−1

is finite if and only if P (zn) = 0 in OX, for some monic polynomial

P (t) ∈ OX[t] with coefficients which are polynomial in z1, ..., zn−1. Indeed,

this is precisely what is needed for OX to be a finitely generated module

over its subalgebra A = C[z1, ..., zn−1]. Notice that a non-zero polynomial

P (t) ∈ A[t] such that P (zn) = 0 on X always exists, unless n = k and X = Cn,

but it is not necessarily monic.

CLAIM: In these assumptions, there exists a linear coordinate change

z′i ∶= zi + λizn, such that zn is finite over z′1, ..., z
′
k
.

Proof: Next slide.

REMARK: This immediately implies the Noether’s normalization lemma:

any affine manifold admits a finite, dominant map to Cn.
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When the coordinate projection is finite (2)

CLAIM: In these assumptions, there exists a linear coordinate change

z′i ∶= zi + λizn, such that zn is finite over z′1, ..., z
′
k
.

Proof. Step 1: Let P (z1, ..., zk, t) be a non-zero polynomial such that P (z1, ..., zk, zn) =
0 in OX. Such a polynomial exists because z1, ..., zk is a transcendence basis

in k(X), and zn is algebraic over z1, ..., zk ∈ OX. Let F (z1, ..., zk, zn) be a homo-

geneous component of maximal degree in P (z1, ..., zk, zn). We choose P to be

of minimal possible degree in z1, ..., zk, zn.

Step 2: Consider a polynomial

Q(z1, ..., zk, zn) ∶= F (z1 + λ1zn, ..., zk + λkzn, zn).

Then Q(0,0, ...,0,1) = F (λ1, ..., λk,1) is non-zero for general λi. Indeed,

if F (λ1, ..., λk,1) is identically 0 for all λi, the homogeneous polynomial F

vanishes.

Step 3: Let z′i ∶= zi+λizn. The degree d polynomial P (z1, ..., zk, zn) =Q(z′1, ..., z
′
k
, zn)

is monic in zn, because its leading term zdn has non-zero coefficient by Step

2.
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Normalization of an affine variety

COROLLARY: Let X be an affine variety, and A the integral closure of its

ring of regular functions. Then A is finitely generated.

Proof: Let X Ð→Cd be a finite, dominant map. Since all elements of OX are

finite over OCd, the ring OX is contained in the integral closure Â of OCd in

k(OX). This implies that A ⊂ Â. On the other hand, all elements of Â are

finite over OCd, hence they are finite over OX, which implies Â ⊂ A.

DEFINITION: Let X be an affine variety, and Â the integral closure of its

ring of regular functions. Then X̃ ∶= Spec(Â) is called normalization of X.

REMARK: The normalization map is finite and birational; X is normal if for

any finite, birational ϕ ∶ X ′Ð→X, the map ϕ is an isomorphism. Indeed,

in this case OX ′ ⊃ OX is finite with the same field of fractions.

COROLLARY: Normalization of X is a finite, birational morphism X ′Ð→X
such that for any other finite, birational ϕ ∶ X ′′Ð→X ′, the map ϕ is an

isomorphism. In particular, any birational, finite map X ′Ð→X with X ′

normal is a normalization.
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Preimage and diagonal

Claim 2: Let f ∶ X Ð→ Y be a morphism of algebraic varieties, f∗ ∶ OY Ð→OX
the corresponding ring homomorphism, Z ⊂ Y a subvariety, and IZ its ideal.
Denote by R1 the quotient of a ring R ∶= OX ⊗OY (OY /IZ) = OX/f∗(IZ) by its
nilradical. Then Spec(R1) = f−1(Z).

Proof: Clearly, the set of common zeros of the ideal J ∶= f∗(IZ) contains
f−1(Z). On the other hand, for any point x ∈ X such that f(x) ∉ Z there
exist a function g ∈ J such that g(x) ≠ 0. Therefore, f−1(Z) = VJ, and strong
Nullstellensatz implies that Of−1(Z) = R1.

Claim 3: Let M be an algebraic variety, ∆ ⊂ M ×M the diagonal, and I ⊂
OM ⊗C OM the ideal generated by r ⊗ 1 − 1 ⊗ r for all r ∈ OM . Then O∆ is
OM ⊗COM/I.

Proof. Step 1: By definition of the tensor product, OM ⊗C OM/I = OM ⊗OM
OM = OM , hence it is reduced. If we prove that ∆ = VI, the statement of the
claim would follow from strong Nullstellensatz.

Step 2: Clearly, ∆ ⊂ VI. To prove the converse, let (m,m′) ∈M ×M be a point
not on diagonal, and f ∈ OM a function which satisfies f(m) = 0, f(m′) ≠ 0.
Then f ⊗ 1 − 1⊗ f is non-zero on (m,m′).
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Fibered product

DEFINITION: Let X
πXÐ→ M,Y

πYÐ→ M be maps of sets. Fibered product

X ×M Y is the set of all pairs (x,y) ∈X × Y such that πX(x) = πY (y).

CLAIM: Let X
πXÐ→ M,Y

πYÐ→ M be morphism of algebraic varieties, R ∶=
OX ⊗OM

OY , and R1 the quotient of R by its nilradical. Then Spec(R1) =
X ×M Y .

Proof: Let I be the ideal of diagonal in OM ⊗C OM . Since I is generated by

r⊗1−1⊗r (Claim 3), R = OX⊗COY /(πX ×πY )∗(I). Applying Claim 2, we obtain

that Spec(R1) = (πX × πY )−1(∆).
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Functoriality of normalization

CLAIM: Let X be an affine variety, X̂ its normalization, and U ⊂ X a

Zariski open subvariety. Then the normalization of U can be obtained as

Spec(OU ⊗OX
OX̂).

Proof. Step 1: Indeed, any element f ∈ OU ⊗OX
OX̂ is expressed as f = ∑aifi,

where ai ∈ OU and fi ∈ OX̂ are finite over OU , hence f is finite over OU .

Step 2: Conversely, any element f which is finite over OU satisfies an equation

P (t) = 0, where P (t) is a monic polynomial in OU(t). Then there exists u ∈ OX,

invertible in OU , such that uP (t) ∈ OX[t]. Let uP (t) = utn +∑n−1
i=1 ait

n−i, where

ai ∈ OX. Then uf satisfies an equation tn

un−1 +∑n−1
i=1 ai(t/u)n−i, equivalently,

tn +∑n−1
i=1 aiu

i−1tn−i hence uf ∈ OX̂. This gives f ∈ OU ⊗OX
OX̂.

REMARK: The intersection of open subsets is their fibered product. Since

Spec(OU ⊗OX
OX̂) = U ×X X̂, the previous claim can be expressed as Û = U ×X X̂.

Similarly, for two open set U,W ⊂X, one has Û ∩W = Û ×X Ŵ .
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Normalization of a scheme

REMARK: A scheme can be defined as a collection of affine charts {Ui}
together with the open subvarieties Uij ⊂ Ui and Uji ⊂ Uj and gluing maps,

isomorphisms ψij ∶ Uij Ð→Uji which satisfy the cocycle condition: for any

triple of indices i, j, k, the restriction of ψij ○ψjk to Uij ∩Uik is equal to ψik.

DEFINITION: Let X be a reduced, irreducible scheme, {Ui} its affine cover-

ing, and Ûi the normalizations of every affine scheme Ui. Using the previous

claim, we obtain that ̂(Ui ∩Uj) = Ûi×X Ûj. This implies that the gluing map

between the affine sets {Ûi} satisfy the cocycle condition, and these

affine sets can be glued together to a scheme. This scheme is called the

normalization of X.
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