Complex analytic spaces

lecture 24: Normalization

Misha Verbitsky

IMPA, sala 236,

October 30, 2023, 13:30

M. Verbitsky

Integral closure (reminder)

DEFINITION: Let $A \,\subset B$ be rings. The set of all elements in B which are integral over A is called **the integral closure of** A **in** B. The set of all elements $a \in k(A)$ in the field of fractions of A which are integral over A is called **the integral closure of** A. A ring A is called **integrally closed** if A coincides with its integral closure in k(A).

REMARK: As shown in Lecture 22, the integral closure is a ring.

PROPOSITION: Let *A* be a factorial ring. Then it is integrally closed.

THEOREM: Let A be an integrally closed Noetherian ring, [K:k(A)] a finite extension of its field of fractions, and B the integral closure of A in K. Then B is finitely generated as an A-module.

Corollary 1: Let *B* be a ring over \mathbb{C} . Assume that there exists an injective ring morphism from $A = \Theta_n$ to *B* such that *B* is finitely generated as an *A*-module. Then its integral closure \hat{B} is a finitely generated *A*-module. In particlular, \hat{B} is a finitely generated ring.

Proof: Since A is factorial, it is integrally closed, and the previous theorem applies. \blacksquare

Normal complex varieties

DEFINITION: A complex variety X is called **normal** if for any $x \in X$ the corresponding ring of germs $k(\mathcal{O}_{X,x})$ is an integrally closed ring without zero divisors.

EXAMPLE: All smooth varieties are normal. Indeed, the ring \mathcal{O}_n is factorial, hence integrally closed.

CLAIM: Let X be a normal variety, and U an irreducible open set. Then the ring $H^0(\mathcal{O}_U)$ of holomorphic functions is integrally closed.

Proof: Let $f \in k(H^0(\mathcal{O}_U))$ be a meromorphic function which is finite over the ring $H^0(\mathcal{O}_U)$. Then each of its germs in $z \in U$ is finite over $\mathcal{O}_{X,z}$, hence belongs to $\mathcal{O}_{X,z}$. Then all germs of f are holomorphic, and this function is therefore holomorphic.

Normal complex varieties (2)

CLAIM: Conversely, if $H^0(\mathcal{O}_U)$ is integrally closed for all open irreducible $U \subset X$, the variety X is normal.

Proof: Let $f \in k(\mathcal{O}_{X,x})$ be a function which is finite over $\mathcal{O}_{X,x}$; then f is a root of a monic polynomial P(t) = 0 with coefficients in $\mathcal{O}_{X,x}$. Let V be an open neighbourhood of x such that $f \in k(H^0(\mathcal{O}_V))$. Each of the coefficients of P(t) is defined in some open set containing x, hence P(t) has coefficients in $H^0(\mathcal{O}_W)$, where W is the intersection of V and all these open sets. Since $H^0(\mathcal{O}_W)$ is integrally closed, we have $f \in \mathcal{O}_W$, hence $f \in \mathcal{O}_{X,x}$.

Divisors in normal varieties

PROPOSITION: Let X be a normal complex variety, and $D \in X$ a divisor. Then there exists a proper subvariety $D_1 \in D$ such that in all points $x \in D \setminus D_1$, the ideal of D is principal in $\mathcal{O}_{X,x}$.

Proof. Step 1: Let R be the localization of $\mathcal{O}_{X,x}$ in I_D , a and $\mathfrak{m} = I_D R$ its maximal ideal. To finish the proof it would suffice to show that \mathfrak{m} is a principal ideal in R. Indeed, in this case, the ideal I_D is generated by some $v \in I_D$ on a complement to a collection of divisors which intersect D in a proper subvariety.

Step 2: Removing subsets of codimension ≥ 2 , we we may always assume that D is irreducible and $x \in D$ a smooth point in D. Let $f \in \mathcal{O}_{X,x}$ be a non-zero function which vanishes on D. By Rückert Nullstellensatz, the ideal I_D of D is the radical $\sqrt{(f)}$ of the principal ideal (f).

Divisors in normal varieties (2)

Steps 1-2: Let *R* be the localization of $\mathcal{O}_{X,x}$ in I_D , a and $\mathfrak{m} = I_D R$ its maximal ideal. To finish the proof it would suffice to show that \mathfrak{m} is a principal ideal in *R*. Let $f \in \mathcal{O}_{X,x}$ be a non-zero function which vanishes on *D*. By Rückert Nullstellensatz, the ideal I_D of *D* is the radical $\sqrt{(f)}$ of the principal ideal (f).

Step 3: Let k be the minimal number such that $\mathfrak{m}^k \in (f)$. Then for some $\alpha_1, ..., \alpha_{k-1} \in \mathfrak{m}$, we have $\alpha_1 \alpha_2 ... \alpha_{k-1} \mathfrak{m} \in (f)$ and $\alpha_1 \alpha_2 ... \alpha_{k-1} \notin (f)$. Let $g = \alpha_1 \alpha_2 ... \alpha_{k-1}$, and $u \coloneqq \frac{g}{f}$. Then $u\mathfrak{m} \subset R$, and $u \notin R$.

Step 4: If $u\mathfrak{m} \subset \mathfrak{m}$, consider the subalgebra $A \subset \operatorname{Hom}_R(\mathfrak{m},\mathfrak{m})$ generated by u. This algebra is a finitely generated as a module over R, hence any element of A is a root of a monic polynomial. Since R is integrally closed, this implies that $u \in R$, a contradiction.

Step 5: Since $u\mathfrak{m} \notin \mathfrak{m}$, this implies that $u\mathfrak{m} = R$, hence $u^{-1}R = \mathfrak{m}$, and the ideal \mathfrak{m} is principal.

Normal varieties are smooth in codimension 1

THEOREM: Let X be a normal complex variety, and X_{sing} the set of its singular points (it is complex analytic, as shown in Lecture 12). Then $\operatorname{codim} X_{sing} \ge 2$.

Proof. Step 1: Suppose, by absurd, that $\operatorname{codim} X_{\operatorname{sing}} = 1$. After removing a subset of $\operatorname{codim}_X \ge 2$, we may assume that $D = X_{\operatorname{sing}}$ is a divisor. Using the previous proposition, we may also assume that the corresponding ideal is principal.

Step 2: Recall that a local ring of Krull dimension d is regular if its maximal ideal can be generated by d elements (Lecture 19). Let $n = \dim X$. Let $x \in D$ be a smooth point in D. To prove the theorem it would suffice to show that x is smooth in X, that is, to prove that the maximal ideal \mathfrak{m} of x in $\mathcal{O}_{X,x}$ is generated by n elements.

Step 3: Let f be the generator of I_D in $\mathcal{O}_{X,x}$, and $u_1, ..., u_{n-1} \in \mathcal{O}_{X,x}/I_D = \mathcal{O}_D$ functions generating the maximal ideal of $x \in D$. Such functions exist, because $x \in D$ is smooth. Then \mathfrak{m} is generated by f and $u_1, ..., u_{n-1}$, implying that $x \in X$ is smooth.

COROLLARY: Let X be a normal complex curve. Then X is smooth. \blacksquare

M. Verbitsky

Normalization

DEFINITION: We say that a complex variety X admits a normalization if there exists a finite, bimeromorphic holomorphic map $F: \tilde{X} \to X$; in this case \tilde{X} is called **the normalization** of X, and F **the normalization map**.

PROPOSITION: Let X be an irreducible complex variety. Then every point $x \in X$ has an open neighbourhood which admits a normalization.

Proof: By finiteness theorem, a germ (X, x) of a complex variety admits a finite, dominant holomorphic map to \mathbb{C}^d . By Corollary 1, the integral closure of $\mathcal{O}_{X,x}$ in $k(\mathcal{O}_{X,x})$ is finitely generated. Let $z_1, ..., z_m \in k(\mathcal{O}_{X,x})$ be the generators of the integral closure, $P_1, ..., P_r \in \mathcal{O}_{X,x}[z_1, ..., z_m]$ the generators of the ideal of all relations between these generators, and $U_x \ni x$ an open neighbourhood of x where all coefficients of these relations are holomorphic. Then the normalization \tilde{U}_x of U_x is a subvariety in $X \times \mathbb{C}^m$ defined by the relations $P_1, ..., P_r$.

CLAIM: The normalization is unique up to an isomorphism.

Proof: Indeed, the holomorphic functions on \tilde{X} are meromorphic functions on X which are finite over \mathcal{O}_X . Then for every two normalizations, their ring of functions are isomorphic, which defines the correspondence between the coordinate functions, and this defines a biholomorphic equivalence.

Every complex variety admits a normalization

THEOREM: Every complex variety admits a normalization.

Proof: Let X be a complex variety, and $\{U_i\}$ its covering by open sets admitting a normalization. A restriction of the normalization to a smaller open subset is again a normalization, because normality is a local property. Take a variety with an atlas $\{\tilde{U}_i\}$ and the gluing maps obtained by lifting the gluing maps of $U_i \cap U_j$ to the normalization. The cocycle condition is automatic, because if a relation is true on $\mathcal{O}_{U_i \cap U_j \cap U_k}$, it is also true on its integral closure. Then the atlas $\{\tilde{U}_i\}$ with these gluing maps defines a variety $\tilde{X} \longrightarrow X$, which is normal, because normality is a local property.

REMARK: The normalization of a complex curve is its desingularization.