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Integral closure (reminder)

DEFINITION: Let Ac B be rings. The set of all elements in B which are
integral over A is called the integral closure of A iIn B. The set of all
elements a € k(A) in the field of fractions of A which are integral over A is
called the integral closure of A. A ring A is called integrally closed if A
coincides with its integral closure in k(A).

REMARK: As shown in Lecture 22, the integral closure is a ring.
PROPOSITION: Let A be a factorial ring. Then it is integrally closed.

THEOREM: Let A be an integrally closed Noetherian ring, [K : k(A)] a finite
extension of its field of fractions, and B the integral closure of A in K. Then
B is finitely generated as an A-module.

Corollary 1: Let B be a ring over C. Assume that there exists an injective
ring morphism from A =©, to B such that B is finitely generated as an A-
module. Then its integral closure B is a finitely generated A-module.
In particlular, B is a finitely generated ring.

Proof: Since A is factorial, it is integrally closed, and the previous theorem
applies. m
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Normal complex varieties

DEFINITION: A complex variety X is called normal if for any x € X the
corresponding ring of germs k(Ox ;) is an integrally closed ring without zero
divisors.

EXAMPLE: All smooth varieties are normal. Indeed, the ring ©,, is fac-
torial, hence integrally closed.

CLAIM: Let X be a normal variety, and U an irreducible open set. Then
the ring H9(Or) of holomorphic functions is integrally closed.

Proof: Let feck(HO9(Or)) be a meromorphic function which is finite over the
ring H9(Oy;). Then each of its germs in z e U is finite over Ox ., hence belongs
to Ox .. Then all germs of f are holomorphic, and this function is therefore
holomorphic. =
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Normal complex varieties (2)

CLAIM: Conversely, if HO(Oy;) is integrally closed for all open irreducible
UcX, the variety X is normal.

Proof: Let f e k(Ox,) be a function which is finite over Ox ,; then f is a
root of a monic polynomial P(t) =0 with coefficients in Ox ;. Let V be an
open neighbourhood of x such that f ¢ k(H9(Oy/)). Each of the coefficients of
P(t) is defined in some open set containing =z, hence P(t) has coefficients
in HO(Oy,), where W is the intersection of VV and all these open sets.
Since HO9(Oyy) is integrally closed, we have f e Oy, hence feOx, =
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Divisors in normal varieties

PROPOSITION: Let X be a normal complex variety, and D c X a divisor.
Then there exists a proper subvariety D c D such that in all points
xr € D\D1, the ideal of D is principal in Oy ,.

Proof. Step 1: Let R be the localization of Ox , in Ip, a and m = IpR its
maximal ideal. To finish the proof it would suffice to show that m is a
principal ideal in R. Indeed, in this case, the ideal Ip is generated by some
v e Ip on a complement to a collection of divisors which intersect D in a
proper subvariety.

Step 2: Removing subsets of codimension > 2, we we may always assume
that D is irreducible and x € D a smooth pointin D. Let f ¢ (QX’Qj be a non-zero
function which vanishes on D. By Ruckert Nullstellensatz, the ideal I of
D is the radical \/(f) of the principal ideal (f).
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Divisors in normal varieties (2)

Steps 1-2: Let R be the localization of Ox , in Ip, a and m = IpR its maximal
ideal. To finish the proof it would suffice to show that m is a principal
ideal in R. Let feOx, be a non-zero function which vanishes on D. By
Ruckert Nullstellensatz, the ideal I of D is the radical /(f) of the
principal ideal (f).

Step 3: Let k£ be the minimal number such that m¥ c (f). Then for some
a1,...,p_1 € m, we have ajas..ap_1m c (f) and ajap..ar_1 ¢ (f). Let g =
a10o...a_1, and u::% Then umc R, and u ¢ R.

Step 4: If um c m, consider the subalgebra A c Hompg(m,m) generated by wu.
This algebra is a finitely generated as a module over R, hence any element
of A is a root of a monic polynomial. Since R is integrally closed, this
implies that « ¢ R, a contradiction.

Step 5: Since um ¢ m, this implies that um = R, hence v 1R =m, and the
ideal m IS principal. =
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Normal varieties are smooth in codimension 1

THEOREM: Let X be a normal complex variety, and Xg,, the set of its
singular points (it is complex analytic, as shown in Lecture 12). Then
codim Xgjng 2 2.

Proof. Step 1: Suppose, by absurd, that codim X4, =1. After removing a
subset of codimy > 2, we may assume that D = X, is a divisor. Using the
previous proposition, we may also assume that the corresponding ideal
IS principal.

Step 2: Recall that a local ring of Krull dimension d is regular if its maximal
ideal can be generated by d elements (Lecture 19). Let n=dimX. Let
x €D be a smooth point in D. To prove the theorem it would suffice to
show that z is smooth in X, that is, to prove that the maximal ideal m
of x in @X,:C IS generated by n elements.

Step 3: Let f be the generator of Ip in Ox ,, and uq,...,u,-1 € Ox ,/Ip =Op
functions generating the maximal ideal of x € D. Such functions exist, because
x €D is smooth. Then m is generated by f and uq,...,u,_1, implying that
reX IS smooth. =

COROLLARY: Let X be a normal complex curve. Then X iIs smooth. =
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Normalization

DEFINITION: We say that a complex variety X admits a normalization
if there exists a finite, bimeromorphic holomorphic map F: X — X: in this
case X is called the normalization of X, and F the normalization map.

PROPOSITION: Let X be an irreducible complex variety. Then every
point r ¢ X has an open neighbourhood which admits a normalization.

Proof: By finiteness theorem, a germ (X,x) of a complex variety admits a
finite, dominant holomorphic map to C2. By Corollary 1, the integral closure
of Ox . in k(Ox,) is finitely generated. Let 2q,...,2m € K(Ox ) be the gener-
ators of the integral closure, Pq,...,Pr € @X,w[zl,...,zm] the generators of the
ideal of all relations between these generators, and U, > x an open neighbour-
hood of x where all coefficients of these relations are holomorphic. Then the
normalization U, of U, is a subvariety in X xC™ defined by the relations
Pl,...,Pr. |

CLAIM: The normalization is unique up to an isomorphism.

Proof: Indeed, the holomorphic functions on X are meromorphic functions
on X which are finite over Oyx. Then for every two normalizations, their ring
of functions are isomorphic, which defines the correspondende between the
coordinate functions, and this defines a biholomorphic equivalence. m
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Every complex variety admits a normalization
THEOREM: Every complex variety admits a normalization.

Proof: Let X be a complex variety, and {U;} its covering by open sets ad-
mitting a normalization. A restriction of the normalization to a smaller open
subset is again a normalization, because normality is a local property. Take a
variety with an atlas {U;} and the gluing maps obtained by lifting the gluing
maps of Uz-mUj to the normalization. The cocycle condition is automatic,
because if a relati~on IS true on @UimUjﬁUk, it is also true on its inEegraI closure.
Then the atlas {U;} with these gluing maps defines a variety X — X, which
IS normal, because normality is a local property. m

REMARK: The normalization of a complex curve is its desingulariza-
tion.



