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Integral closure (reminder)

DEFINITION: Let A ⊂ B be rings. The set of all elements in B which are
integral over A is called the integral closure of A in B. The set of all
elements a ∈ k(A) in the field of fractions of A which are integral over A is
called the integral closure of A. A ring A is called integrally closed if A
coincides with its integral closure in k(A).

REMARK: As shown in Lecture 22, the integral closure is a ring.

PROPOSITION: Let A be a factorial ring. Then it is integrally closed.

THEOREM: Let A be an integrally closed Noetherian ring, [K ∶ k(A)] a finite
extension of its field of fractions, and B the integral closure of A in K. Then
B is finitely generated as an A-module.

Corollary 1: Let B be a ring over C. Assume that there exists an injective
ring morphism from A = On to B such that B is finitely generated as an A-
module. Then its integral closure B̂ is a finitely generated A-module.
In particlular, B̂ is a finitely generated ring.

Proof: Since A is factorial, it is integrally closed, and the previous theorem
applies.
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Normal complex varieties

DEFINITION: A complex variety X is called normal if for any x ∈ X the

corresponding ring of germs k(OX,x) is an integrally closed ring without zero

divisors.

EXAMPLE: All smooth varieties are normal. Indeed, the ring On is fac-

torial, hence integrally closed.

CLAIM: Let X be a normal variety, and U an irreducible open set. Then

the ring H0(OU) of holomorphic functions is integrally closed.

Proof: Let f ∈ k(H0(OU)) be a meromorphic function which is finite over the

ring H0(OU). Then each of its germs in z ∈ U is finite over OX,z, hence belongs

to OX,z. Then all germs of f are holomorphic, and this function is therefore

holomorphic.
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Normal complex varieties (2)

CLAIM: Conversely, if H0(OU) is integrally closed for all open irreducible

U ⊂X, the variety X is normal.

Proof: Let f ∈ k(OX,x) be a function which is finite over OX,x; then f is a

root of a monic polynomial P (t) = 0 with coefficients in OX,x. Let V be an

open neighbourhood of x such that f ∈ k(H0(OV )). Each of the coefficients of

P (t) is defined in some open set containing x, hence P (t) has coefficients

in H0(OW ), where W is the intersection of V and all these open sets.

Since H0(OW ) is integrally closed, we have f ∈ OW , hence f ∈ OX,x.
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Divisors in normal varieties

PROPOSITION: Let X be a normal complex variety, and D ⊂ X a divisor.

Then there exists a proper subvariety D1 ⊂ D such that in all points

x ∈D/D1, the ideal of D is principal in OX,x.

Proof. Step 1: Let R be the localization of OX,x in ID, a and m = IDR its

maximal ideal. To finish the proof it would suffice to show that m is a

principal ideal in R. Indeed, in this case, the ideal ID is generated by some

v ∈ ID on a complement to a collection of divisors which intersect D in a

proper subvariety.

Step 2: Removing subsets of codimension ⩾ 2, we we may always assume

that D is irreducible and x ∈D a smooth point in D. Let f ∈ OX,x be a non-zero

function which vanishes on D. By Rückert Nullstellensatz, the ideal ID of

D is the radical
√

(f) of the principal ideal (f).
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Divisors in normal varieties (2)

Steps 1-2: Let R be the localization of OX,x in ID, a and m = IDR its maximal

ideal. To finish the proof it would suffice to show that m is a principal

ideal in R. Let f ∈ OX,x be a non-zero function which vanishes on D. By

Rückert Nullstellensatz, the ideal ID of D is the radical
√

(f) of the

principal ideal (f).

Step 3: Let k be the minimal number such that mk ⊂ (f). Then for some

α1, ...,αk−1 ∈ m, we have α1α2...αk−1m ⊂ (f) and α1α2...αk−1 ∉ (f). Let g =

α1α2...αk−1, and u ∶= g
f . Then um ⊂ R, and u ∉ R.

Step 4: If um ⊂ m, consider the subalgebra A ⊂ HomR(m,m) generated by u.

This algebra is a finitely generated as a module over R, hence any element

of A is a root of a monic polynomial. Since R is integrally closed, this

implies that u ∈ R, a contradiction.

Step 5: Since um /⊂ m, this implies that um = R, hence u−1R = m, and the

ideal m is principal.
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Normal varieties are smooth in codimension 1

THEOREM: Let X be a normal complex variety, and Xsing the set of its
singular points (it is complex analytic, as shown in Lecture 12). Then
codimXsing ⩾ 2.

Proof. Step 1: Suppose, by absurd, that codimXsing = 1. After removing a
subset of codimX ⩾ 2, we may assume that D = Xsing is a divisor. Using the
previous proposition, we may also assume that the corresponding ideal
is principal.

Step 2: Recall that a local ring of Krull dimension d is regular if its maximal
ideal can be generated by d elements (Lecture 19). Let n = dimX. Let
x ∈ D be a smooth point in D. To prove the theorem it would suffice to
show that x is smooth in X, that is, to prove that the maximal ideal m

of x in OX,x is generated by n elements.

Step 3: Let f be the generator of ID in OX,x, and u1, ..., un−1 ∈ OX,x/ID = OD
functions generating the maximal ideal of x ∈D. Such functions exist, because
x ∈ D is smooth. Then m is generated by f and u1, ..., un−1, implying that
x ∈X is smooth.

COROLLARY: Let X be a normal complex curve. Then X is smooth.
7



Complex analytic spaces, lecture 24 M. Verbitsky

Normalization

DEFINITION: We say that a complex variety X admits a normalization
if there exists a finite, bimeromorphic holomorphic map F ∶ X̃ Ð→X; in this
case X̃ is called the normalization of X, and F the normalization map.

PROPOSITION: Let X be an irreducible complex variety. Then every
point x ∈X has an open neighbourhood which admits a normalization.

Proof: By finiteness theorem, a germ (X,x) of a complex variety admits a
finite, dominant holomorphic map to Cd. By Corollary 1, the integral closure
of OX,x in k(OX,x) is finitely generated. Let z1, ..., zm ∈ k(OX,x) be the gener-
ators of the integral closure, P1, ...,Pr ∈ OX,x[z1, ..., zm] the generators of the
ideal of all relations between these generators, and Ux ∋ x an open neighbour-
hood of x where all coefficients of these relations are holomorphic. Then the
normalization Ũx of Ux is a subvariety in X ×Cm defined by the relations
P1, ...,Pr.

CLAIM: The normalization is unique up to an isomorphism.

Proof: Indeed, the holomorphic functions on X̃ are meromorphic functions
on X which are finite over OX. Then for every two normalizations, their ring
of functions are isomorphic, which defines the correspondende between the
coordinate functions, and this defines a biholomorphic equivalence.
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Every complex variety admits a normalization

THEOREM: Every complex variety admits a normalization.

Proof: Let X be a complex variety, and {Ui} its covering by open sets ad-

mitting a normalization. A restriction of the normalization to a smaller open

subset is again a normalization, because normality is a local property. Take a

variety with an atlas {Ũi} and the gluing maps obtained by lifting the gluing

maps of Ui ∩ Uj to the normalization. The cocycle condition is automatic,

because if a relation is true on OUi∩Uj∩Uk, it is also true on its integral closure.

Then the atlas {Ũi} with these gluing maps defines a variety X̃ Ð→X, which

is normal, because normality is a local property.

REMARK: The normalization of a complex curve is its desingulariza-

tion.
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