Complex analytic spaces

lecture 26: Holomorphically convex varieties

Misha Verbitsky

IMPA, sala 236,

November 6, 2023, 13:30

Domains of holomorphy in \mathbb{C}^n

DEFINITION: Let $\Omega \subset \mathbb{C}^n$ be an open subset. It is called a domain of holomorphy if for any connected open subset $V \subset \mathbb{C}^n$ such that $W \coloneqq \Omega \cap V$ is connected, there exists a function $f \in H^0(\mathcal{O}_W)$ which cannoe be extended to V.

EXAMPLE: Every open subset $\Omega \subset \mathbb{C}$ is a domain of holomorphy. Indeed, for any $x \in \overline{\Omega} \setminus \Omega$, the function $z \mapsto (z - x)^{-1}$ cannot be extended to x.

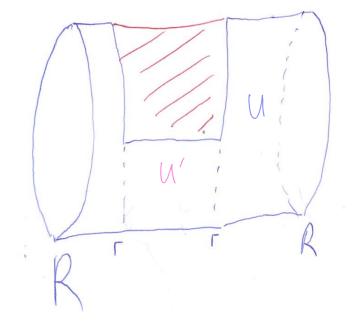
EXAMPLE: Every convex subset $\Omega \subset \mathbb{C}^n$ is a domain of holomorphy. Indeed, for any $x \in \overline{\Omega} \setminus \Omega$, there exists a complex hyperplane $V \subset \mathbb{C}^n$ not intersecting Ω (prove this). Suppose that V is defined by an affine equation $\lambda(z) = 0$. Then λ^{-1} is a holomorphic function on Ω which cannot be extended to x.

REMARK: The Hartogs figure, defined in the next slide, is **an example of a set which is not a domain of holomorphy**,

M. Verbitsky

Hartogs figure

DEFINITION: Let $U \subset \mathbb{C}^{n-1}$ be a connected open set, and $U' \subsetneq U$ its open subset. Let $\Delta_R \subset \mathbb{C}$ be an open disk of radius R, and $\overline{\Delta}_R$ its closure. Define **the Hartogs figure** as $\Omega \coloneqq \Delta_R \setminus \overline{\Delta}_r \times U \cup D(R) \times U' \subset \mathbb{C} \times \mathbb{C}^{n-1}$ and **the filled Hartogs figure** as $\widetilde{\Omega} \coloneqq \Delta_R \times U$, where $0 \leq r < R$.



CLAIM: Every holomorphic function $f \in \mathcal{O}_{\Omega}$ can be extended to $\mathcal{O}_{\tilde{\Omega}}$. **Proof:** Let

$$\tilde{f}(z_1, z') \coloneqq \frac{1}{2\pi\sqrt{-1}} \int_{|\zeta_1|=\rho} \frac{f(\zeta_1, z')}{\zeta_1 - z_1} d\zeta_1,$$

where $(z_1, z') \in \tilde{\Omega} \in \mathbb{C} \times U$ and $r < \rho < R$. By Cauchy formula, $\tilde{f} = f$ on $\Delta_R \times U'$, hence $\tilde{f} = f$ on Ω by analytic continuation.

Holomorphic convexity

DEFINITION: Let $K \subset X$ be a compact set in a complex variety. A holomorphic hull of K is

$$\widehat{K} \coloneqq \left\{ z \in X \quad | \quad |f(z)| \leq \sup_{z \in K} |f(z)| \quad \forall f \in \mathcal{O}_X \right\}.$$

CLAIM: \hat{K} is a closed subset of X containing K. Moreover, $\sup_{z \in K} |f(z)| = \sup_{z \in \hat{K}} \quad \forall f \in \mathcal{O}_X.$ **Proof:** \hat{K} is closed because $\hat{K} = \bigcap_{f \in \mathcal{O}_X} |f|^{-1} \left(\left[0, \sup_{z \in K} |f(z)| \right] \right).$ **EXERCISE:** Prove that for any holomorphic map $h: X \longrightarrow Y$, we have $h(\hat{K}) = \widehat{h(X)}.$

DEFINITION: A subset $U \subset V$ is called **relatively compact** if its closure in V is compact; this relation is denoted $U \in V$.

CLAIM: Let $h: U \longrightarrow X$ be a holomorphic map, and $W \in U$ a relatively compact subset. Assume that $h(\partial W) \subset K$, where $\partial W = \overline{W} \setminus W$. Then $h(W) \subset \widehat{K}$.

Proof: Indeed, any function $f \in \mathcal{O}_U$ satisfies $\sup_{z \in \overline{W}} = \sup_{z \in \partial W}$ by maximum principle.

Holomorphic hull and convex hull

Claim 1: For any $K \subset \Omega \subset \mathbb{C}^n$, the holomorphic hull \hat{K} is contained in the convex hull \hat{K}_{aff} .

Proof. Step 1: The set $\{x \in \mathbb{C}^n \mid f(x) \leq 1\}$ is a half-space if $f = e^{\lambda}$, where λ is an affine function. Indeed, this is the same as the set $\text{Re}(\lambda) \leq 0$.

Step 2: The set \hat{K}_{aff} is intersection of all half-spaces containing K. By Step 1, this gives $\hat{K}_{aff} = \bigcap_{\lambda \in Aff} |e^{\lambda}|^{-1} \left(\begin{bmatrix} 0, \sup_{z \in K} |e^{\lambda}(z)| \end{bmatrix} \right).$

Step 3: We obtain that

$$\widehat{K} = \bigcap_{f \in \mathcal{O}_X} |f|^{-1} \left(\left[0, \sup_{z \in K} |f(z)| \right] \right) \subset \widehat{K}_{\mathsf{aff}} = \widehat{K}_{\mathsf{aff}} = \bigcap_{\lambda \in \mathsf{Aff}} |e^{\lambda}|^{-1} \left(\left[0, \sup_{z \in K} |e^{\lambda}(z)| \right] \right) \blacksquare$$

Holomorphically convex varieties

DEFINITION: A variety X is called **holomorphically convex** if the holomorphic hull of a compact subset $K \subset X$ is always compact.

REMARK: In the following claim, we assume that X has a countable base.

CLAIM: A complex variety X is holomorphically convex if and only if $X = \bigcup_i K_i^\circ$, where $K_0 \subset K_1 \subset ... \subset K_n \subset ...$ is a sequence of holomorphically convex compact subsets and K_i° is the interior of K_i .

Proof. Step 1: If such a sequence exists, it gives an open covering $X = \bigcup_i K_i^\circ$. Then any compact set $K \subset X$ belongs to K_i° for some *i*, hence $K \subset K_i$ which is compact and holomorphically convex.

Conversely, if X is holomorphically convex, we can obtain X as a union of an increasing sequence $U_0 \subset U_1 \subset ...$ of open subsets with compact closure (here we use the countable base). Then $X = \bigcup_i K_i^\circ$, where $K_i \coloneqq \widehat{\overline{U}_i}$.

Domains of holomorphy are holomorphically convex

Proposition 1: Let $\Omega \subset \mathbb{C}^n$ be a domain of holomorphy. Then Ω is holomorphically convex.

Proof. Step 1: Let $K \subset \Omega$ be a compact subset, and $R \coloneqq d(K, \mathbb{C}^n \setminus \Omega)$ be the infimum of d(x, y), where $x \in K$ and $y \in \mathbb{C}^n \setminus \Omega$. Clearly, R > 0. Denote by $B_1 \subset \mathbb{C}^n$ the unit ball. Fix $f \in \mathcal{O}_{\Omega}$, and let M be the maximum of |f| on a compact set $K + r\overline{B}_1 \subset \Omega$

Consider the function $\varphi(t) \coloneqq f(z + t\xi)$, where $z \in K$, $\xi \in B_1 \subset \mathbb{C}^n$ and $t \in \mathbb{C}$. Then φ is holomorphic in a disk of radius r, and bounded by M. Write $\varphi(t) = \sum a_k t^k$. Cauchy formula implies $a_k \leq Mr^{-k}$.

Step 2: The function $z \mapsto a_k(z)$ is complex analytic, hence the inequality $a_k \leq Mr^{-k}$ holds on \hat{K} for any $f \in \mathcal{O}_{\Omega}$. Then any analytic function on Ω can be extended to $\hat{K} + rB_1$, which implies that $\hat{K} + rB_1 \subset \Omega$ because Ω is a domain of holomorphy. Then $\hat{K} + rB_1 \subset \Omega$, for all r < R, which implies that $d(\hat{K}, \mathbb{C}^n \setminus \Omega) = d(K, \mathbb{C}^n \setminus \Omega)$.

Step 3: The set \hat{K} is bounded, because it belongs to a convex hull of K, which is compact. The distance between \hat{K} and $\mathbb{C}^n \setminus \Omega$ is positive and \hat{K} is closed in Ω , hence it is also closed in \mathbb{C}^n ; a bounded and closed set is compact.

Subsets with accumulation points on a boundary

Claim 2: Let $U \subset \mathbb{R}^n$ be an open subset, and $\partial U \coloneqq \overline{U} \setminus U$ its boundary. Then U contains a countable subset $S \coloneqq \{x_i\}$ which is discrete in U and satisfies $\partial S = \partial U$.

Proof. Step 1: Using a countable base, we choose in ∂U a countable, dense subset $R = \{z_i\}$. It would suffice to find a sequence $S \coloneqq \{x_i\}$ which is discrete in U and satisfies $\partial S \supset R$.

Step 2: We choose $\{x_i\}$ inductively. Suppose that $x_1, ..., x_{n-1}$ are already chosen, and let $a_n \coloneqq \frac{1}{3}d(\{x_1, ..., x_{n-1}\}, \partial U)$. This number is always positive, because ∂U is closed and $\{x_1, ..., x_{n-1}\}$ is compact.

Step 3: Let $f: \mathbb{Z}^{>0} \to \mathbb{Z}^{>0} \times \mathbb{Z}^{>0}$ be a bijective map, and $f(i) = (g_i, h_i)$. For each $n \in \mathbb{Z}^{>0}$, choose a point x_n such that $d(x_n, z_{h_n}) < a_n$ and $d(x_i, x_n) > a_n$, for all i < n. The first property implies that

$$\lim_{all n, such that h_n = u} x_n = z_u,$$

and the second property implies that the a_n -neighbourhood of $\{x_1, ..., x_{n-1}\}$ does not contain other points of R.

Properties of domains of holomorphy

THEOREM: Let $\Omega \subset \mathbb{C}^n$ be an open set.

Then the following are equivalent.

- (a) Ω is a domain of holomorphy.
- (b) Ω is holomorphically convex.

(c) For any countable set $\{z_i\} \subset \Omega$ without accumulation points in Ω , and any set of complex numbers $\{a_i\} \subset \mathbb{C}$ there exists a holomorphic function $F \in \mathcal{O}_{\Omega}$ wuch that $F(z_i) = a_i$.

(d) There exists $f \in \mathcal{O}_{\Omega}$ which is unbounded in a neighbourhood of any point of the boundary $\partial \Omega \coloneqq \overline{\Omega} \setminus \Omega$.

Proof. Step 1: (d) \Rightarrow (a) is clear. To prove (c) \Rightarrow (d) we need to construct a set $\{z_i\}$ which has accumulation points in all $z \in \partial \Omega$ and only in them, which is done in Claim 2. (a) \Rightarrow (b) is Proposition 1. It remains to show that (b) \Rightarrow (c).

Properties of domains of holomorphy (2)

Let Ω is holomorphically convex. It remains to show that for any countable set $\{z_i\} \subset \Omega$ without accumulation points in Ω , and any set of complex numbers $\{a_i\} \subset \mathbb{C}$ there exists a holomorphic function $F \in \mathcal{O}_{\Omega}$ wuch that $F(z_i) = a_i$.

Step 2: Let $K_1 \subset K_2 \subset ...$ be a sequence of holomorphically convex compact sets, with $\Omega = \bigcup K_i$ (Claim 1). For each z_i there exists a unique a_i such that $z_i \in K_{a_i} \setminus K_{a_i-1}$. Then there exists a holomorphic function $g_i \in \mathcal{O}_{\Omega}$ such that

 $\sup_{z \in K_{a_i-1}} |g_i(z)| < |g_i(z_i)|.$

Multiplying this function by a constant, we may assume that $g_i(z_i) = 1$. Consider an interpolation polynomial $P_i \in \mathbb{C}[z_1, ..., z_n]$ which is equal to 1 at z_i and 0 at $z_0, ..., z_{i-1}$. Let $F \coloneqq \sum_{j=0}^{\infty} \lambda_j P_j g_j^{m_j}$, where $\lambda_i \in \mathbb{C}$ and $m_j \in \mathbb{Z}^{>0}$ are chosen inductively in such a way that $\lambda_i = a_i - \sum_{j=0}^{i-1} \lambda_j P_j g_j^{m_j}$ and $|\lambda_i P_i g_i^{m_i}| \leq 2^{-i}$ on K_{a_i-1} . Once we have found λ_i , the second condition holds for m_i sufficiently big, because $|g_i||_{K_{a_i-1}} < 1 - \varepsilon$.

Step 3: Since $\{z_i\}$ has no accumulation points, the sequence a_i tends to ∞ . Then the sum $\sum_{j=0}^{\infty} \lambda_j P_j g_j^{m_j}$ uniformly converges on compact sets. **A uniform limit of holomorphic functions is holomorphic by Cauchy formula.**