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Domains of holomorphy in Cn

DEFINITION: Let Ω ⊂ Cn be an open subset. It is called a domain of

holomorphy if for any connected open subset V ⊂ Cn such that W ∶= Ω ∩ V is

connected, there exists a function f ∈ H0(OW ) which cannoe be extended to

V .

EXAMPLE: Every open subset Ω ⊂ C is a domain of holomorphy. Indeed,

for any x ∈ Ω/Ω, the function z ↦ (z − x)−1 cannot be extended to x.

EXAMPLE: Every convex subset Ω ⊂ Cn is a domain of holomorphy.

Indeed, for any x ∈ Ω/Ω, there exists a complex hyperplane V ⊂ Cn not in-

tersecting Ω (prove this). Suppose that V is defined by an affine equation

λ(z) = 0. Then λ−1 is a holomorphic function on Ω which cannot be extended

to x.

REMARK: The Hartogs figure, defined in the next slide, is an example of

a set which is not a domain of holomorphy,
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Hartogs figure

DEFINITION: Let U ⊂ Cn−1 be a connected open set, and U ′ ⊊ U its open
subset. Let ∆R ⊂ C be an open disk of radius R, and ∆R its closure. Define
the Hartogs figure as Ω ∶= ∆R/∆r × U ∪D(R) × U ′ ⊂ C × Cn−1 and the filled
Hartogs figure as Ω̃ ∶= ∆R ×U , where 0 ⩽ r < R.

CLAIM: Every holomorphic function f ∈ OΩ can be extended to OΩ̃.
Proof: Let

f̃(z1, z
′) ∶= 1

2π
√
−1

∫∣ζ1∣=ρ
f(ζ1, z

′)
ζ1 − z1

dζ1,

where (z1, z
′) ∈ Ω̃ ∈ C ×U and r < ρ < R. By Cauchy formula, f̃ = f on ∆R ×U ′,

hence f̃ = f on Ω by analytic continuation.
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Holomorphic convexity

DEFINITION: Let K ⊂ X be a compact set in a complex variety. A holo-
morphic hull of K is

K̂ ∶= {z ∈X ∣ ∣f(z)∣ ⩽ sup
z∈K

∣f(z)∣ ∀f ∈ OX} .

CLAIM: K̂ is a closed subset of X containing K. Moreover,
sup
z∈K

∣f(z)∣ = sup
z∈K̂

∀f ∈ OX.

Proof: K̂ is closed because K̂ = ⋂f∈OX ∣f ∣−1 ([0, sup
z∈K

∣f(z)∣]).

EXERCISE: Prove that for any holomorphic map h ∶ X Ð→ Y , we have
h(K̂) = ĥ(X).

DEFINITION: A subset U ⊂ V is called relatively compact if its closure in
V is compact; this relation is denoted U ⋐ V .

CLAIM: Let h ∶ U Ð→X be a holomorphic map, and W ⋐ U a relatively
compact subset. Assume that h(∂W ) ⊂K, where ∂W =W /W . Then h(W ) ⊂ K̂.

Proof: Indeed, any function f ∈ OU satisfies supz∈W = supz∈∂W by maximum
principle.
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Holomorphic hull and convex hull

Claim 1: For any K ⊂ Ω ⊂ Cn, the holomorphic hull K̂ is contained in the

convex hull K̂aff.

Proof. Step 1: The set {x ∈ Cn ∣ f(x) ⩽ 1} is a half-space if f = eλ, where λ

is an affine function. Indeed, this is the same as the set Re(λ) ⩽ 0.

Step 2: The set K̂aff is intersection of all half-spaces containing K. By Step

1, this gives K̂aff = ⋂λ∈Aff ∣eλ∣−1 ([0, sup
z∈K

∣eλ(z)∣]).

Step 3: We obtain that

K̂ = ⋂
f∈OX

∣f ∣−1 ([0, sup
z∈K

∣f(z)∣]) ⊂ K̂aff = K̂aff = ⋂
λ∈Aff

∣eλ∣−1 ([0, sup
z∈K

∣eλ(z)∣])
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Holomorphically convex varieties

DEFINITION: A variety X is called holomorphically convex if the holo-

morphic hull of a compact subset K ⊂X is always compact.

REMARK: In the following claim, we assume that X has a countable

base.

CLAIM: A complex variety X is holomorphically convex if and only if

X = ⋃iK○
i , where K0 ⊂ K1 ⊂ ... ⊂ Kn ⊂ ... is a sequence of holomorphically

convex compact subsets and K○
i is the interior of Ki.

Proof. Step 1: If such a sequence exists, it gives an open covering X = ⋃iK○
i .

Then any compact set K ⊂X belongs to K○
i for some i, hence K ⊂Ki which

is compact and holomorphically convex.

Conversely, if X is holomorphically convex, we can obtain X as a union of an

increasing sequence U0 ⊂ U1 ⊂ ... of open subsets with compact closure (here

we use the countable base). Then X = ⋃iK○
i , where Ki ∶= Û i.
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Domains of holomorphy are holomorphically convex

Proposition 1: Let Ω ⊂ Cn be a domain of holomorphy. Then Ω is holo-
morphically convex.

Proof. Step 1: Let K ⊂ Ω be a compact subset, and R ∶= d(K,Cn/Ω) be the
infimum of d(x,y), where x ∈K and y ∈ Cn/Ω. Clearly, R > 0. Denote by B1 ⊂ Cn
the unit ball. Fix f ∈ OΩ, and let M be the maximum of ∣f ∣ on a compact set
K + rB1 ⊂ Ω

Consider the function ϕ(t) ∶= f(z + tξ), where z ∈K, ξ ∈ B1 ⊂ Cn and t ∈ C. Then
ϕ is holomorphic in a disk of radius r, and bounded by M . Write ϕ(t) = ∑aktk.
Cauchy formula implies ak ⩽Mr−k.

Step 2: The function z ↦ ak(z) is complex analytic, hence the inequality
ak ⩽ Mr−k holds on K̂ for any f ∈ OΩ. Then any analytic function on Ω
can be extended to K̂ + rB1, which implies that K̂ + rB1 ⊂ Ω because Ω is a
domain of holomorphy. Then K̂ + rB1 ⊂ Ω, for all r < R, which implies that
d(K̂,Cn/Ω) = d(K,Cn/Ω).

Step 3: The set K̂ is bounded, because it belongs to a convex hull of K,
which is compact. The distance between K̂ and Cn/Ω is positive and K̂ is
closed in Ω, hence it is also closed in Cn; a bounded and closed set is compact.

7



Complex analytic spaces, lecture 26 M. Verbitsky

Subsets with accumulation points on a boundary

Claim 2: Let U ⊂ Rn be an open subset, and ∂U ∶= U/U its boundary. Then U

contains a countable subset S ∶= {xi} which is discrete in U and satisfies

∂S = ∂U.

Proof. Step 1: Using a countable base, we choose in ∂U a countable, dense

subset R = {zi}. It would suffice to find a sequence S ∶= {xi} which is

discrete in U and satisfies ∂S ⊃ R.

Step 2: We choose {xi} inductively. Suppose that x1, ..., xn−1 are already

chosen, and let an ∶= 1
3d({x1, ..., xn−1}, ∂U). This number is always positive,

because ∂U is closed and {x1, ..., xn−1} is compact.

Step 3: Let f ∶ Z>0Ð→Z>0 × Z>0 be a bijective map, and f(i) = (gi, hi). For

each n ∈ Z>0, choose a point xn such that d(xn, zhn) < an and d(xi, xn) > an, for

all i < n. The first property implies that

lim
all n, such that hn = u

xn = zu,

and the second property implies that the an-neighbourhood of {x1, ..., xn−1}
does not contain other points of R.
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Properties of domains of holomorphy

THEOREM: Let Ω ⊂ Cn be an open set.

Then the following are equivalent.

(a) Ω is a domain of holomorphy.

(b) Ω is holomorphically convex.

(c) For any countable set {zi} ⊂ Ω without accumulation points in Ω, and any

set of complex numbers {ai} ⊂ C there exists a holomorphic function F ∈ OΩ

wuch that F (zi) = ai.
(d) There exists f ∈ OΩ which is unbounded in a neighbourhood of any point

of the boundary ∂Ω ∶= Ω/Ω.

Proof. Step 1: (d) ⇒ (a) is clear. To prove (c) ⇒ (d) we need to construct

a set {zi} which has accumulation points in all z ∈ ∂Ω and only in them, which

is done in Claim 2. (a) ⇒ (b) is Proposition 1. It remains to show that (b)

⇒ (c).
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Properties of domains of holomorphy (2)

Let Ω is holomorphically convex. It remains to show that for any countable
set {zi} ⊂ Ω without accumulation points in Ω, and any set of complex
numbers {ai} ⊂ C there exists a holomorphic function F ∈ OΩ wuch that
F (zi) = ai.
Step 2: Let K1 ⊂ K2 ⊂ ... be a sequence of holomorphically convex compact
sets, with Ω = ⋃Ki (Claim 1). For each zi there exists a unique ai such that
zi ∈Kai/Kai−1. Then there exists a holomorphic function gi ∈ OΩ such that

sup
z∈Kai−1

∣gi(z)∣ < ∣gi(zi)∣.

Multiplying this function by a constant, we may assume that gi(zi) = 1. Con-
sider an interpolation polynomial Pi ∈ C[z1, ..., zn] which is equal to 1 at zi and
0 at z0, ..., zi−1. Let F ∶= ∑∞j=0λjPjg

mj
j , where λi ∈ C and mj ∈ Z>0 are chosen

inductively in such a way that λi = ai −∑i−1
j=0λjPjg

mj
j and ∣λiPigmi

i ∣ ⩽ 2−i on
Kai−1. Once we have found λi, the second condition holds for mi sufficiently

big, because ∣gi∣∣Kai−1
< 1 − ε.

Step 3: Since {zi} has no accumulation points, the sequence ai tends to ∞.
Then the sum ∑∞j=0λjPjg

mj
j uniformly converges on compact sets. A uniform

limit of holomorphic functions is holomorphic by Cauchy formula.
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