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Domains of holomorphy in C»

DEFINITION: Let €2 c C* be an open subset. It is called a domain of
holomorphy if for any connected open subset V c C" such that W =QnV is
connected, there exists a function f e HO(Oyp,) which cannoe be extended to

V.

EXAMPLE: Every open subset (2 c C is a domain of holomorphy. Indeed,
for any x € Q\Q, the function z+ (z-z)~! cannot be extended to =.

EXAMPLE: Every convex subset 2 c C" is a domain of holomorphy.
Indeed, for any x € ﬁ\Q, there exists a complex hyperplane V ¢ C"* not in-
tersecting Q2 (prove this). Suppose that V is defined by an affine equation
A(z) =0. Then X1 is a holomorphic function on  which cannot be extended

to x.

REMARK: The Hartogs figure, defined in the next slide, is an example of
a set which is not a domain of holomorphy,
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Hartogs figure

DEFINITION: Let U cC" 1 be a connected open set, and U’ ¢ U its open
subset. Let ArcC be an open disk of radius R, and Ap its closure. Define
the Hartogs figure as Q = Ap\A, xUUuD(R)xU' c CxC"1 and the filled
Hartogs figure as Q2:= ApxU, where 0<r < R.

CLAIM: Every holomorphic function f<¢©o can be extended to Og-
Proof:. Let
1 f(¢1,2")

f(z1,2") = ——— d(q,
fz1.%) 2my/~1 JlGil=p C1-21 1

where (z1,2') e QeCxU and r < p< R. By Cauchy formula, f=f on ApxU’,

hence f=f on Q by analytic continuation. m
3
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Holomorphic convexity

DEFINITION: Let K c X be a compact set in a complex variety. A holo-
morphic hull of K is

~~

K{X 1) <suplre) er@x}-

CLAIM: K is a closed subset of X containing K. Moreover,

sup|f(z)|=sup VfeOx.
ZEK ZER

Proof: K is closed because K =0, |f|™ ([O,SUD|f(Z)|])- u
ze K

EXERCISE: Prove that for any holomorphic map A: X —Y, we have
h(K)=h(X).

DEFINITION: A subset U cV is called relatively compact if its closure in
V is compact; this relation is denoted U e V.

CLAIM: Let h: U—X be a holomorphic map, and W e U a relatively
compact subset. Assume that h(0W) c K, where W = W\W. Then h(W)c K.

Proof: Indeed, any function f e Oy satisfies sup, 7 = SUP oy bY maximum
principle. =
4
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Holomorphic hull and convex hull

Claim 1: For any K c Q2 cC"”, the holomorphic hull K is contained in the
convex hull K_¢.

Proof. Step 1: The set {xeC" | f(x)<1} is a half-space if f=e?*, where A
is an affine function. Indeed, this is the same as the set Re(\) <0.

Step 2: The set f(aff IS intersection of all half-spaces containing K. By Step
1, this gives Raff = m)\eAﬂ’|€>\|_1 ([O,SUD|€)‘(Z)|]).

zeK

Step 3: We obtain that

k- N |f|—1([o,§g[g|f<z>|])cf?aff=f?aff: N |e/\|-1([o,sup|eA<z>|])-

feOx AeATF €
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Holomorphically convex varieties

DEFINITION: A variety X is called holomorphically convex if the holo-
morphic hull of a compact subset K c X is always compact.

REMARK: In the following claim, we assume that X has a countable
base.

CLAIM: A complex variety X is holomorphically convex if and only if
X =U; KZ?, where Kgc Kqc...c K, c ... is a sequence of holomorphically
convex compact subsets and K’ is the interior of K;.

Proof. Step 1: If such a sequence exists, it gives an open covering X = UJ; K;.
Then any compact set K c X belongs to K’ for some i, hence K c K; which
IS compact and holomorphically convex.

Conversely, if X is holomorphically convex, we can obtain X as a union of an
increasing sequence Ug c Uy c ... of open subsets with compact closure (here
we use the countable base). Then X =U; K}, where K := U;. m

6
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Domains of holomorphy are holomorphically convex

Proposition 1: Let €2c C" be a domain of holomorphy. Then <2 is holo-
morphically convex.

Proof. Step 1: Let K c 2 be a compact subset, and R :=d(K,C"\2) be the
infimum of d(x,y), where x ¢ K and y e C"\Q2. Clearly, R>0. Denote by B1 cC"
the unit ball. Fix fe©q, and let M be the maximum of |f| on a compact set
K+T§1 c §2

Consider the function ¢(t) = f(z+t£), where ze K, £ B1cC™ and teC. Then
¢ is holomorphic in a disk of radius r, and bounded by M. Write ¢(t) = ¥ aytk.
Cauchy formula implies a; < MrF.

Step 2: The function z » ai(z) is complex analytic, hence the inequality
ap < Mr~% holds on K for any f € Oo. Then any analytic function on 2
can be extended to K +rBj, which implies that K + rB; c Q2 because Q is a
domain of holomorphy. Then K +rB; c 2, for all r < R, which implies that
d(K,C"\Q) = d(K,C"\Q).

Step 3: The set K is bounded, because it belongs to a convex hull of K,
which is compact. The distance between K and CP\Q is positive and K is
closed in €2, hence it is also closed in C": a bounded and closed set is compact.
u

7
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Subsets with accumulation points on a boundary

Claim 2: Let U cR™ be an open subset, and oU := U\U its boundary. Then U
contains a countable subset S :={z;} which is discrete in U and satisfies
0S =0U.

Proof. Step 1: Using a countable base, we choose in QU a countable, dense
subset R = {z;}. It would suffice to find a sequence S := {z;} which is
discrete in U and satisfies 95S o R.

Step 2: We choose {x;} inductively. Suppose that =zq,...,x,_1 are already
chosen, and let ay = %d({azl,...,xn_l},aU). This number is always positive,
because 0OU is closed and {z{,...,x,_1} iS compact.

Step 3: Let f: 220 —7>0x7>0 be a bijective map, and f(i) = (g;,h;). For
each neZ>9, choose a point z, such that d(zn,z2p ) <an and d(z;,z,) > an, for
all 2<n. The first property implies that

lim Ty = 2
all n, such that h, =u =

and the second property implies that the a,-neighbourhood of {xq,...,z,_1}

does not contain other points of R. =
8
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Properties of domains of holomorphy

THEOREM: Let Q2cC™ be an open set.

Then the following are equivalent.

(a) Q2 is a domain of holomorphy.

(b) € is holomorphically convex.

(c) For any countable set {z;} c 2 without accumulation points in €2, and any
set of complex numbers {a;} c C there exists a holomorphic function F € Og
wuch that F(z;) = a;.

(d) There exists f e ©n which is unbounded in a neighbourhood of any point
of the boundary 992 := Q\Q2.

Proof. Step 1: (d) = (a) is clear. To prove (c) = (d) we need to construct
a set {z;} which has accumulation points in all z € 92 and only in them, which
is done in Claim 2. (a) = (b) is Proposition 1. It remains to show that (b)
= (C).
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Properties of domains of holomorphy (2)

Let €2 is holomorphically convex. It remains to show that for any countable
set {z;} c 2 without accumulation points in 2, and any set of complex
numbers {a;} c C there exists a holomorphic function F ¢ O, wuch that
F(z;) = a;.

Step 2: Let K1 c Ky c ... be a sequence of holomorphically convex compact
sets, with Q =UK; (Claim 1). For each z; there exists a unique a; such that
zi € Kg;\K4,-1. Then there exists a holomorphic function g; € Og such that

sup [g;(2)| <lgi(2;)l-
ZEKai—l
Multiplying this function by a constant, we may assume that g;(z;) =1. Con-

sider an interpolation polynomial P; € C[21,...,2n] Which is equal to 1 at z; and
m
0 at zp,...,2i-1. Let F:=%2,\;P;g.”’, where X;eC and m; € 270 are chosen

inductively in such a way that ), = a; - Zi_%)\JPjg 7 and |\ P <27 on
K,,-1. Once we have found A;, the second condltlon holds for m; sufficiently

<]1-e€.

big, because |g;l|x, _,

Step 3: Since {z;} has no accumulation points, the sequence a; tends to .
Then the sum Z P]g " uniformly converges on compact sets. A uniform
limit of holomorphlc functlons IS holomorphic by Cauchy formula. =
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