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Algebra of differential operators

DEFINITION: Let M be a smooth manifold. The algebra of differential
operators is the subalgebra in End(C*M) generated by vector fields and
multiplication by a function. A differential operator of order d is an operator
which is locally generated by a product of no more than d vector fields.

REMARK: Denote by Diffi(M) the space of differential operators of order 1.
Clearly, Diff‘(M) Diff?(M) = Diff**(M).

EXERCISE: Let F ¢ Diff'(M) and G € Diff/(M). Prove that [F,G] e Diff**7=1(\1).
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Filtered algebras

DEFINITION: An (increasing) filtration on a vector space V is a sequence
of subspaces Vo c Vj c Vo c ... such that UV; = V. A filtered algebra is an
algebra A with a filtration Agc Ay c Apc... such that A;-A;c A;;.

EXAMPLE: The algebra of differential operators is filtered, Diﬂ"o(M) -
Diff1 (M) c Diff2(M) c ...

DEFINITION: Let A =U;A; be an associative filtered algebra. The asso-
ciated graded space @; A;/A;_1 is equipped with a multiplicative structure:
a product of a mod A;_1 and b mod A;_; gives ab mod A;,;_1. The algebra
@; A;/A;_1 is called the associated graded algebra of the filtered algebra A.

EXERCISE: Prove that the associated graded algebra @; Diff*(M)/ Diff*"1 (M)
of the algebra of differential operators is commutative.

DEFINITION: This algebra is called the algebra of symbols of differential
operators.
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The algebra of symbols

THEOREM: The bundle Diff‘(M)/Diff""1(M) is isomorphic to Sym*TM.
Proof: For ¢:=1 this is clear from the definition: first order differential oper-
ators are obtained as a sum of derivations and operators of multiplication by
a function; this gives an exact sequence O — C*®M — Diffl M — T M — 0.
For ¢« >0, we notice that the multiplication map

Sym*TM = Sym*(Difft (M) / DiffO(M)) — Diff*(M)/ Diff*~ (M)

IS by construction surjective; it is injective, because it is injective on polynomial
functions. =

EXERCISE: Prove that the ring @, Diff*(M)/Diff* 1 (M) of symbols is iso-
morphic to the ring of functions on the total space of T*M which are
polynomial on fibers.

DEFINITION: Let D € Di.ﬂ"i(M) be a differential operator of order ¢. Its
symbol is its image in Diff{(M)/Diff*" 1 (M) = Sym*TM.

DEFINITION: Let De Diffi(M) be a differential operator, and o € Sym!TM
its symbol. The operator D is called elliptic if o(x,z...,x) # 0 for any x € T,;, M \O0.

EXERCISE: Let D e Diff'(M) be an elliptic operator. Prove that i is even.
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Elliptic operators of second order

EXAMPLE: A second order differential operator on C'*°R" is written as
82f
D b
where a, b;, cj j are smooth functlons, and x;,2=1,...,n coordinates. Its symbol
is given by a quadratic form £ — ¥; ic; ;&5 where £ =(£1,...,&n) € T;R™. This
operator is elliptic if the matrix (c; ;) is positive or negative definite in
any point of R”.

REMARK: By convention, we assume that (c; ;) is always positive definite
when D is elliptic.

REMARK: For any elliptic operator D, its symbol o(D) e Sym?(T M) defines
a Riemannian metric on M.
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Strong maximum principle

THEOREM:

(strong maximum principle for second order elliptic equations; Eber-
hard Hopf, 1927) Let M be a manifold, not necessarily compact, and D :
C*M — C*°M an elliptic operator of second order, which satisfies D(const) = 0.
Consider a function we C*®M such that D(u) > 0. Assume that « has a local
maximum somewhere on M. Then u IS a constant.

Maximum principle will be proven at the end of today’'s lecture. We start
with a special case.

Proof of maximum principle, for the case D(u) > 0: In coordinates, D is
written as Du = Y; j AYu;;+Y; Blu;,, where v is the matrix of second derivatives
of u, u; = (%_, and A% a function taking values in positive definite matrices.
Let z be the point where u reaches a relative maximum. In this point the
first derivatives of u vanish, and the matrix of second derivatives is negative,

hence Dul, = ¥; j AYu4;|. <0, contradicting Du>0. =

I will first prove the weak maximum principle, and then deduce the strong
maximum principlle.
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Weak maximum principle

THEOREM: (The weak maximum principle)

Let D: C°R" — C'*°R"™ be an elliptic operator of second order, which satisfies
D(const) = 0. Consider a relatively compact open subset 2 € R*. Then any
solution u of the inequality D(u) > 0 reaches its maximum supo v on the
boundary 0f2.

Proof. Step 1: Let z € Q be a point where u reaches maximum, and x;
coordinates in its neighbourhood U, with origin in z. Rescaling the coordinates
if necessary, we can always assume that <2 is relatively compact in the unit
ball B;. It would suffice to show that u(z) =u(v) for some z € 0f2.

Step 2: Adding to u a solution ¢ of the inequality Dy > 0, we obtain a
function u + ¢ which reaches its maximum on 90U, because of the strong
maximum principle for solutions of Du > 0.

Step 3: The function ¢ :=ce“1 satisfies Dy >0 if ¢ iIs chosen such that
Alles B Indeed, e 1D(p) = c2Al1lecm1 + cBlec?1 > Q.

Step 4: Since the maximum of u +ee®®1 is reached on 02 for any € > 0. we

obtain that supgu =sSupgou. ®
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Hopf lemma

LEMMA: (Hopf lemma)

Let D(u) =Y, ; A’ijuz—ﬁzi B'u; be an elliptic operator on a unit ball B cR", and
u € C*B a function which satisfies D(u) > 0. Assume that u reaches maximum
u(zg) = 0 in zg € 9B, and inside B we have u < 0. Denote by # the radial
vector field, 7 = ind%i. Then the derivative Dgu],zo in the radial direction
IS positive.

Proof. Step 1: Consider a non-negative function v e C*B, defined by v(x) =
e~?lzl® _ e~ where o >0 is a real number. Then

D(v)| = a2e 0T (®* Y Atz + e (a¢ + £),

where (,£ € C*B are bounded functions on B, independent from «. Therefore
for sufficiently big « > 0, we have D(v) > 0 in the set 2 = B\B/, where
B’ c B is an open ball with center in O and radius rg< 1.

Step 2: For a sufficiently small € >0, we have u+ev <0 in B/, because u<d <0
on B’. Since v=0 on 9B, weak maximum principle implies that u+ev <0 in
2, and u +ev reaches its maximum in zg. This implies that Dg(u +ev)|,, > 0.

Step 3: An easy computation gives D;yv|,, <0, hence Step 2 implies Dyu|,, > O.
n
3



Complex analytic spaces, lecture 27 M. Verbitsky

Strong maximum principle (proof)

THEOREM.:

(strong maximum principle for second order elliptic equations; Eber-
hard Hopf, 1927) Let M be a manifold, not necessarily compact, and D :
C*®M — C*M an elliptic operator of second order, which satisfies D(const) = 0.
Consider a function uwe C*®M such that D(u) > 0. Assume that « has a local
maximum somewhere on M. Then u IS a constant.

Proof. Step 1: Suppose that the local maximum is reached in z ¢ M, and
Z={meM | u(m)=u(z)}. If u+ const, there exists an open ball Bc M
with interior not intersecting Z, and boundary intersecting Z. Choose
this ball in such a way that u<wu(z) inside B.

Step 2: Since the derivative of z in zg is non-zero (by Hopf lemma), this
point cannot be a local maximum of u. m



