Complex analytic spaces

lecture 27: Maximum principle

Misha Verbitsky

IMPA, sala 236,

November 13, 2023, 13:30

Algebra of differential operators

DEFINITION: Let M be a smooth manifold. The algebra of differential **operators** is the subalgebra in $End(C^{\infty}M)$ generated by vector fields and multiplication by a function. A differential operator of order d is an operator which is locally generated by a product of no more than d vector fields.

REMARK: Denote by $\text{Diff}^{i}(M)$ the space of differential operators of order *i*. **Clearly,** $\text{Diff}^{i}(M) \text{Diff}^{j}(M) = \text{Diff}^{i+j}(M)$.

EXERCISE: Let $F \in \text{Diff}^{i}(M)$ and $G \in \text{Diff}^{j}(M)$. Prove that $[F,G] \in \text{Diff}^{i+j-1}(M)$.

Filtered algebras

DEFINITION: An (increasing) filtration on a vector space V is a sequence of subspaces $V_0 \subset V_1 \subset V_2 \subset ...$ such that $\bigcup V_i = V$. **A filtered algebra** is an algebra A with a filtration $A_0 \subset A_1 \subset A_2 \subset ...$ such that $A_i \cdot A_j \subset A_{i+j}$.

EXAMPLE: The algebra of differential operators is filtered, $Diff^0(M) \subset Diff^1(M) \subset Diff^2(M) \subset ...$

DEFINITION: Let $A = \bigcup_i A_i$ be an associative filtered algebra. The **associated graded space** $\bigoplus_i A_i/A_{i-1}$ is equipped with a multiplicative structure: a product of $a \mod A_{i-1}$ and $b \mod A_{j-1}$ gives $ab \mod A_{i+j-1}$. The algebra $\bigoplus_i A_i/A_{i-1}$ is called **the associated graded algebra** of the filtered algebra A.

EXERCISE: Prove that the associated graded algebra $\bigoplus_i \text{Diff}^i(M) / \text{Diff}^{i-1}(M)$ of the algebra of differential operators is commutative.

DEFINITION: This algebra is called **the algebra of symbols of differential operators**.

The algebra of symbols

THEOREM: The bundle $\text{Diff}^{i}(M)/\text{Diff}^{i-1}(M)$ is isomorphic to $\text{Sym}^{i}TM$. **Proof:** For i = 1 this is clear from the definition: first order differential operators are obtained as a sum of derivations and operators of multiplication by a function; this gives an exact sequence $0 \rightarrow C^{\infty}M \rightarrow \text{Diff}^{1}M \rightarrow TM \rightarrow 0$. For i > 0, we notice that the multiplication map

 $\operatorname{Sym}^{i} TM = \operatorname{Sym}^{i}(\operatorname{Diff}^{1}(M) / \operatorname{Diff}^{0}(M)) \longrightarrow \operatorname{Diff}^{i}(M) / \operatorname{Diff}^{i-1}(M)$

is by construction surjective; it is injective, because it is injective on polynomial functions. ■

EXERCISE: Prove that the ring $\bigoplus_i \text{Diff}^{i}(M)/\text{Diff}^{i-1}(M)$ of symbols is isomorphic to the ring of functions on the total space of T^*M which are polynomial on fibers.

DEFINITION: Let $D \in \text{Diff}^{i}(M)$ be a differential operator of order *i*. Its symbol is its image in $\text{Diff}^{i}(M)/\text{Diff}^{i-1}(M) = \text{Sym}^{i}TM$.

DEFINITION: Let $D \in \text{Diff}^{i}(M)$ be a differential operator, and $\sigma \in \text{Sym}^{i}TM$ its symbol. The operator D is called **elliptic** if $\sigma(x, x..., x) \neq 0$ for any $x \in T_{m}^{*}M \setminus 0$.

EXERCISE: Let $D \in \text{Diff}^{i}(M)$ be an elliptic operator. **Prove that** *i* is even.

Elliptic operators of second order

EXAMPLE: A second order differential operator on $C^{\infty}\mathbb{R}^n$ is written as

$$D(f) = af + \sum_{i} b_{i} \frac{\partial f}{\partial x_{i}} + \sum_{i,j} c_{i,j} \frac{\partial^{2} f}{\partial x_{i} \partial x_{j}},$$

where $a, b_i, c_{i,j}$ are smooth functions, and $x_i, i = 1, ..., n$ coordinates. Its symbol is given by a quadratic form $\xi \longrightarrow \sum_{i,j} c_{i,j} \xi_i \xi_j$, where $\xi = (\xi_1, ..., \xi_n) \in T_x^* \mathbb{R}^n$. This operator is elliptic if the matrix $(c_{i,j})$ is positive or negative definite in any point of \mathbb{R}^n .

REMARK: By convention, we assume that $(c_{i,j})$ is always positive definite when D is elliptic.

REMARK: For any elliptic operator D, its symbol $\sigma(D) \in \text{Sym}^2(TM)$ defines a Riemannian metric on M.

Strong maximum principle

THEOREM:

(strong maximum principle for second order elliptic equations; Eberhard Hopf, 1927) Let M be a manifold, not necessarily compact, and D: $C^{\infty}M \rightarrow C^{\infty}M$ an elliptic operator of second order, which satisfies D(const) = 0. Consider a function $u \in C^{\infty}M$ such that $D(u) \ge 0$. Assume that u has a local maximum somewhere on M. Then u is a constant.

Maximum principle will be proven at the end of today's lecture. We start with a special case.

Proof of maximum principle, for the case D(u) > 0: In coordinates, D is written as $Du = \sum_{i,j} A^{ij} u_{ij} + \sum_i B^i u_i$, where u is the matrix of second derivatives of u, $u_i = \frac{\partial u}{\partial x_i}$, and A^{ij} a function taking values in positive definite matrices. Let z be the point where u reaches a relative maximum. In this point the first derivatives of u vanish, and the matrix of second derivatives is negative, hence $Du|_z = \sum_{i,j} A^{ij} u_{ij}|_z \leq 0$, contradicting Du > 0.

I will first prove the weak maximum principle, and then deduce the strong maximum principlle.

Weak maximum principle

THEOREM: (The weak maximum principle)

Let $D: C^{\infty}\mathbb{R}^n \longrightarrow C^{\infty}\mathbb{R}^n$ be an elliptic operator of second order, which satisfies D(const) = 0. Consider a relatively compact open subset $\Omega \in \mathbb{R}^n$. Then any solution u of the inequality $D(u) \ge 0$ reaches its maximum $\sup_{\Omega} u$ on the boundary $\partial \Omega$.

Proof. Step 1: Let $z \in \overline{\Omega}$ be a point where u reaches maximum, and x_i coordinates in its neighbourhood U, with origin in z. Rescaling the coordinates if necessary, we can always assume that Ω is relatively compact in the unit ball B_1 . It would suffice to show that u(z) = u(v) for some $z \in \partial \Omega$.

Step 2: Adding to u a solution φ of the inequality $D\varphi > 0$, we obtain a function $u + \varphi$ which reaches its maximum on ∂U , because of the strong maximum principle for solutions of Du > 0.

Step 3: The function $\varphi \coloneqq \varepsilon e^{cx_1}$ satisfies $D\varphi > 0$ if c is chosen such that $A^{1,1}c > |B^1|$. Indeed, $\varepsilon^{-1}D(\varphi) = c^2A^{1,1}e^{cx_1} + cB^1e^{cx_1} > 0$.

Step 4: Since the maximum of $u + \varepsilon e^{cx_1}$ is reached on $\partial \Omega$ for any $\varepsilon > 0$. we obtain that $\sup_{\Omega} u = \sup_{\partial \Omega} u$.

Hopf lemma

LEMMA: (Hopf lemma)

Let $D(u) = \sum_{i,j} A^{ij} u_{ij} + \sum_i B^i u_i$ be an elliptic operator on a unit ball $B \subset \mathbb{R}^n$, and $u \in C^{\infty}B$ a function which satisfies $D(u) \ge 0$. Assume that u reaches maximum $u(z_0) = 0$ in $z_0 \in \partial B$, and inside B we have u < 0. Denote by \vec{r} the radial vector field, $\vec{r} = \sum x_i \frac{d}{dx_i}$. Then the derivative $D_{\vec{r}} u|_{z_0}$ in the radial direction is positive.

Proof. Step 1: Consider a non-negative function $v \in C^{\infty}B$, defined by $v(x) = e^{-\alpha|x|^2} - e^{-\alpha}$, where $\alpha > 0$ is a real number. Then

$$D(v)|_{x} = \alpha^{2} e^{-\alpha r(x)^{2}} \sum A^{ij} x_{i} x_{j} + e^{-\alpha r(x)^{2}} (\alpha \zeta + \xi),$$

where $\zeta, \xi \in \mathbb{C}^{\infty}B$ are bounded functions on B, independent from α . Therefore **for sufficiently big** $\alpha > 0$, we have D(v) > 0 in the set $\Omega = B \setminus B'$, where $B' \subset B$ is an open ball with center in 0 and radius $r_0 < 1$.

Step 2: For a sufficiently small $\varepsilon > 0$, we have $u + \varepsilon v < 0$ in B', because $u < \delta < 0$ on B'. Since v = 0 on ∂B , weak maximum principle implies that $u + \varepsilon v < 0$ in Ω , and $u + \varepsilon v$ reaches its maximum in z_0 . This implies that $D_{\vec{r}}(u + \varepsilon v)|_{z_0} \ge 0$.

Step 3: An easy computation gives $D_{\vec{r}}v|_{z_0} < 0$, hence Step 2 implies $D_{\vec{r}}u|_{z_0} > 0$.

Strong maximum principle (proof)

THEOREM:

(strong maximum principle for second order elliptic equations; Eberhard Hopf, 1927) Let M be a manifold, not necessarily compact, and D: $C^{\infty}M \longrightarrow C^{\infty}M$ an elliptic operator of second order, which satisfies D(const) = 0. Consider a function $u \in C^{\infty}M$ such that $D(u) \ge 0$. Assume that u has a local maximum somewhere on M. Then u is a constant.

Proof. Step 1: Suppose that the local maximum is reached in $z \in M$, and $Z := \{m \in M \mid u(m) = u(z)\}$. If $u \neq \text{const}$, there exists an open ball $B \subset M$ with interior not intersecting Z, and boundary intersecting Z. Choose this ball in such a way that u < u(z) inside B.

Step 2: Since the derivative of z in z_0 is non-zero (by Hopf lemma), this point cannot be a local maximum of u.