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Algebra of differential operators

DEFINITION: Let M be a smooth manifold. The algebra of differential

operators is the subalgebra in End(C∞M) generated by vector fields and

multiplication by a function. A differential operator of order d is an operator

which is locally generated by a product of no more than d vector fields.

REMARK: Denote by Diffi(M) the space of differential operators of order i.

Clearly, Diffi(M)Diffj(M) = Diffi+j(M).

EXERCISE: Let F ∈ Diffi(M) and G ∈ Diffj(M). Prove that [F,G] ∈ Diffi+j−1(M).
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Filtered algebras

DEFINITION: An (increasing) filtration on a vector space V is a sequence

of subspaces V0 ⊂ V1 ⊂ V2 ⊂ ... such that ⋃Vi = V . A filtered algebra is an

algebra A with a filtration A0 ⊂ A1 ⊂ A2 ⊂ ... such that Ai ⋅Aj ⊂ Ai+j.

EXAMPLE: The algebra of differential operators is filtered, Diff0(M) ⊂

Diff1(M) ⊂ Diff2(M) ⊂ ...

DEFINITION: Let A = ⋃iAi be an associative filtered algebra. The asso-

ciated graded space ⊕iAi/Ai−1 is equipped with a multiplicative structure:

a product of a mod Ai−1 and b mod Aj−1 gives ab mod Ai+j−1. The algebra

⊕iAi/Ai−1 is called the associated graded algebra of the filtered algebra A.

EXERCISE: Prove that the associated graded algebra ⊕iDiffi(M)/Diffi−1(M)

of the algebra of differential operators is commutative.

DEFINITION: This algebra is called the algebra of symbols of differential

operators.
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The algebra of symbols

THEOREM: The bundle Diffi(M)/Diffi−1(M) is isomorphic to SymiTM.
Proof: For i = 1 this is clear from the definition: first order differential oper-
ators are obtained as a sum of derivations and operators of multiplication by
a function; this gives an exact sequence 0Ð→C∞M Ð→ Diff1M Ð→ TM Ð→ 0.
For i > 0, we notice that the multiplication map

SymiTM = Symi(Diff1(M)/Diff0(M)) Ð→ Diffi(M)/Diffi−1(M)

is by construction surjective; it is injective, because it is injective on polynomial
functions.

EXERCISE: Prove that the ring ⊕iDiffi(M)/Diffi−1(M) of symbols is iso-
morphic to the ring of functions on the total space of T ∗M which are
polynomial on fibers.

DEFINITION: Let D ∈ Diffi(M) be a differential operator of order i. Its
symbol is its image in Diffi(M)/Diffi−1(M) = SymiTM .

DEFINITION: Let D ∈ Diffi(M) be a differential operator, and σ ∈ SymiTM

its symbol. The operator D is called elliptic if σ(x,x..., x) ≠ 0 for any x ∈ T ∗mM/0.

EXERCISE: Let D ∈ Diffi(M) be an elliptic operator. Prove that i is even.
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Elliptic operators of second order

EXAMPLE: A second order differential operator on C∞Rn is written as

D(f) = af +∑
i
bi
∂f

∂xi
+∑
i,j
ci,j

∂2f

∂xi∂xj
,

where a, bi, ci,j are smooth functions, and xi, i = 1, ..., n coordinates. Its symbol

is given by a quadratic form ξÐ→ ∑i,j ci,jξiξj, where ξ = (ξ1, ..., ξn) ∈ T
∗
xRn. This

operator is elliptic if the matrix (ci,j) is positive or negative definite in

any point of Rn.

REMARK: By convention, we assume that (ci,j) is always positive definite

when D is elliptic.

REMARK: For any elliptic operator D, its symbol σ(D) ∈ Sym2(TM) defines

a Riemannian metric on M.
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Strong maximum principle

THEOREM:

(strong maximum principle for second order elliptic equations; Eber-

hard Hopf, 1927) Let M be a manifold, not necessarily compact, and D ∶

C∞M Ð→C∞M an elliptic operator of second order, which satisfies D(const) = 0.

Consider a function u ∈ C∞M such that D(u) ⩾ 0. Assume that u has a local

maximum somewhere on M. Then u is a constant.

Maximum principle will be proven at the end of today’s lecture. We start

with a special case.

Proof of maximum principle, for the case D(u) > 0: In coordinates, D is

written as Du = ∑i,jA
ijuij+∑iB

iui,, where u is the matrix of second derivatives

of u, ui =
∂u
∂xi

, and Aij a function taking values in positive definite matrices.

Let z be the point where u reaches a relative maximum. In this point the

first derivatives of u vanish, and the matrix of second derivatives is negative,

hence Du∣z = ∑i,jA
ijuij ∣z ⩽ 0, contradicting Du > 0.

I will first prove the weak maximum principle, and then deduce the strong

maximum principlle.
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Weak maximum principle

THEOREM: (The weak maximum principle)
Let D ∶ C∞RnÐ→C∞Rn be an elliptic operator of second order, which satisfies
D(const) = 0. Consider a relatively compact open subset Ω ⋐ Rn. Then any
solution u of the inequality D(u) ⩾ 0 reaches its maximum supΩu on the
boundary ∂Ω.

Proof. Step 1: Let z ∈ Ω be a point where u reaches maximum, and xi
coordinates in its neighbourhood U , with origin in z. Rescaling the coordinates
if necessary, we can always assume that Ω is relatively compact in the unit
ball B1. It would suffice to show that u(z) = u(v) for some z ∈ ∂Ω.

Step 2: Adding to u a solution ϕ of the inequality Dϕ > 0, we obtain a
function u +ϕ which reaches its maximum on ∂U, because of the strong
maximum principle for solutions of Du > 0.

Step 3: The function ϕ ∶= εecx1 satisfies Dϕ > 0 if c is chosen such that
A1,1c > ∣B1∣. Indeed, ε−1D(ϕ) = c2A1,1ecx1 + cB1ecx1 > 0.

Step 4: Since the maximum of u + εecx1 is reached on ∂Ω for any ε > 0. we
obtain that supΩu = sup∂Ωu.
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Hopf lemma

LEMMA: (Hopf lemma)
Let D(u) = ∑i,jA

ijuij +∑iB
iui be an elliptic operator on a unit ball B ⊂ Rn, and

u ∈ C∞B a function which satisfies D(u) ⩾ 0. Assume that u reaches maximum
u(z0) = 0 in z0 ∈ ∂B, and inside B we have u < 0. Denote by r⃗ the radial
vector field, r⃗ = ∑xi

d
dxi

. Then the derivative Dr⃗u∣z0 in the radial direction
is positive.

Proof. Step 1: Consider a non-negative function v ∈ C∞B, defined by v(x) =

e−α∣x∣
2
− e−α, where α > 0 is a real number. Then

D(v)∣x = α2e−αr(x)
2
∑Aijxixj + e

−αr(x)2
(αζ + ξ),

where ζ, ξ ∈ C∞B are bounded functions on B, independent from α. Therefore
for sufficiently big α > 0, we have D(v) > 0 in the set Ω = B/B′, where
B′ ⊂ B is an open ball with center in 0 and radius r0 < 1.

Step 2: For a sufficiently small ε > 0, we have u+εv < 0 in B′, because u < δ < 0
on B′. Since v = 0 on ∂B, weak maximum principle implies that u + εv < 0 in
Ω, and u+ εv reaches its maximum in z0. This implies that Dr⃗(u+ εv)∣z0 ⩾ 0.

Step 3: An easy computation gives Dr⃗v∣z0 < 0, hence Step 2 implies Dr⃗u∣z0 > 0.
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Strong maximum principle (proof)

THEOREM:

(strong maximum principle for second order elliptic equations; Eber-

hard Hopf, 1927) Let M be a manifold, not necessarily compact, and D ∶

C∞M Ð→C∞M an elliptic operator of second order, which satisfies D(const) = 0.

Consider a function u ∈ C∞M such that D(u) ⩾ 0. Assume that u has a local

maximum somewhere on M. Then u is a constant.

Proof. Step 1: Suppose that the local maximum is reached in z ∈ M , and

Z ∶= {m ∈ M ∣ u(m) = u(z)}. If u ≠ const, there exists an open ball B ⊂ M

with interior not intersecting Z, and boundary intersecting Z. Choose

this ball in such a way that u < u(z) inside B.

Step 2: Since the derivative of z in z0 is non-zero (by Hopf lemma), this

point cannot be a local maximum of u.
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