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Hodge decomposition (reminder)

DEFINITION: Let M be a smooth manifold. An almost complex structure
is an operator I: TM — T M which satisfies 12 = -Idp,,.

T he eigenvalues of this operator are +v-1. The corresponding eigenvalue
decomposition is denoted TM =T9%1M o T1.O(M).

DEFINITION: Let APO(M,T):= AL TO.1 0 )*

cex ()
and AP4(M,I):= APO(M,I) ®Ce (M) NO-a(M, ).

1,0 * 0, — AP
TLOMY*, NOP(M, ) = A e

CLAIM:

A"MeopC= @ API(M,I)
p+q=n
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Complex manifolds (reminder)

EXAMPLE: Let M =C", with the complex coordinates z1,...,z, and real co-
ordinates z; := Re(z;),y; :=Im(z;). The standard almost complex structure

is defined as I(dx;) =dy;, I(dy;) = dx;,.

DEFINITION: A complex manifold is an almost complex manifold which
is locally isomorphic to C" with this complex structure.

REMARK: A 1-form « ¢ A1(M,C) satisfies a(Iz) = V-1 a(z) if and only if
a e ALO(M). Therefore, a function f: M — C is complex differentiable if
and only if df e ALO(M).
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Graded vector spaces and algebras
DEFINITION: A graded vector space is a space V* =@,z V".

REMARK: If V* is graded, the endomorphisms space End(V*) = @z End"(V*)
is also graded, with End"(V*) = @z Hom(VJ,V¥*])

DEFINITION: A graded algebra (or ‘“graded associative algebra”) is an
associative algebra A* = @,z A?, with the product compatible with the grading:
At AJ c AV

REMARK: A bilinear map of graded paces which satisfies A*- AJ c A'J is
called graded, or compatible with grading.

REMARK: The category of graded spaces can be defined as a category of
vector spaces with U(1)-action, with the weight decomposition providing
the grading. Then a graded algebra is an associative algebra in the
category of spaces with U(1)-action.

DEFINITION: An operator on a graded vector space is called even (odd)
if it shifts the grading by even (odd) number. The parity a of an operator a
is O if it is even, 1 if it is odd. We say that an operator is pure if it is even
or odd.
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Supercommutator

DEFINITION: A supercommutator of pure operators on a graded vector
space is defined by a formula {a,b} = ab- (-1)%bba.

DEFINITION: A graded associative algebra is called graded commutative
(or “supercommutative”) if its supercommutator vanishes.

EXAMPLE: The Grassmann algebra is supercommutative.

DEFINITION: A graded Lie algebra (Lie superalgebra) is a graded vector
space g* equipped with a bilinear graded map {,-} + g*xg*—g* which is
graded anticommutative: {a,b} = -(-1)3{b,a} and satisfies the super Jacobi
identity {c, {a,b}} = {{c,a},b} + (-1)2%{a, {c,b}}

EXAMPLE: Consider the algebra End(A*) of operators on a graded vector
space, with supercommutator as above. Then End(A*),{-,-} is a graded Lie
algebra.

Lemma 1: Let d be an odd element of a Lie superalgebra, satisfying {d,d} =0,
and L an even or odd element. Then {{L,d},d} =0.

Proof: 0={L,{d,d\} = {{L,d},d}+(-1)L{d, {L,d\} = 2{{L,d},d}. m
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T he twisted differential d¢
DEFINITION: The twisted differential is defined as d¢:= IdI 1.

CLAIM: Let (M,I) be a complex manifold. Then 9 := @, 9 = d‘Tm
are the Hodge components of d, 9 =d%0, 9=d0:1,

Proof: The Hodge components of d are expressed as dl.0 = d+¢2‘_1dc, d01 =

d_\/g__ldc- Indeed, I(d+¢§_1dc)l‘1 -v/~1 C“Tm, hence @ has Hodge type
(1,0); the same argument works for 0. =

CLAIM: Let W be the Weil operator, W‘Ap,q(M) =v-1(p-¢q). On any
complex manifold, one has d¢=[W,d].

Proof: Clearly, [W,d}9] = v/-1d10 and [W,d%1] = -/-1d%1. Then [W,d] =
vV-1d10-\/-1d%1 =14l 1. =

COROLLARY: {d,d} ={d,{d,W}} =0 (Lemma 1).
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Plurilaplacian

THEOREM: Let (M,I) be a complex manifold. Then 1. 92 =0.
=2

2. 9” =0.

3. dd°=-dd

4. ddc=2-100.

Proof: The first is vanishing of (2,0)-part of d2, and the second is vanishing of
its (0,2)-part. Now, {d,d¢} =-{d,{d,W}} =0 (Lemma 1), this gives dd°¢ = -d¢d.
Finally, 2¢/-100 = 3(d+v~1d¢)(d - /-1 d¢) = 3(dd¢ - d°d) = dd°. m

DEFINITION: The operator dd°€ is called the pluri-Laplacian.

REMARK: The pluri-Laplacian takes real functions to real (1,1)-forms
on M.

EXERCISE: Prove that on a Riemannian surface (M,I,w), one has

dde(f) = A(f)w.

DEFINITION: The Hodge U(1)-action on differential forms on a complex
manifold defined by p(t)(n) = e (). On (p,q)-forms, it acts as a scalar
p(t)‘/\p,q(M) = e(P-0)V-11d: the (p,p)-forms are clearly invariant.
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Positive (1,1)-forms

CLAIM: Consider a real (1,1)-form ne ALL(M)nA2(M,R). Then the bilinear
form g,(z,y) :=n(x,Iy) is symmetric.

Proof: Clearly, 0=W(n)(x,y) =n(W(zx),y) +n(x, W (y)) =n(lx,y) + n(x,Iy). This
gives n(z,Iy) = -n(lz,y) =n(y,I[z). =

CLAIM: This construction defines a bijection between U(1l)-invariant
symmetric forms g e Sym?(T*M) and sections of AL1(M)nA2(M,R). =

DEFINITION: A real (1,1)-form n is called positive if n(z,Ix) > 0 for any
xeTM.

REMARK: By convention, O is a positive (1,1)-form.

DEFINITION: A (1,1)-form is called Hermitian if it is positive and non-
degenerate, that is, when n(x,Ix) >0 for any x € TM\O.

REMARK: The above construction gives a bijective correspondence be-
tween the Hermitian (1,1)-forms and U(1)-invariant Riemannian metric
tensors on M.

EXAMPLE: For any (1,0)-form &, the form /-1£ A€ is positive (prove
this).
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The coordinate operators

Let V be an even-dimensional real vector space equipped with a scalar prod-
uct, and vi,...,vp, an orthonormal basis. Denote by e, : ARV — AF*1V an
operator of multiplication, e, (n) =v; An. Let iy, : AFV — A*~1V be an adjoint
operator, iy, = xey, *.

CLAIM: The operators ey, iy, Id are a basis of an odd Heisenberg Lie
superalgebra $, with the only non-trivial supercommutator given by the
formula {ey;, iy} = 6; ;1d.

Now, consider the tensor w =31, vp;_1 Avp;, and let L(a) =wAa, and A:=L*
be the corresponding Hodge operators.

CLAIM: (Lefschetz si(2)-action)
From the commutator relations in $, one obtains immediately that

2n 2n
H := [L7 /\] = [ZeUQi—1€U2i7 2%2@'—1%%] - Z eviivi B Z ivievi’
=1 =1

IS a scalar operator acting as k£ -n on k-forms.

COROLLARY: The triple L,A,H satisfies the relations for the sl(2) Lie
algebra: [L,A]=H, [H,L]=2L, [H,A]=2A.
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Laplacian and a pluri-Laplacian

DEFINITION: Let w be a Hermitian form on a complex manifold (M, ), and
A: ALL(M) — C>M the Lefschetz operator. The Laplacian A: C®M — C®M
is defined as A(f) := A(ddcf).

REMARK: Consider an orthonormal frame &1, ...,&, e ALOM: then w=v-1Y &
&;. Then dd¢=2v/-100 has the same symbol as

fHZ—Lleaz Liez (f)fz/\f]

where z1,...,x, € T1.OM is the dual basis. This implies that A(f) has the
same symbol as

Z - Llex Lieg.(f)

which has the same symbol as ZiLiegi(f) + Liegi(f). where p; = Rex;, q; =
Im(xz)

COROLLARY: The Laplacian A(f) = A(dd°f) is an elliptic operator of
second order. =
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Pluri-harmonic functions

DEFINITION: A function f on a complex manifold is called pluri-harmonic
if dd2f=0.

REMARK: A function f is called holomorphic if f =0, and antiholomor-
phic if 9f = 0. Since dd°¢ =2v-100 =-2v/-100, any holomorphic and any
antiholomorphic function is pluri-harmonic.

THEOREM: Any pluriharmonic function is locally expressed as a sum of
holomorphic and antiholomorphic function.

Proof: Let f be a pluriharmonic function on a ball, and a=0f Since 5(04) =0,
this form is holomorphic; since 82 = 0, it is also closed. Poincaré lemma
applied to holomorphic functions implies that « = du, where u is holomorphic.
Then d(f-u) is a (0,1)-form, hence v:= f—wu is antiholomorphic. We obtain
that f =u+v, where u is holomorphic, and v is antiholomorphic. =

In our proof, we use the following version of Poincaré lemma.
LEMMA: Let BcC"” be an open ball, and n a closed holomorphic (d,0)-form
Then 7n=da, where « is a holomorphic (d-1,0)-form.

Proof: It follows from the same argument as one which proves the Poincaré
lemma (Lecture 29). =
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