
Complex analytic spaces, lecture 28 M. Verbitsky

Complex analytic spaces
lecture 28: Pluri-Laplacian

Misha Verbitsky

IMPA, sala 236,

November 15, 2023, 17:00

1



Complex analytic spaces, lecture 28 M. Verbitsky

Hodge decomposition (reminder)

DEFINITION: Let M be a smooth manifold. An almost complex structure

is an operator I ∶ TM Ð→ TM which satisfies I2 = − IdTM .

The eigenvalues of this operator are ±
√
−1. The corresponding eigenvalue

decomposition is denoted TM = T0,1M ⊕ T1,0(M).

DEFINITION: Let Λp,0(M,I) ∶= Λp
C∞
C (M)(T

1,0M)∗, Λ0,p(M,I) ∶= Λp
C∞
C (M)(T

0,1M)∗,

and Λp,q(M,I) ∶= Λp,0(M,I) ⊗C∞
C (M) Λ0,q(M,I).

CLAIM:

ΛnM ⊗R C = ⊕
p+q=n

Λp,q(M,I)
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Complex manifolds (reminder)

EXAMPLE: Let M = Cn, with the complex coordinates z1, ..., zn and real co-

ordinates xi ∶= Re(zi), yi ∶= Im(zi). The standard almost complex structure

is defined as I(dxi) = dyi, I(dyi) = dxi,.

DEFINITION: A complex manifold is an almost complex manifold which

is locally isomorphic to Cn with this complex structure.

REMARK: A 1-form α ∈ Λ1(M,C) satisfies α(Ix) =
√
−1 α(x) if and only if

α ∈ Λ1,0(M). Therefore, a function f ∶ M Ð→C is complex differentiable if

and only if df ∈ Λ1,0(M).
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Graded vector spaces and algebras

DEFINITION: A graded vector space is a space V ∗ = ⊕i∈ZV i.

REMARK: If V ∗ is graded, the endomorphisms space End(V ∗) = ⊕i∈ZEndi(V ∗)
is also graded, with Endi(V ∗) = ⊕j∈ZHom(V j, V i+j)

DEFINITION: A graded algebra (or “graded associative algebra”) is an
associative algebra A∗ = ⊕i∈ZAi, with the product compatible with the grading:
Ai ⋅Aj ⊂ Ai+j.

REMARK: A bilinear map of graded paces which satisfies Ai ⋅ Aj ⊂ Ai+j is
called graded, or compatible with grading.

REMARK: The category of graded spaces can be defined as a category of
vector spaces with U(1)-action, with the weight decomposition providing
the grading. Then a graded algebra is an associative algebra in the
category of spaces with U(1)-action.

DEFINITION: An operator on a graded vector space is called even (odd)
if it shifts the grading by even (odd) number. The parity ã of an operator a
is 0 if it is even, 1 if it is odd. We say that an operator is pure if it is even
or odd.
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Supercommutator

DEFINITION: A supercommutator of pure operators on a graded vector
space is defined by a formula {a, b} = ab − (−1)ã̃bba.

DEFINITION: A graded associative algebra is called graded commutative
(or “supercommutative”) if its supercommutator vanishes.

EXAMPLE: The Grassmann algebra is supercommutative.

DEFINITION: A graded Lie algebra (Lie superalgebra) is a graded vector
space g∗ equipped with a bilinear graded map {⋅, ⋅} ∶ g∗ × g∗Ð→ g∗ which is
graded anticommutative: {a, b} = −(−1)ã̃b{b, a} and satisfies the super Jacobi
identity {c,{a, b}} = {{c, a}, b} + (−1)ãc̃{a,{c, b}}

EXAMPLE: Consider the algebra End(A∗) of operators on a graded vector
space, with supercommutator as above. Then End(A∗),{⋅, ⋅} is a graded Lie
algebra.

Lemma 1: Let d be an odd element of a Lie superalgebra, satisfying {d,d} = 0,
and L an even or odd element. Then {{L,d}, d} = 0.

Proof: 0 = {L,{d,d}} = {{L,d}, d} + (−1)L̃{d,{L,d}} = 2{{L,d}, d}.
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The twisted differential dc

DEFINITION: The twisted differential is defined as dc ∶= IdI−1.

CLAIM: Let (M,I) be a complex manifold. Then ∂ ∶= d+
√
−1 dc
2 , ∂ ∶= d−

√
−1 dc
2

are the Hodge components of d, ∂ = d1,0, ∂ = d0,1.

Proof: The Hodge components of d are expressed as d1,0 = d+
√
−1 dc
2 , d0,1 =

d−
√
−1 dc
2 . Indeed, I(d+

√
−1 dc
2 )I−1 =

√
−1 d+

√
−1 dc
2 , hence d+

√
−1 dc
2 has Hodge type

(1,0); the same argument works for ∂.

CLAIM: Let W be the Weil operator, W ∣Λp,q(M) =
√
−1 (p − q). On any

complex manifold, one has dc = [W,d].

Proof: Clearly, [W,d1,0] =
√
−1 d1,0 and [W,d0,1] = −

√
−1 d0,1. Then [W,d] =√

−1 d1,0 −
√
−1 d0,1 = IdI−1.

COROLLARY: {d,dc} = {d,{d,W }} = 0 (Lemma 1).
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Plurilaplacian

THEOREM: Let (M,I) be a complex manifold. Then 1. ∂2 = 0.

2. ∂
2 = 0.

3. ddc = −dcd
4. ddc = 2

√
−1 ∂∂.

Proof: The first is vanishing of (2,0)-part of d2, and the second is vanishing of
its (0,2)-part. Now, {d,dc} = −{d,{d,W }} = 0 (Lemma 1), this gives ddc = −dcd.
Finally, 2

√
−1 ∂∂ = 1

2(d +
√
−1 dc)(d −

√
−1 dc) = 1

2(ddc − dcd) = ddc.

DEFINITION: The operator ddc is called the pluri-Laplacian.

REMARK: The pluri-Laplacian takes real functions to real (1,1)-forms
on M.

EXERCISE: Prove that on a Riemannian surface (M,I,ω), one has
ddc(f) = ∆(f)ω.

DEFINITION: The Hodge U(1)-action on differential forms on a complex
manifold defined by ρ(t)(η) = etW (η). On (p, q)-forms, it acts as a scalar
ρ(t)∣Λp,q(M) = e(p−q)

√
−1 Id; the (p, p)-forms are clearly invariant.
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Positive (1,1)-forms

CLAIM: Consider a real (1,1)-form η ∈ Λ1,1(M)∩Λ2(M,R). Then the bilinear
form gη(x,y) ∶= η(x, Iy) is symmetric.
Proof: Clearly, 0 =W (η)(x,y) = η(W (x), y) + η(x,W (y)) = η(Ix, y) + η(x, Iy). This
gives η(x, Iy) = −η(Ix, y) = η(y, Ix).

CLAIM: This construction defines a bijection between U(1)-invariant
symmetric forms g ∈ Sym2(T ∗M) and sections of Λ1,1(M) ∩Λ2(M,R).

DEFINITION: A real (1,1)-form η is called positive if η(x, Ix) ⩾ 0 for any
x ∈ TM .

REMARK: By convention, 0 is a positive (1,1)-form.

DEFINITION: A (1,1)-form is called Hermitian if it is positive and non-
degenerate, that is, when η(x, Ix) > 0 for any x ∈ TM/0.

REMARK: The above construction gives a bijective correspondence be-
tween the Hermitian (1,1)-forms and U(1)-invariant Riemannian metric
tensors on M.

EXAMPLE: For any (1,0)-form ξ, the form
√
−1 ξ ∧ ξ is positive (prove

this).
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The coordinate operators

Let V be an even-dimensional real vector space equipped with a scalar prod-
uct, and v1, ..., v2n an orthonormal basis. Denote by evi ∶ ΛkV Ð→Λk+1V an
operator of multiplication, evi(η) = vi ∧ η. Let ivi ∶ ΛkV Ð→Λk−1V be an adjoint
operator, ivi = ∗evi∗.

CLAIM: The operators evi, ivi, Id are a basis of an odd Heisenberg Lie
superalgebra H, with the only non-trivial supercommutator given by the
formula {evi, ivj} = δi,j Id.

Now, consider the tensor ω = ∑ni=1 v2i−1 ∧ v2i, and let L(α) = ω ∧ α, and Λ ∶= L∗
be the corresponding Hodge operators.

CLAIM: (Lefschetz sl(2)-action)
From the commutator relations in H, one obtains immediately that

H ∶= [L,Λ] = [∑ev2i−1ev2i,∑ iv2i−1iv2i] =
2n
∑
i=1

eviivi −
2n
∑
i=1

ivievi,

is a scalar operator acting as k −n on k-forms.

COROLLARY: The triple L,Λ,H satisfies the relations for the sl(2) Lie
algebra: [L,Λ] =H, [H,L] = 2L, [H,Λ] = 2Λ.

9



Complex analytic spaces, lecture 28 M. Verbitsky

Laplacian and a pluri-Laplacian

DEFINITION: Let ω be a Hermitian form on a complex manifold (M,I), and

Λ ∶ Λ1,1(M) Ð→C∞M the Lefschetz operator. The Laplacian ∆ ∶ C∞M Ð→C∞M
is defined as ∆(f) ∶= Λ(ddcf).

REMARK: Consider an orthonormal frame ξ1, ..., ξn ∈ Λ1,0M ; then ω =
√
−1∑ ξi∧

ξi. Then ddc = 2
√
−1 ∂∂ has the same symbol as

f ↦∑
i,j

2√
−1

Liexi Liexj(f)ξi ∧ ξj

where x1, ..., xn ∈ T1,0M is the dual basis. This implies that ∆(f) has the

same symbol as

f ↦∑
i

2√
−1

Liexi Liexi(f)

which has the same symbol as ∑iLie2
pi(f) + Lie2

qi(f), where pi = Rexi, qi =
Im(xi).

COROLLARY: The Laplacian ∆(f) = Λ(ddcf) is an elliptic operator of

second order.
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Pluri-harmonic functions

DEFINITION: A function f on a complex manifold is called pluri-harmonic
if dd2f = 0.

REMARK: A function f is called holomorphic if ∂f = 0, and antiholomor-
phic if ∂f = 0. Since ddc = 2

√
−1 ∂∂ = −2

√
−1 ∂∂, any holomorphic and any

antiholomorphic function is pluri-harmonic.

THEOREM: Any pluriharmonic function is locally expressed as a sum of
holomorphic and antiholomorphic function.

Proof: Let f be a pluriharmonic function on a ball, and α = ∂f Since ∂(α) = 0,
this form is holomorphic; since ∂2 = 0, it is also closed. Poincaré lemma
applied to holomorphic functions implies that α = du, where u is holomorphic.
Then d(f − u) is a (0,1)-form, hence v ∶= f − u is antiholomorphic. We obtain
that f = u + v, where u is holomorphic, and v is antiholomorphic.

In our proof, we use the following version of Poincaré lemma.
LEMMA: Let B ⊂ Cn be an open ball, and η a closed holomorphic (d,0)-form
Then η = dα, where α is a holomorphic (d − 1,0)-form.

Proof: It follows from the same argument as one which proves the Poincaré
lemma (Lecture 29).
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