Complex analytic spaces

lecture 28: Pluri-Laplacian

Misha Verbitsky

IMPA, sala 236,

November 15, 2023, 17:00

Hodge decomposition (reminder)

DEFINITION: Let *M* be a smooth manifold. An **almost complex structure** is an operator $I: TM \rightarrow TM$ which satisfies $I^2 = -Id_{TM}$.

The eigenvalues of this operator are $\pm \sqrt{-1}$. The corresponding eigenvalue decomposition is denoted $TM = T^{0,1}M \oplus T^{1,0}(M)$.

DEFINITION: Let $\Lambda^{p,0}(M,I) \coloneqq \Lambda^p_{C^{\infty}_{\mathbb{C}}(M)}(T^{1,0}M)^*$, $\Lambda^{0,p}(M,I) \coloneqq \Lambda^p_{C^{\infty}_{\mathbb{C}}(M)}(T^{0,1}M)^*$, and $\Lambda^{p,q}(M,I) \coloneqq \Lambda^{p,0}(M,I) \otimes_{C^{\infty}_{\mathbb{C}}(M)} \Lambda^{0,q}(M,I)$.

CLAIM:

$$\wedge^n M \otimes_{\mathbb{R}} \mathbb{C} = \bigoplus_{p+q=n} \wedge^{p,q}(M,I)$$

Complex manifolds (reminder)

EXAMPLE: Let $M = \mathbb{C}^n$, with the complex coordinates $z_1, ..., z_n$ and real coordinates $x_i \coloneqq \operatorname{Re}(z_i), y_i \coloneqq \operatorname{Im}(z_i)$. The standard almost complex structure is defined as $I(dx_i) = dy_i$, $I(dy_i) = dx_i$.

DEFINITION: A complex manifold is an almost complex manifold which is locally isomorphic to \mathbb{C}^n with this complex structure.

REMARK: A 1-form $\alpha \in \Lambda^1(M, \mathbb{C})$ satisfies $\alpha(Ix) = \sqrt{-1} \alpha(x)$ if and only if $\alpha \in \Lambda^{1,0}(M)$. Therefore, a function $f \colon M \longrightarrow \mathbb{C}$ is complex differentiable if and only if $df \in \Lambda^{1,0}(M)$.

Graded vector spaces and algebras

DEFINITION: A graded vector space is a space $V^* = \bigoplus_{i \in \mathbb{Z}} V^i$.

REMARK: If V^* is graded, the endomorphisms space $\text{End}(V^*) = \bigoplus_{i \in \mathbb{Z}} \text{End}^i(V^*)$ is also graded, with $\text{End}^i(V^*) = \bigoplus_{j \in \mathbb{Z}} \text{Hom}(V^j, V^{i+j})$

DEFINITION: A graded algebra (or "graded associative algebra") is an associative algebra $A^* = \bigoplus_{i \in \mathbb{Z}} A^i$, with the product compatible with the grading: $A^i \cdot A^j \subset A^{i+j}$.

REMARK: A bilinear map of graded paces which satisfies $A^i \cdot A^j \subset A^{i+j}$ is called **graded**, or **compatible with grading**.

REMARK: The category of graded spaces can be defined as a **category of vector spaces with** U(1)-action, with the weight decomposition providing the grading. Then a graded algebra is an associative algebra in the category of spaces with U(1)-action.

DEFINITION: An operator on a graded vector space is called even (odd) if it shifts the grading by even (odd) number. The **parity** \tilde{a} of an operator *a* is 0 if it is even, 1 if it is odd. We say that an operator is **pure** if it is even or odd.

Supercommutator

DEFINITION: A supercommutator of pure operators on a graded vector space is defined by a formula $\{a, b\} = ab - (-1)^{\tilde{a}\tilde{b}}ba$.

DEFINITION: A graded associative algebra is called **graded commutative** (or "supercommutative") if its supercommutator vanishes.

EXAMPLE: The Grassmann algebra is supercommutative.

DEFINITION: A graded Lie algebra (Lie superalgebra) is a graded vector space \mathfrak{g}^* equipped with a bilinear graded map $\{\cdot, \cdot\} : \mathfrak{g}^* \times \mathfrak{g}^* \longrightarrow \mathfrak{g}^*$ which is graded anticommutative: $\{a, b\} = -(-1)^{\tilde{a}\tilde{b}}\{b, a\}$ and satisfies **the super Jacobi** identity $\{c, \{a, b\}\} = \{\{c, a\}, b\} + (-1)^{\tilde{a}\tilde{c}}\{a, \{c, b\}\}$

EXAMPLE: Consider the algebra $End(A^*)$ of operators on a graded vector space, with supercommutator as above. Then $End(A^*)$, $\{\cdot, \cdot\}$ is a graded Lie algebra.

Lemma 1: Let d be an odd element of a Lie superalgebra, satisfying $\{d, d\} = 0$, and L an even or odd element. Then $\{\{L, d\}, d\} = 0$.

Proof:
$$0 = \{L, \{d, d\}\} = \{\{L, d\}, d\} + (-1)^{\tilde{L}} \{d, \{L, d\}\} = 2\{\{L, d\}, d\}.$$

The twisted differential d^c

DEFINITION: The twisted differential is defined as $d^c := I dI^{-1}$.

CLAIM: Let (M, I) be a complex manifold. Then $\partial \coloneqq \frac{d+\sqrt{-1}d^c}{2}$, $\overline{\partial} \coloneqq \frac{d-\sqrt{-1}d^c}{2}$ are the Hodge components of d, $\partial = d^{1,0}$, $\overline{\partial} = d^{0,1}$.

Proof: The Hodge components of d are expressed as $d^{1,0} = \frac{d+\sqrt{-1}d^c}{2}$, $d^{0,1} = \frac{d-\sqrt{-1}d^c}{2}$. Indeed, $I(\frac{d+\sqrt{-1}d^c}{2})I^{-1} = \sqrt{-1}\frac{d+\sqrt{-1}d^c}{2}$, hence $\frac{d+\sqrt{-1}d^c}{2}$ has Hodge type (1,0); the same argument works for $\overline{\partial}$.

CLAIM: Let *W* be the Weil operator, $W|_{\Lambda^{p,q}(M)} = \sqrt{-1} (p-q)$. On any complex manifold, one has $d^c = [W, d]$.

Proof: Clearly, $[W, d^{1,0}] = \sqrt{-1} d^{1,0}$ and $[W, d^{0,1}] = -\sqrt{-1} d^{0,1}$. Then $[W, d] = \sqrt{-1} d^{1,0} - \sqrt{-1} d^{0,1} = I dI^{-1}$.

COROLLARY: $\{d, d^c\} = \{d, \{d, W\}\} = 0$ (Lemma 1).

Plurilaplacian

THEOREM: Let (M, I) be a complex manifold. Then 1. $\partial^2 = 0$. 2. $\overline{\partial}^2 = 0$. 3. $dd^c = -d^c d$

4. $dd^c = 2\sqrt{-1} \partial \overline{\partial}$.

Proof: The first is vanishing of (2,0)-part of d^2 , and the second is vanishing of its (0,2)-part. Now, $\{d, d^c\} = -\{d, \{d, W\}\} = 0$ (Lemma 1), this gives $dd^c = -d^c d$. Finally, $2\sqrt{-1}\partial\overline{\partial} = \frac{1}{2}(d + \sqrt{-1}d^c)(d - \sqrt{-1}d^c) = \frac{1}{2}(dd^c - d^c d) = dd^c$.

DEFINITION: The operator dd^c is called **the pluri-Laplacian**.

REMARK: The pluri-Laplacian takes real functions to real (1,1)-forms on M.

EXERCISE: Prove that on a Riemannian surface (M, I, ω) , one has $dd^c(f) = \Delta(f)\omega$.

DEFINITION: The Hodge U(1)-action on differential forms on a complex manifold defined by $\rho(t)(\eta) = e^{tW}(\eta)$. On (p,q)-forms, it acts as a scalar $\rho(t)|_{\Lambda^{p,q}(M)} = e^{(p-q)\sqrt{-1}}$ Id; the (p,p)-forms are clearly invariant.

Positive (1,1)-forms

CLAIM: Consider a real (1,1)-form $\eta \in \Lambda^{1,1}(M) \cap \Lambda^2(M, \mathbb{R})$. Then the bilinear form $g_{\eta}(x, y) \coloneqq \eta(x, Iy)$ is symmetric. **Proof:** Clearly, $0 = W(\eta)(x, y) = \eta(W(x), y) + \eta(x, W(y)) = \eta(Ix, y) + \eta(x, Iy)$. This gives $\eta(x, Iy) = -\eta(Ix, y) = \eta(y, Ix)$.

CLAIM: This construction defines a bijection between U(1)-invariant symmetric forms $g \in \text{Sym}^2(T^*M)$ and sections of $\Lambda^{1,1}(M) \cap \Lambda^2(M, \mathbb{R})$.

DEFINITION: A real (1,1)-form η is called **positive** if $\eta(x, Ix) \ge 0$ for any $x \in TM$.

REMARK: By convention, **0** is a positive (1,1)-form.

DEFINITION: A (1,1)-form is called **Hermitian** if it is positive and nondegenerate, that is, when $\eta(x, Ix) > 0$ for any $x \in TM \setminus 0$.

REMARK: The above construction gives a bijective correspondence between the Hermitian (1,1)-forms and U(1)-invariant Riemannian metric tensors on M.

EXAMPLE: For any (1,0)-form ξ , the form $\sqrt{-1}\xi \wedge \overline{\xi}$ is positive (prove this).

The coordinate operators

Let V be an even-dimensional real vector space equipped with a scalar product, and $v_1, ..., v_{2n}$ an orthonormal basis. Denote by $e_{v_i} : \Lambda^k V \longrightarrow \Lambda^{k+1} V$ an operator of multiplication, $e_{v_i}(\eta) = v_i \wedge \eta$. Let $i_{v_i} : \Lambda^k V \longrightarrow \Lambda^{k-1} V$ be an adjoint operator, $i_{v_i} = *e_{v_i} *$.

CLAIM: The operators e_{v_i} , i_{v_i} , Id are a basis of an **odd Heisenberg Lie superalgebra** \mathfrak{H} , with **the only non-trivial supercommutator given by the formula** $\{e_{v_i}, i_{v_j}\} = \delta_{i,j}$ Id.

Now, consider the tensor $\omega = \sum_{i=1}^{n} v_{2i-1} \wedge v_{2i}$, and let $L(\alpha) = \omega \wedge \alpha$, and $\Lambda := L^*$ be the corresponding Hodge operators.

CLAIM: (Lefschetz $\mathfrak{sl}(2)$ -action)

From the commutator relations in \mathfrak{H} , one obtains immediately that

$$H \coloneqq [L, \Lambda] = \left[\sum e_{v_{2i-1}} e_{v_{2i}}, \sum i_{v_{2i-1}} i_{v_{2i}}\right] = \sum_{i=1}^{2n} e_{v_i} i_{v_i} - \sum_{i=1}^{2n} i_{v_i} e_{v_i},$$

is a scalar operator acting as k - n on k-forms.

COROLLARY: The triple L, Λ, H satisfies the relations for the $\mathfrak{sl}(2)$ Lie algebra: $[L,\Lambda] = H$, [H,L] = 2L, $[H,\Lambda] = 2\Lambda$.

Laplacian and a pluri-Laplacian

DEFINITION: Let ω be a Hermitian form on a complex manifold (M, I), and $\Lambda \colon \Lambda^{1,1}(M) \longrightarrow C^{\infty}M$ the Lefschetz operator. The Laplacian $\Delta \colon C^{\infty}M \longrightarrow C^{\infty}M$ is defined as $\Delta(f) \coloneqq \Lambda(dd^c f)$.

REMARK: Consider an orthonormal frame $\xi_1, ..., \xi_n \in \Lambda^{1,0}M$; then $\omega = \sqrt{-1} \sum \xi_i \wedge \overline{\xi}_i$. Then $dd^c = 2\sqrt{-1} \partial \overline{\partial}$ has the same symbol as

$$f \mapsto \sum_{i,j} \frac{2}{\sqrt{-1}} \operatorname{Lie}_{x_i} \operatorname{Lie}_{\overline{x}_j}(f) \xi_i \wedge \overline{\xi}_j$$

where $x_1, ..., x_n \in T^{1,0}M$ is the dual basis. This implies that $\Delta(f)$ has the same symbol as

$$f \mapsto \sum_{i} \frac{2}{\sqrt{-1}} \operatorname{Lie}_{x_{i}} \operatorname{Lie}_{\overline{x}_{i}}(f)$$

which has the same symbol as $\sum_{i} \text{Lie}_{p_i}^2(f) + \text{Lie}_{q_i}^2(f)$, where $p_i = \text{Re} x_i$, $q_i = \text{Im}(x_i)$.

COROLLARY: The Laplacian $\Delta(f) = \Lambda(dd^c f)$ is an elliptic operator of second order.

Pluri-harmonic functions

DEFINITION: A function f on a complex manifold is called **pluri-harmonic** if $dd^2f = 0$.

REMARK: A function f is called **holomorphic** if $\overline{\partial} f = 0$, and **antiholomorphic** if $\partial f = 0$. Since $dd^c = 2\sqrt{-1} \partial \overline{\partial} = -2\sqrt{-1} \overline{\partial} \partial$, any holomorphic and any antiholomorphic function is pluri-harmonic.

THEOREM: Any pluriharmonic function is locally expressed as a sum of holomorphic and antiholomorphic function.

Proof: Let f be a pluriharmonic function on a ball, and $\alpha = \partial f$ Since $\overline{\partial}(\alpha) = 0$, this form is holomorphic; since $\partial^2 = 0$, it is also closed. Poincaré lemma applied to holomorphic functions implies that $\alpha = du$, where u is holomorphic. Then d(f - u) is a (0,1)-form, hence $v \coloneqq f - u$ is antiholomorphic. We obtain that f = u + v, where u is holomorphic, and v is antiholomorphic.

In our proof, we use the following version of Poincaré lemma. **LEMMA:** Let $B \subset \mathbb{C}^n$ be an open ball, and η a closed holomorphic (d,0)-form Then $\eta = d\alpha$, where α is a holomorphic (d-1,0)-form.

Proof: It follows from the same argument as one which proves the Poincaré lemma (Lecture 29). ■