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Hodge decomposition (reminder)

DEFINITION: Let M be a smooth manifold. An almost complex structure

is an operator I ∶ TM Ð→ TM which satisfies I2 = − IdTM .

The eigenvalues of this operator are ±
√
−1. The corresponding eigenvalue

decomposition is denoted TM = T0,1M ⊕ T1,0(M).

DEFINITION: Let Λp,0(M,I) ∶= Λp
C∞
C (M)(T

1,0M)∗, Λ0,p(M,I) ∶= Λp
C∞
C (M)(T

0,1M)∗,

and Λp,q(M,I) ∶= Λp,0(M,I)⊗C∞
C (M) Λ0,q(M,I).

CLAIM:

ΛnM ⊗R C = ⊕
p+q=n

Λp,q(M,I)
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Plurilaplacian(reminder)

DEFINITION: The twisted differential is defined as dc ∶= IdI−1.

CLAIM: Let (M,I) be a complex manifold. Then ∂ ∶= d+
√
−1 dc
2 , ∂ ∶= d−

√
−1 dc
2

are the Hodge components of d, ∂ = d1,0, ∂ = d0,1.

CLAIM: Let W be the Weil operator, W ∣Λp,q(M) =
√
−1 (p − q). On any

complex manifold, one has dc = [W,d].

THEOREM: Let (M,I) be a complex manifold. Then 1. ∂2 = 0.

2. ∂
2 = 0.

3. ddc = −dcd
4. ddc = 2

√
−1 ∂∂.

DEFINITION: The operator ddc is called the pluri-Laplacian.

REMARK: The pluri-Laplacian takes real functions to real (1,1)-forms
on M.

EXERCISE: Prove that on a Riemannian surface (M,I,ω), one has
ddc(f) = ∆(f)ω.
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Positive (1,1)-forms (reminder)

CLAIM: Consider a real (1,1)-form η ∈ Λ1,1(M)∩Λ2(M,R). Then the bilinear
form gη(x,y) ∶= η(x, Iy) is symmetric.
Proof: Clearly, 0 =W (η)(x,y) = η(W (x), y) + η(x,W (y)) = η(Ix, y) + η(x, Iy). This
gives η(x, Iy) = −η(Ix, y) = η(y, Ix).

CLAIM: This construction defines a bijection between U(1)-invariant
symmetric forms g ∈ Sym2(T ∗M) and sections of Λ1,1(M) ∩Λ2(M,R).

DEFINITION: A real (1,1)-form η is called positive if η(x, Ix) ⩾ 0∀x ∈ TM .
REMARK: By convention, 0 is a positive (1,1)-form.
DEFINITION: A (1,1)-form is called Hermitian if it is positive and non-
degenerate, that is, when η(x, Ix) > 0 for any x ∈ TM/0.

REMARK: The above construction gives a bijective correspondence be-
tween the Hermitian (1,1)-forms and U(1)-invariant Riemannian metric
tensors on M.

EXAMPLE: For any (1,0)-form ξ, the form
√
−1 ξ ∧ ξ is positive.

Now, consider the operator L(α) ∶= ω ∧α, and let Λ ∶= L∗.
CLAIM: The Laplacian ∆(f) = Λ(ddcf) is an elliptic operator of second
order.
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Pluri-harmonic functions (reminder)

DEFINITION: A function f on a complex manifold is called pluri-harmonic
if dd2f = 0.

REMARK: A function f is called holomorphic if ∂f = 0, and antiholomor-
phic if ∂f = 0. Since ddc = 2

√
−1 ∂∂ = −2

√
−1 ∂∂, any holomorphic and any

antiholomorphic function is pluri-harmonic.

THEOREM: Any pluriharmonic function is locally expressed as a sum of
holomorphic and antiholomorphic function.

Proof: Let f be a pluriharmonic function on a ball, and α = ∂f Since ∂(α) = 0,
this form is holomorphic; since ∂2 = 0, it is also closed. Poincaré lemma
applied to holomorphic functions implies that α = du, where u is holomorphic.
Then d(f − u) is a (0,1)-form, hence v ∶= f − u is antiholomorphic. We obtain
that f = u + v, where u is holomorphic, and v is antiholomorphic.

In our proof, we use the following version of Poincaré lemma.
LEMMA: Let B ⊂ Cn be an open ball, and η a closed holomorphic (d,0)-form
Then η = dα, where α is a holomorphic (d − 1,0)-form.

Proof: It follows from the same argument as one which proves the Poincaré
lemma (next slide).
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Poincaré lemma

DEFINITION: An open subset U ⊂ Rn is called starlike if for any x ∈ U the

interval [0, x] belongs to U .

THEOREM: (Poicaré lemma) Let U ⊂ Rn be a starlike subset. Then

Hi(U) = 0 for i > 0. In other words, Tany closed i-form on U is exact.

REMARK: The proof would follow if we construct a vector field r⃗ such

that Lier⃗ is invertible on Λ∗(M): Lier⃗R = Id. Indeed, for any closed form α

we would have α = Lier⃗Rα = dir⃗Rα + ir⃗Rdα = dir⃗Rα, hence any closed form is

exact.

Then Poincaré lemma is implied by the following statement.

PROPOSITION: Let U ⊂ Rn be a starlike subset, t1, ..., tn coordinate func-

tions, and r⃗ ∶= ∑ ti ddti the radial vector field. Then Lier⃗ is invertible on Λi(U)
for i > 0.
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Radial vector field on starlike sets

PROPOSITION: Let U ⊂ Rn be a starlike subset, t1, ..., tn coordinate func-

tions, and r⃗ ∶= ∑ ti ddti the radial vector field. Then Lier⃗ is invertible on Λi(U)
for i > 0.

Proof. Step 1: Let t be the coordinate function on a real line, f(t) ∈ C∞R a

smooth function, and v ∶= t ddt a vector field. Define R(f)(t) ∶= ∫ 1
0
f(λt)
λ dλ. Then

this integral converges whenever f(0) = 0, and satisfies LievR(f) = f . Indeed,

∫
1

0

f(λt)
λ

dλ = ∫
t

0

f(λt)
tλ

d(tλ) = ∫
t

0

f(z)
z
dz,

hence LievR(f) = tf(t)t = f(t).

Step 2: Consider a function f ∈ C∞Rn satisfying f(0) = 0, and x = (x1, ..., xn) ∈
Rn. Then

R(f)(x) ∶= ∫
1

0

f(λx)
λ

dλ

converges, and satisfies Lier⃗R(f) = f.
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Radial vector field on starlike sets (2)

Step 3: Consider a differential form α ∈ Λi, and let hλxÐ→ λx be the homo-

thety with coefficient λ ∈ [0,1]. Define

R(α) ∶= ∫
1

0
λ−1h∗λ(α)dλ.

Since h∗
λ
(α) = 0 for λ = 0, this integral converges. It remains to prove that

Lier⃗R = Id.

Step 4: Let α be a coordinate monomial, α = dti1 ∧ dti2 ∧ ... ∧ dtik. Clearly,

Lier⃗(T −1α) = 0, where T = ti1ti2...tik. Since h∗
λ
(fα) = h∗

λ
(Tf)T −1α, we have

R(fα) = R(Tf)T −1α for any function f ∈ C∞M. This gives

Lier⃗R(fα) = Lier⃗R(Tf)T −1α = TfT −1α = fα.
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Plurisubharmonic functions

DEFINITION: A function f on a complex manifold is called plurisubhar-
monic (or psh) if ddcf is a positive (1,1)-form, and strictly plurisubharmonic
if ddcf is a positive definite (and ipso facto Kähler) form.

REMARK: For any plurisubharmonic function f , and any Hermitian form
ω, we have ∆(f) ⩾ 0, where ∆ is an elliptic operator. Applying the strong
maximum principle, we obtain
COROLLARY: A plurisubharmonic function on a manifold cannot have a
local maximum, unless it is constant.

EXAMPLE: A sum of plurisubharmonic functions is plurisubharmonic.
EXAMPLE: Let f be a holomorphic function. Then ddc∣f ∣2 = 2

√
−1 ∂∂ff =

2
√
−1 (∂f ∧ ∂f), hence ∣f ∣2 is plurisubharmonic.

COROLLARY: Let f1, ..., fn be a collection of holomorphic functions on a
complex manifold. Then ∑i ∣fi∣2 is plurisubharmonic, hence it cannot have
a maximum.
EXAMPLE: Let µ ∈ C∞R. Then

ddc(µ(f))∣m = µ′(f(z))2ddcf + µ′′(f(z))df ∧ dcf.
Therefore, for any psh function f, the composition µ(f) is psh when
µ′′ ⩾ 0 and µ′ > 0.
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Kähler potential

I will use the following difficult theorem without a proof.

LEMMA: (“Poincaré-Dolbeault-Grothendieck lemma”)
Let η be a ∂-closed (p, q)-form, q > 0, on an open ball B ⊂ Cn. Then η ∈ im∂.

DEFINITION: A closed Hermitian (1,1)-form ω is called a Kähler form. A
function f is called its Kähler potential when ω = ddcf .

CLAIM: Any Kähler form on an open ball B ⊂ Cn admits a Kähler
potential.

Proof. Step 1: Poincaré-Dolbeault-Grothendieck lemma implies that
ω = ∂η, for some η ∈ Λ1,0B. Then ∂∂η = ∂ω = 0, which implies ∂∂η = 0.

Step 2: We obtain that ∂η is a holomorphic (2,0)-form, which is closed,
because ∂2η = ∂∂η = 0. Applying the Poincaré lemma as above, we obtain
that ∂η = dα, where α is a holomorphic (1,0)-form.

Step 3: Now, ∂(η−α) = 0, which implies that η−α ∈ im∂ by Poincaré-Dolbeault-
Grothendieck lemma again. Take f such that ∂f = η −α. Since α is holomor-
phic, we have ∂(η −α) = ∂η = ω. This brings ω = ∂∂f.
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Holomorphic convexity (reminder)

DEFINITION: Let Ω ⊂ Cn be an open subset. It is called a domain of

holomorphy if for any connected open subset V ⊂ Cn such that W ∶= Ω ∩ V is

connected, there exists a function f ∈ H0(OW ) which cannoe be extended to

V .

DEFINITION: Let K ⊂ X be a compact set in a complex variety. A holo-

morphic hull of K is

K̂ ∶= {z ∈X ∣ ∣f(z)∣ ⩽ sup
z∈K

∣f(z)∣ ∀f ∈ OX} .

DEFINITION: A variety X is called holomorphically convex if the holo-

morphic hull of a compact subset K ⊂X is always compact.

Claim 1: A complex variety X is holomorphically convex if and only if

X = ⋃iK○
i , where K0 ⊂ K1 ⊂ ... ⊂ Kn ⊂ ... is a sequence of holomorphically

convex compact subsets and K○
i is the interior of Ki.

THEOREM: Let Ω ⊂ Cn be an open set. Then Ω is a domain of holo-

morphy. ⇔ Ω is holomorphically convex.
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Pseudoconvexity

DEFINITION: A function ψ ∶ X → [−∞,∞[ on a topological space X is called
exhaustion if all sublevel sets ψ−1([−∞, c]) are compact.
DEFINITION: A complex manifold X is called weakly pseudoconvex if
X admits a plurisubharmonic exhausting function ψ ∶ X → R, and strongly
pseudoconvex if ψ is strictly psh.

THEOREM: Every holomorphically convex manifold X is weakly pseu-
doconvex.
Proof. Step 1: Let K1 ⊂ K2 ⊂ ... be a sequence of holomorphically convex
compact sets, with Ω = ⋃Ki and Ki ⊂ K○

i+1 (Claim 1). For each z ∈ X there
exists a unique iz ∈ Z+ such that z ∈ Kiz/Kiz−1. Then there exists a holo-
morphic function gz ∈ OΩ such that supz∈Kiz−1

∣gz(z)∣ < ∣gz(z)∣. Multiplying this
function by a constant and taking a power, we may assume that gi(zi) > iz,
and supz∈Kiz−1

∣gz(z)∣ < ε.

Step 2: Using compactness of Li ∶= Ki/K○
i−1, and applying the argument

of Step 1 to each point of Li, we obtain a finite collection of holomorphic
functions gi,1, ...gi,ni such that ∑nik=1 ∣gi,k∣2 > i on Li and ∑ ∣gi,1∣2 < 2−i on Ki−2.

Step 3: The function ψ ∶= ∑i∑nik=1 ∣gi,1∣2 is by construction psh. This sum con-
verges, because on each Ki this sum is bounded by a geometric progression,
and satisfies ψLi > i, hence it is exhaustion.
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Pseudoconvex set which is not holomorphically convex

REMARK: Strong pseudoconvexity implies holomorphic convexity (and

the Stein property). This is a difficult theorem, due to Cartan, Oka and

Grauert.

REMARK: There exists a weakly pseudoconvex manifold which is not

holomorphically convex.

EXAMPLE: Let Γ be a free abelian group acting on C2 and generated by

γ1(z,w) = (z + 1, e
√
−1 θ1w) and γ1(z,w) = (z +

√
−1 , e

√
−1 θ2w), where θi ∈ R. This

action is free and properly discontinuous, hence the quotient X ∶= C2/Γ is a

complex manifold, fibered over an elliptic curve E ∶= C/(a+b
√
−1 ), a, b ∈ Z. The

function ψ(w) ∶= ∣w2∣ is Γ-invariant and psh, It is exhaustion on each fiber of the

projection π ∶ C2Ð→E. Moreover, ψ−1([−∞, c]) is a product of E and a closed

disk of radius
√
c, hence ψ is exhaustion, and X is weakly pseudoconvex.
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Pseudoconvex set which is not holomorphically convex (2)

CLAIM: Let Γ be a free abelian group acting on C2 and generated by γ1(z,w) =
(z+1, e

√
−1 θ1w) and γ1(z,w) = (z+

√
−1 , e

√
−1 θ2w), where θi ∈ R, and X ∶= C2/Γ be

the complex manifold constructed above. Assume that θ1 or θ2 is irrational.

Then H0(OX) = const. In particular, X is not holomorphically convex.

Proof. Step 1: A pullback of a holomorphic function on X to C2 is a Γ-

invariant function f(z,w). For any fixed w0, z ↦ f(z,w0) is doubly periodic and

holomorphic; by Liouville theorem, z ↦ f(z,w0) is constant. Therefore, f is

independent from z, f(z,w) = f0(w), where f0 is a holomorphic function

which satisfies f0(e
√
−1 θiw) = w, i = 1,2.

Step 2: Taking a Taylor expansion in the origin, f(w) = ∑akwk, we obtain

that ak = e
√
−1 kθiak; this is impossible when one of θi is irrational, hence ak = 0

for all k > 1.
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