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Hodge decomposition (reminder)

DEFINITION: Let M be a smooth manifold. An almost complex structure
is an operator I: TM — T M which satisfies 12 = -Idp,,.

T he eigenvalues of this operator are +v-1. The corresponding eigenvalue
decomposition is denoted TM =T9%1M o T1.O(M).

DEFINITION: Let APO(M,T):= AL TO.1 0 )*

cex ()
and AP4(M,I):= APO(M,I) ®Ce (M) NO-a(M, ).

1,0 * 0, — AP
TLOMY*, NOP(M, ) = A e

CLAIM:

A"MeopC= @ API(M,I)
p+q=n
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Plurilaplacian(reminder)

DEFINITION: The twisted differential is defined as d¢:= IdI 1.

CLAIM: Let (M,I) be a complex manifold. Then 9 := &V 1d° 5. d-v_1d
are the Hodge components of d, 9=d1.0, §=d0:1.

CLAIM: Let W be the Weil operator, W‘/\p,q(M) =v-1(p-q). On any
complex manifold, one has d°=[W,d].

THEOREM: Let (M,I) be a complex manifold. Then 1. 92 =0.
2

2. 0 =0.

3. dd€=-dd

4. dd¢=2\/-100.

DEFINITION: The operator dd€ is called the pluri-Laplacian.

REMARK: The pluri-Laplacian takes real functions to real (1,1)-forms
on M.

EXERCISE: Prove that on a Riemannian surface (M,I,w), one has

dd®(f) = A(f)w-
3
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Positive (1,1)-forms (reminder)

CLAIM: Consider a real (1,1)-form ne ALL(M)nA2(M,R). Then the bilinear
form g,(z,y) :=n(x,Iy) is symmetric.

Proof: Clearly, 0=W(n)(z,y) =n(W(x),y) +n(x, W(y)) =n(Iz,y) +n(x,Iy). This
gives n(z, Iy) = -n(Iz,y) =n(y,[x).

CLAIM: This construction defines a bijection between U(1l)-invariant
symmetric forms g e Sym?(T*M) and sections of ALY(M)nA2(M,R). =

DEFINITION: A real (1,1)-form n is called positive if n(x,[x)>0VxeTM.
REMARK: By convention, O is a positive (1,1)-form.

DEFINITION: A (1,1)-form is called Hermitian if it is positive and non-
degenerate, that is, when n(x,Ix) >0 for any x ¢ TM\O.

REMARK: The above construction gives a bijective correspondence be-
tween the Hermitian (1,1)-forms and U(1)-invariant Riemannian metric
tensors on M.

EXAMPLE: For any (1,0)-form &, the form /-1£ A€ is positive.

Now, consider the operator L(a):=wA«a, and let A:= L*.
CLAIM: The Laplacian A(f) = A(dd¢f) is an elliptic operator of second
order. m

4
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Pluri-harmonic functions (reminder)

DEFINITION: A function f on a complex manifold is called pluri-harmonic
if dd2f=0.

REMARK: A function f is called holomorphic if f =0, and antiholomor-
phic if 9f = 0. Since dd°¢ =2v-100 =-2v/-100, any holomorphic and any
antiholomorphic function is pluri-harmonic.

THEOREM: Any pluriharmonic function is locally expressed as a sum of
holomorphic and antiholomorphic function.

Proof: Let f be a pluriharmonic function on a ball, and a=0f Since 5(04) =0,
this form is holomorphic; since 82 = 0, it is also closed. Poincaré lemma
applied to holomorphic functions implies that « = du, where u is holomorphic.
Then d(f-u) is a (0,1)-form, hence v:= f—wu is antiholomorphic. We obtain
that f =u+v, where u is holomorphic, and v is antiholomorphic. =

In our proof, we use the following version of Poincaré lemma.
LEMMA: Let BcC"” be an open ball, and n a closed holomorphic (d,0)-form
Then 7n=da, where « is a holomorphic (d-1,0)-form.

Proof: It follows from the same argument as one which proves the Poincaré
lemma (next slide). m
5
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Poincaré lemma

DEFINITION: An open subset U c R" is called starlike if for any x ¢ U the
interval [0,z] belongs to U.

THEOREM: (Poicaré lemma) Let U c R® be a starlike subset. Then
H'(U) =0 for i>0. In other words, Tany closed i-form on U is exact.

REMARK: The proof would follow if we construct a vector field 7 such
that Liey is invertible on A*(M): Liez R=1d. Indeed, for any closed form «
we would have «a = Liez Ra = dizRa + 1z Rda = diz Ra, hence any closed form is
exact.

Then Poincaré lemma is implied by the following statement.
PROPOSITION: Let U cR"™ be a starlike subset, t1,...,t, coordinate func-

tions, and 7:= th‘% the radial vector field. Then Lie; is invertible on AY(U)
for > 0.
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Radial vector field on starlike sets

PROPOSITION: Let U cR"™ be a starlike subset, t1,...,t, coordinate func-
tions, and 7:= th‘% the radial vector field. Then Lie; is invertible on AY(U)

for 7> 0.

Proof. Step 1: Let ¢t be the coordinate function on a real line, f(t) e C*R a
smooth function, and v := t% a vector field. Define R(f)(t) := /01 @dk Then
this integral converges whenever f(0) =0, and satisfies Lie, R(f) = f. Indeed,

L f(At) tf(A) tf(z)
fo e dA:fO o d(tA):fO =,

hence Liey R(f) = t@ = f(t).

Step 2: Consider a function fe C*R" satisfying f(0) =0, and z = (x1,...,xpn) €
R™. Then

R(f)(z) = fol f(i\x)dA

converges, and satisfies Lie; R(f) = f.
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Radial vector field on starlike sets (2)

Step 3: Consider a differential form o € A*, and let hyr — Az be the homo-
thety with coefficient A€ [0,1]. Define

R(a) = fo ' A 1h (@)dA.

Since hj\(a) =0 for A =0, this integral converges. It remains to prove that
Lie; R =1d.

Step 4: Let a be a coordinate monomial, a = dt;; Adt;, A...Andt;, . Clearly,
Lie;(T-1a) = 0, where T = t; t;,...t; . Since hi(fa) = hi(Tf)T la, we have
R(fa) = R(Tf)T 1a for any function feC>®M. This gives

Lie; R(fa) = Lie; R(THT ta=TfT ta= fao
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Plurisubharmonic functions

DEFINITION: A function f on a complex manifold is called plurisubhar-
monic (or psh) if dd¢f is a positive (1,1)-form, and strictly plurisubharmonic
if dd°f is a positive definite (and ipso facto Kahler) form.

REMARK: For any plurisubharmonic function f, and any Hermitian form
w, we have A(f) >0, where A is an elliptic operator. Applying the strong
maximum principle, we obtain

COROLLARY: A plurisubharmonic function on a manifold cannot have a
local maximum, unless it is constant. =

EXAMPLE: A sum of plurisubharmonic functions is plurisubharmonic._ B
EXAMPLE: Let f be a holomorphic function. Then dde|f|? = 2/-1 00f f =
2v/-1 (0f AOf), hence |f|? is plurisubharmonic.

COROLLARY: Let fq,...,fn be a collection of holomorphic functions on a
complex manifold. Then Y,;|f;]? is plurisubharmonic, hence it cannot have
a maximum.

EXAMPLE: Let pe C*®R. Then

dd*(u(f))lm = u'(£(2))?ddf + p"' (f () df A d°f.
Therefore, for any psh function f, the composition p(f) is psh when
pw >0 and u' > 0.
9
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Kahler potential
I will use the following difficult theorem without a proof.

LEMMA: (“Poincaré-Dolbeault-Grothendieck lemma’) B
Let n be a 0-closed (p,q)-form, ¢>0, on an open ball BcC". Then neimoa.

DEFINITION: A closed Hermitian (1,1)-form w is called a Kahler form. A
function f is called its Kahler potential when w =dd°¢f.

CLAIM: Any Kahler form on an open ball B c C* admits a Kahler
potential.

Pro_of. Step 1: Poincaré—Dolbea_ult—Grothendieck Iemmg implies that
w =0n, for some neAL.OB, Then 00n= 0w =0, which implies 99n = 0.

Step 2: We obtain that dn is a holomorphic (2,0)-form, which is closed,
because 92n = 90n = 0. Applying the Poincaré lemma as above, we obtain
that 0n=da, where o is a holomorphic (1,0)-form.

Step 3: Now, 9(n-a) =0, which implies that n-a €im d by Poincaré-Dolbeault-
Grothendieck lemma again. Take f such that 0f =n-a«a. Since a is holomor-
phic, we have 0(n-a)=0n=w. This brings w=900f. m

10
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Holomorphic convexity (reminder)

DEFINITION: Let €2 ¢c C* be an open subset. It is called a domain of
holomorphy if for any connected open subset V c C" such that W =QnV is
connected, there exists a function f e HO9(Oy,) which cannoe be extended to

V.

DEFINITION: Let K c X be a compact set in a complex variety. A holo-
morphic hull of K is

K{X 1) <suplr(e) er@x}-

DEFINITION: A variety X is called holomorphically convex if the holo-
morphic hull of a compact subset K c X is always compact.

Claim 1: A complex variety X i1s holomorphically convex if and only if
X =U; K, where Kgc Ky c..c Kyc...I1s a sequence of holomorphically
convex compact subsets and K is the interior of K;.

THEOREM: Let ©2c C" be an open set. Then 2 is a domain of holo-

morphy. < 2 is holomorphically convex.
11
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Pseudoconvexity

DEFINITION: A function ¢ : X — [-00,00[ On a topological space X is called
exhaustion if all sublevel sets ¥~1([-c0,c]) are compact.

DEFINITION: A complex manifold X is called weakly pseudoconvex if
X admits a plurisubharmonic exhausting function ¥ : X - R, and strongly
pseudoconvex if ¢ is strictly psh.

THEOREM: Every holomorphically convex manifold X is weakly pseu-
doconvex.

Proof. Step 1: Let Kq{ c Ky c... be a sequence of holomorphically convex
compact sets, with 2 =UK; and K; c K’ ; (Claim 1). For each z e X there
exists a unique i, € Z* such that z ¢ K; \K; _1;. Then there exists a holo-
morphic function g, € Og such that sup,ck, , l9-(2)] < |92(z)|. Multiplying this
function by a constant and taking a power, we may assume that g;(z;) > i.,

and sup.ek; 4l9:(2)|<e.

Step 2: Using compactness of L; := Ki\Kz?_l, and applying the argument
of Step 1 to each point of L;, we obtain a finite collection of holomorphic
functions g; 1,...g; n, SUCh that Zzi1|gi,k|2 >4 on L; and Z|gi,1|2 <27t on K;_».

Step 3: The function v =}, ZZ’il |g7;,1|2 is by construction psh. This sum con-
verges, because on each K; this sum is bounded by a geometric progression,
and satisfies sz’ > 1, hence it is exhaustion. m

12
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Pseudoconvex set which is not holomorphically convex

REMARK: Strong pseudoconvexity implies holomorphic convexity (and
the Stein property). This is a difficult theorem, due to Cartan, Oka and
Grauert.

REMARK: There exists a weakly pseudoconvex manifold which is not
holomorphically convex.

EXAMPLE: Let ' be a free abelian group acting on C2 and generated by
v1(z,w) = (z + 1,6\/391’11)) and v1(z,w) = (z + \/j,e\/j%w), where 0; e R. This
action is free and properly discontinuous, hence the quotient X := CQ/I' IS a
complex manifold, fibered over an elliptic curve E:=C/(a+bV/-1), a,beZ. The
function ¥ (w) := |Jw?| is C-invariant and psh, It is exhaustion on each fiber of the
projection 7: C2 — E. Moreover, ¥~ 1([-c0,¢]) is a product of E and a closed
disk of radius /c, hence v is exhaustion, and X is weakly pseudoconvex.

13
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Pseudoconvex set which is not holomorphically convex (2)

CLAIM: Let " be a free abelian group acting on C2 and generated by v1(z,w) =
(z+ 1,6\/391’11)) and v1(z,w) = (z+\/j,e\/302w), where 0, ¢ R, and X :=C?/I" be
the complex manifold constructed above. Assume that 61 or 65 is irrational.
Then HO9(Oy) = const. In particular, X is not holomorphically convex.

Proof. Step 1: A pullback of a holomorphic function on X to C2 is a I-
invariant function f(z,w). For any fixed wq, z = f(z,wqg) is doubly periodic and
holomorphic; by Liouville theorem, z — f(z,wqg) is constant. Therefore, f is
independent from z, f(z,w) = fop(w), where fy is a holomorphic function
which satisfies fo(eV-1%w)=w, i=1,?2.

Step 2: Taking a Taylor expansion in the origin, f(w) = Y arw®, we obtain

that a;, = eV-1*0iq,; this is impossible when one of ; is irrational, hence a;, =0
forallk>1. =
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