Complex analytic spaces

lecture 29: Plurisubharmonic functions and pseudoconvexity

Misha Verbitsky

IMPA, sala 236,

November 27, 2023, 13:30

Hodge decomposition (reminder)

DEFINITION: Let *M* be a smooth manifold. An **almost complex structure** is an operator $I: TM \rightarrow TM$ which satisfies $I^2 = -\operatorname{Id}_{TM}$.

The eigenvalues of this operator are $\pm \sqrt{-1}$. The corresponding eigenvalue decomposition is denoted $TM = T^{0,1}M \oplus T^{1,0}(M)$.

DEFINITION: Let $\Lambda^{p,0}(M,I) \coloneqq \Lambda^p_{C^{\infty}_{\mathbb{C}}(M)}(T^{1,0}M)^*$, $\Lambda^{0,p}(M,I) \coloneqq \Lambda^p_{C^{\infty}_{\mathbb{C}}(M)}(T^{0,1}M)^*$, and $\Lambda^{p,q}(M,I) \coloneqq \Lambda^{p,0}(M,I) \otimes_{C^{\infty}_{\mathbb{C}}(M)} \Lambda^{0,q}(M,I)$.

CLAIM:

$$\wedge^n M \otimes_{\mathbb{R}} \mathbb{C} = \bigoplus_{p+q=n} \wedge^{p,q} (M, I)$$

Plurilaplacian(reminder)

DEFINITION: The **twisted differential** is defined as $d^c := IdI^{-1}$.

CLAIM: Let (M, I) be a complex manifold. Then $\partial := \frac{d+\sqrt{-1} d^c}{2}$, $\overline{\partial} := \frac{d-\sqrt{-1} d^c}{2}$ are the Hodge components of d, $\partial = d^{1,0}$, $\overline{\partial} = d^{0,1}$.

CLAIM: Let W be the Weil operator, $W|_{\Lambda^{p,q}(M)} = \sqrt{-1} (p-q)$. On any complex manifold, one has $d^c = [W, d]$.

THEOREM: Let (M, I) be a complex manifold. Then 1. $\partial^2 = 0$.

- **2.** $\overline{\partial}^2 = 0$.
- **3.** $dd^c = -d^c d$
- **4.** $dd^c = 2\sqrt{-1} \partial \overline{\partial}$.

DEFINITION: The operator dd^c is called **the pluri-Laplacian**.

REMARK: The pluri-Laplacian takes real functions to real (1,1)-forms on M.

EXERCISE: Prove that on a Riemannian surface (M, I, ω) , one has $dd^c(f) = \Delta(f)\omega$.

M. Verbitsky

Positive (1,1)-forms (reminder)

CLAIM: Consider a real (1,1)-form $\eta \in \Lambda^{1,1}(M) \cap \Lambda^2(M,\mathbb{R})$. Then the bilinear form $g_{\eta}(x,y) \coloneqq \eta(x,Iy)$ is symmetric. **Proof:** Clearly, $0 = W(\eta)(x,y) = \eta(W(x),y) + \eta(x,W(y)) = \eta(Ix,y) + \eta(x,Iy)$. This gives $\eta(x,Iy) = -\eta(Ix,y) = \eta(y,Ix)$.

CLAIM: This construction defines a bijection between U(1)-invariant symmetric forms $g \in \text{Sym}^2(T^*M)$ and sections of $\Lambda^{1,1}(M) \cap \Lambda^2(M, \mathbb{R})$.

DEFINITION: A real (1,1)-form η is called **positive** if $\eta(x, Ix) \ge 0 \forall x \in TM$. **REMARK:** By convention, **0 is a positive (1,1)-form. DEFINITION:** A (1,1)-form is called **Hermitian** if it is positive and nondegenerate, that is, when $\eta(x, Ix) > 0$ for any $x \in TM \setminus 0$.

REMARK: The above construction gives a bijective correspondence between the Hermitian (1,1)-forms and U(1)-invariant Riemannian metric tensors on M.

EXAMPLE: For any (1,0)-form ξ , the form $\sqrt{-1}\xi \wedge \overline{\xi}$ is positive.

Now, consider the operator $L(\alpha) \coloneqq \omega \land \alpha$, and let $\Lambda \coloneqq L^*$. **CLAIM:** The Laplacian $\Delta(f) = \Lambda(dd^c f)$ is an elliptic operator of second order.

Pluri-harmonic functions (reminder)

DEFINITION: A function f on a complex manifold is called **pluri-harmonic** if $dd^2f = 0$.

REMARK: A function f is called **holomorphic** if $\overline{\partial} f = 0$, and **antiholomorphic** if $\partial f = 0$. Since $dd^c = 2\sqrt{-1} \partial \overline{\partial} = -2\sqrt{-1} \overline{\partial} \partial$, any holomorphic and any antiholomorphic function is pluri-harmonic.

THEOREM: Any pluriharmonic function is locally expressed as a sum of holomorphic and antiholomorphic function.

Proof: Let f be a pluriharmonic function on a ball, and $\alpha = \partial f$ Since $\overline{\partial}(\alpha) = 0$, this form is holomorphic; since $\partial^2 = 0$, it is also closed. Poincaré lemma applied to holomorphic functions implies that $\alpha = du$, where u is holomorphic. Then d(f - u) is a (0,1)-form, hence $v \coloneqq f - u$ is antiholomorphic. We obtain that f = u + v, where u is holomorphic, and v is antiholomorphic.

In our proof, we use the following version of Poincaré lemma. **LEMMA:** Let $B \subset \mathbb{C}^n$ be an open ball, and η a closed holomorphic (d,0)-form Then $\eta = d\alpha$, where α is a holomorphic (d-1,0)-form.

Proof: It follows from the same argument as one which proves the Poincaré lemma (next slide). ■

Poincaré lemma

DEFINITION: An open subset $U \subset \mathbb{R}^n$ is called **starlike** if for any $x \in U$ the interval [0, x] belongs to U.

THEOREM: (Poicaré lemma) Let $U \subset \mathbb{R}^n$ be a starlike subset. Then $H^i(U) = 0$ for i > 0. In other words, Tany closed *i*-form on U is exact.

REMARK: The proof would follow if we construct a vector field \vec{r} such that $\operatorname{Lie}_{\vec{r}}$ is invertible on $\Lambda^*(M)$: $\operatorname{Lie}_{\vec{r}} R = \operatorname{Id}$. Indeed, for any closed form α we would have $\alpha = \operatorname{Lie}_{\vec{r}} R\alpha = di_{\vec{r}} R\alpha + i_{\vec{r}} R d\alpha = di_{\vec{r}} R\alpha$, hence any closed form is exact.

Then Poincaré lemma is implied by the following statement.

PROPOSITION: Let $U \in \mathbb{R}^n$ be a starlike subset, $t_1, ..., t_n$ coordinate functions, and $\vec{r} := \sum t_i \frac{d}{dt_i}$ the radial vector field. Then $\operatorname{Lie}_{\vec{r}}$ is invertible on $\Lambda^i(U)$ for i > 0.

Radial vector field on starlike sets

PROPOSITION: Let $U \in \mathbb{R}^n$ be a starlike subset, $t_1, ..., t_n$ coordinate functions, and $\vec{r} \coloneqq \sum t_i \frac{d}{dt_i}$ the radial vector field. Then $\operatorname{Lie}_{\vec{r}}$ is invertible on $\Lambda^i(U)$ for i > 0.

Proof. Step 1: Let t be the coordinate function on a real line, $f(t) \in C^{\infty}\mathbb{R}$ a smooth function, and $v \coloneqq t \frac{d}{dt}$ a vector field. Define $R(f)(t) \coloneqq \int_0^1 \frac{f(\lambda t)}{\lambda} d\lambda$. Then this integral converges whenever f(0) = 0, and satisfies $\operatorname{Lie}_v R(f) = f$. Indeed,

$$\int_0^1 \frac{f(\lambda t)}{\lambda} d\lambda = \int_0^t \frac{f(\lambda t)}{t\lambda} d(t\lambda) = \int_0^t \frac{f(z)}{z} dz,$$

hence $\operatorname{Lie}_{v} R(f) = t \frac{f(t)}{t} = f(t)$.

Step 2: Consider a function $f \in C^{\infty} \mathbb{R}^n$ satisfying f(0) = 0, and $x = (x_1, ..., x_n) \in \mathbb{R}^n$. Then

$$R(f)(x) \coloneqq \int_0^1 \frac{f(\lambda x)}{\lambda} d\lambda$$

converges, and satisfies $\operatorname{Lie}_{\vec{r}} R(f) = f$.

Radial vector field on starlike sets (2)

Step 3: Consider a differential form $\alpha \in \Lambda^i$, and let $h_{\lambda}x \longrightarrow \lambda x$ be the homothety with coefficient $\lambda \in [0, 1]$. Define

$$R(\alpha) \coloneqq \int_0^1 \lambda^{-1} h_{\lambda}^*(\alpha) d\lambda.$$

Since $h_{\lambda}^{*}(\alpha) = 0$ for $\lambda = 0$, this integral converges. It remains to prove that $\operatorname{Lie}_{\vec{r}} R = \operatorname{Id}$.

Step 4: Let α be a coordinate monomial, $\alpha = dt_{i_1} \wedge dt_{i_2} \wedge \ldots \wedge dt_{i_k}$. Clearly, Lie_{\vec{r}} $(T^{-1}\alpha) = 0$, where $T = t_{i_1}t_{i_2}...t_{i_k}$. Since $h_{\lambda}^*(f\alpha) = h_{\lambda}^*(Tf)T^{-1}\alpha$, we have $R(f\alpha) = R(Tf)T^{-1}\alpha$ for any function $f \in C^{\infty}M$. This gives

$$\operatorname{Lie}_{\vec{r}} R(f\alpha) = \operatorname{Lie}_{\vec{r}} R(Tf)T^{-1}\alpha = TfT^{-1}\alpha = f\alpha.$$

Plurisubharmonic functions

DEFINITION: A function f on a complex manifold is called **plurisubharmonic** (or **psh**) if $dd^c f$ is a positive (1,1)-form, and **strictly plurisubharmonic** if $dd^c f$ is a positive definite (and ipso facto Kähler) form.

REMARK: For any plurisubharmonic function f, and any Hermitian form ω , we have $\Delta(f) \ge 0$, where Δ is an elliptic operator. Applying the strong maximum principle, we obtain

COROLLARY: A plurisubharmonic function on a manifold **cannot have a local maximum, unless it is constant.**

EXAMPLE: A sum of plurisubharmonic functions is plurisubharmonic. **EXAMPLE:** Let f be a holomorphic function. Then $dd^c|f|^2 = 2\sqrt{-1}\partial\overline{\partial}f\overline{f} = 2\sqrt{-1}(\partial f \wedge \overline{\partial}f)$, hence $|f|^2$ is plurisubharmonic.

COROLLARY: Let $f_1, ..., f_n$ be a collection of holomorphic functions on a complex manifold. Then $\sum_i |f_i|^2$ is plurisubharmonic, hence it cannot have a maximum.

EXAMPLE: Let $\mu \in C^{\infty} \mathbb{R}$. Then

 $dd^{c}(\mu(f))|_{m} = \mu'(f(z))^{2}dd^{c}f + \mu''(f(z))df \wedge d^{c}f.$

Therefore, for any psh function f, the composition $\mu(f)$ is psh when $\mu'' \ge 0$ and $\mu' > 0$.

Kähler potential

I will use the following difficult theorem without a proof.

LEMMA: ("Poincaré-Dolbeault-Grothendieck lemma") Let η be a $\overline{\partial}$ -closed (p,q)-form, q > 0, on an open ball $B \subset \mathbb{C}^n$. Then $\eta \in \operatorname{im} \overline{\partial}$.

DEFINITION: A closed Hermitian (1,1)-form ω is called a Kähler form. A function f is called its Kähler potential when $\omega = dd^c f$.

CLAIM: Any Kähler form on an open ball $B \in \mathbb{C}^n$ admits a Kähler potential.

Proof. Step 1: Poincaré-Dolbeault-Grothendieck lemma implies that $\omega = \overline{\partial}\eta$, for some $\eta \in \Lambda^{1,0}B$. Then $\partial\overline{\partial}\eta = \partial\omega = 0$, which implies $\overline{\partial}\partial\eta = 0$.

Step 2: We obtain that $\partial \eta$ is a holomorphic (2,0)-form, which is closed, because $\partial^2 \eta = \overline{\partial} \partial \eta = 0$. Applying the Poincaré lemma as above, we obtain that $\partial \eta = d\alpha$, where α is a holomorphic (1,0)-form.

Step 3: Now, $\partial(\eta - \alpha) = 0$, which implies that $\eta - \alpha \in \operatorname{im} \partial$ by Poincaré-Dolbeault-Grothendieck lemma again. Take f such that $\partial f = \eta - \alpha$. Since α is holomorphic, we have $\overline{\partial}(\eta - \alpha) = \overline{\partial}\eta = \omega$. This brings $\omega = \overline{\partial}\partial f$.

Holomorphic convexity (reminder)

DEFINITION: Let $\Omega \subset \mathbb{C}^n$ be an open subset. It is called a domain of holomorphy if for any connected open subset $V \subset \mathbb{C}^n$ such that $W \coloneqq \Omega \cap V$ is connected, there exists a function $f \in H^0(\mathcal{O}_W)$ which cannoe be extended to V.

DEFINITION: Let $K \subset X$ be a compact set in a complex variety. A holomorphic hull of K is

$$\widehat{K} \coloneqq \left\{ z \in X \mid |f(z)| \leq \sup_{z \in K} |f(z)| \quad \forall f \in \mathcal{O}_X \right\}.$$

DEFINITION: A variety X is called **holomorphically convex** if the holomorphic hull of a compact subset $K \subset X$ is always compact.

Claim 1: A complex variety X is holomorphically convex if and only if $X = \bigcup_i K_i^\circ$, where $K_0 \subset K_1 \subset ... \subset K_n \subset ...$ is a sequence of holomorphically convex compact subsets and K_i° is the interior of K_i .

THEOREM: Let $\Omega \subset \mathbb{C}^n$ be an open set. Then Ω is a domain of holomorphy. $\Leftrightarrow \Omega$ is holomorphically convex.

Pseudoconvexity

DEFINITION: A function $\psi: X \to [-\infty, \infty[$ on a topological space X is called **exhaustion** if all sublevel sets $\psi^{-1}([-\infty, c])$ are compact.

DEFINITION: A complex manifold X is called weakly pseudoconvex if X admits a plurisubharmonic exhausting function $\psi : X \to \mathbb{R}$, and strongly pseudoconvex if ψ is strictly psh.

THEOREM: Every holomorphically convex manifold X is weakly pseudoconvex.

Proof. Step 1: Let $K_1 \,\subset K_2 \,\subset \ldots$ be a sequence of holomorphically convex compact sets, with $\Omega = \bigcup K_i$ and $K_i \,\subset K_{i+1}^{\circ}$ (Claim 1). For each $z \in X$ there exists a unique $i_z \in \mathbb{Z}^+$ such that $z \in K_{i_z} \setminus K_{i_z-1}$. Then there exists a holomorphic function $g_z \in \mathcal{O}_{\Omega}$ such that $\sup_{z \in K_{i_z-1}} |g_z(z)| < |g_z(z)|$. Multiplying this function by a constant and taking a power, we may assume that $g_i(z_i) > i_z$, and $\sup_{z \in K_{i_z-1}} |g_z(z)| < \varepsilon$.

Step 2: Using compactness of $L_i \coloneqq K_i \setminus K_{i-1}^\circ$, and applying the argument of Step 1 to each point of L_i , we obtain a finite collection of holomorphic functions $g_{i,1}, \dots, g_{i,n_i}$ such that $\sum_{k=1}^{n_i} |g_{i,k}|^2 > i$ on L_i and $\sum |g_{i,1}|^2 < 2^{-i}$ on K_{i-2} .

Step 3: The function $\psi \coloneqq \sum_i \sum_{k=1}^{n_i} |g_{i,1}|^2$ is by construction psh. This sum converges, because on each K_i this sum is bounded by a geometric progression, and satisfies $\psi_{L_i} > i$, hence it is exhaustion.

Pseudoconvex set which is not holomorphically convex

REMARK: Strong pseudoconvexity implies holomorphic convexity (and the Stein property). This is a difficult theorem, due to Cartan, Oka and Grauert.

REMARK: There exists a weakly pseudoconvex manifold which is not holomorphically convex.

EXAMPLE: Let Γ be a free abelian group acting on \mathbb{C}^2 and generated by $\gamma_1(z,w) = (z+1, e^{\sqrt{-1}\theta_1}w)$ and $\gamma_1(z,w) = (z+\sqrt{-1}, e^{\sqrt{-1}\theta_2}w)$, where $\theta_i \in \mathbb{R}$. This action is free and properly discontinuous, hence the quotient $X := \mathbb{C}^2/\Gamma$ is a complex manifold, fibered over an elliptic curve $E := \mathbb{C}/(a+b\sqrt{-1})$, $a, b \in \mathbb{Z}$. The function $\psi(w) := |w^2|$ is Γ -invariant and psh. It is exhaustion on each fiber of the projection $\pi : \mathbb{C}^2 \longrightarrow E$. Moreover, $\psi^{-1}([-\infty, c])$ is a product of E and a closed disk of radius \sqrt{c} , hence ψ is exhaustion, and X is weakly pseudoconvex.

Pseudoconvex set which is not holomorphically convex (2)

CLAIM: Let Γ be a free abelian group acting on \mathbb{C}^2 and generated by $\gamma_1(z, w) = (z+1, e^{\sqrt{-1}\theta_1}w)$ and $\gamma_1(z, w) = (z+\sqrt{-1}, e^{\sqrt{-1}\theta_2}w)$, where $\theta_i \in \mathbb{R}$, and $X \coloneqq \mathbb{C}^2/\Gamma$ be the complex manifold constructed above. Assume that θ_1 or θ_2 is irrational. **Then** $H^0(\mathcal{O}_X) = \text{const.}$ In particular, X is not holomorphically convex.

Proof. Step 1: A pullback of a holomorphic function on X to \mathbb{C}^2 is a Γ invariant function f(z,w). For any fixed w_0 , $z \mapsto f(z,w_0)$ is doubly periodic and
holomorphic; by Liouville theorem, $z \mapsto f(z,w_0)$ is constant. Therefore, f is
independent from z, $f(z,w) = f_0(w)$, where f_0 is a holomorphic function
which satisfies $f_0(e^{\sqrt{-1}\theta_i}w) = w$, i = 1, 2.

Step 2: Taking a Taylor expansion in the origin, $f(w) = \sum a_k w^k$, we obtain that $a_k = e^{\sqrt{-1} k \theta_i} a_k$; this is impossible when one of θ_i is irrational, hence $a_k = 0$ for all k > 1.