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Plurisubharmonic functions (reminder)

DEFINITION: A function f on a complex manifold is called plurisubhar-
monic (or psh) if dd¢f is a positive (1,1)-form, and strictly plurisubharmonic
if dd°f is a positive definite (and ipso facto Kahler) form.

REMARK: For any plurisubharmonic function f, and any Hermitian form
w, we have A(f) >0, where A is an elliptic operator. Applying the strong
maximum principle, we obtain

COROLLARY: A plurisubharmonic function on a manifold cannot have a
local maximum, unless it is constant. =

EXAMPLE: A sum of plurisubharmonic functions is plurisubharmonic._ B
EXAMPLE: Let f be a holomorphic function. Then dde|f|? = 2/-1 00f f =
2v/-1 (0f AOf), hence |f|? is plurisubharmonic.

COROLLARY: Let fq,...,fn be a collection of holomorphic functions on a
complex manifold. Then Y,;|f;]? is plurisubharmonic, hence it cannot have
a maximum.

EXAMPLE: Let pe C*®R. Then

dd*(u(f))lm = u'(£(2))?ddf + p"' (f () df A d°f.
Therefore, for any psh function f, the composition p(f) is psh when
pw >0 and u' > 0.
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Regularized maximum

CLAIM: Let u: R*"—R be a smooth function, monotonous in all argu-
ments and convex, and o1q,...,on a set of plurisubfarmonic functions. Then
(o1, ..., on) IS also plurisubharmonic.

Proof: The same formula

dd(u(f))lm = ' (f(2))2dd"f + p" (f(2))df A d°f.

(appropriately re-conceptualized). =

DEFINITION: (Demailly) Let 1: R2— R be a smooth, convex function,
increasing in both arguments. Suppose that for all |z -y| > e, one has u(x,y) =
max(x,y), and also u(z,y) = u(y,z), p(ly+a,z+a) = u(x,y) +a. Then p is called
a regularized maximum and denoted as maxg(x,y).

COROLLARY: A regularized maximum of smooth (strictly) plurisub-
harmonic functions is smooth and (strictly) psh.

Proof: Apply the previous claim to u(z,y) = maxs(x,y). =
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Regularized maximum (2)

EXAMPLE: Take a smooth, convex function x ~ |z which approximates

z = |z

Then maxg(x,y) = 1/2|x-y|lc+1/2|x+y|s iS a regularized maximum (prove this).
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Pseudoconvexity (reminder)

DEFINITION: A function ¢: X —» [-c0,00[ On a topological space X is called
exhaustion if all sublevel sets ¥~1([-c0,¢]) are compact.

DEFINITION: A complex manifold X is called weakly pseudoconvex if
X admits a plurisubharmonic exhausting function ¥ : X - R, and strongly
pseudoconvex if ¢ is strictly psh.

THEOREM: Every holomorphically convex manifold X is weakly pseu-
doconvex.

REMARK: There exists a weakly pseudoconvex manifold which is not
holomorphically convex.



Complex analytic spaces, lecture 30 M. Verbitsky

Stein manifolds

DEFINITION: Let X be a complex manifold. We say that Ox locally
separates points if every point z € X has a neighbourhood V such that for
any y € V\z there exists a function f e HO(X,Ox) such that f(z) # f(y). A
Stein manifold is a holomorphically convex manifold X such that Oy locally
separate points.

PROPOSITION: Let X be a complex manifold such that Oy locally separate
points. Then X admits a smooth, non-negative, strictly psh function.

Proof. Step 1: Let ¢ X We start by showing that there exists a smooth,
non-negative psh function u, which is strictly psh in neighbourhood of . Fix
an open set V > x such that for all y e V\z there exists a function f, e HO(X,Ox)
such that f(x) # f(y). Rescaling and adding a constant, we may assume that
f(x) =0, fy(y) >1. Without restricting generality, we may assume that V e X.
By compactness of 9V, we find finitely many functions j,,..., fyy € Ox
such that ¢, := Y |f,.|° satisfies ¢, (z)=0 and Sauvp P > 1.
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Stein manifolds (2)

Step 2: Without restricting the generality, we may assume that V is biholo-
morphic to an open ball. We denote by |z|2 the standard Kahler potential
on V. Let ¢, = max:(vYz, (|22 +1)/3). This function is plurisubharmonic on
V, equal to (]z|2+1)/3 in a neighbourhood of 0, and to , near the bound-
ary of V; we extend it to X by setting ¢, = ¥, on X\V. The function
Yr e C®X IS positive, plurisubharmonic, and strictly plurisubharmonic in
a neighbourhood U, of r¢ X.

Step 3: Choose a locally finite covering of X by open balls with centers in z;,
and let ¢, be the corresponding psh functions constructed in Step 1. Choos-
ing an appropriate sequence of ., we can always assume that X = U; Uy,
where U, is a neighbiurhood where 1, is strictly psh. Choose a sequence
g; >0 such that the sum Y ;e;p:, converges (this is possible to show using the
diagonal method; prove it). Then },e;¢;, is strictly plurisubharmonic. =

COROLLARY: Every Stein manifold is strongly pseudoconvex.

Proof: In Lecture 29, we constructed an exhausting psh function W on any
holomorphically convex manifold. Let ® ¢ C*®X be a positive, strictly psh
function constructed in the previous proposition. Then W + & is exhausting
and strictly psh. m
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Equivalent definitions of Stein manifolds

The following results are highly non-trivial. I state them without giving
or indicating the proof.

REMARK: K. Oka (1942, 1954) has proven that, conversely, any strongly
pseudoconvex complex manifold is Stein. Then, could define Stein
manifold as Kahler manifold admitting an exhausting Kahler potential.

REMARK: Clearly, any closed complex submanifold in C" is Stein (prove it).
The converse statement is also true: any Stein manifold can be realized
as a closed complex submanifold in C". This result is due to Remmert,
Narasimhan and Bishop.

REMARK: Another characterization of Stein manifolds is due to H. Cartan:
a complex manifold X is Stein if and only if H*(X,F)=0 for all >0 and
all coherent sheaves F' on X.
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CR-manifolds

Definition: Let M be a smooth manifold, BcT M a sub-bundle in a tangent
bundle, and I: B— B an endomorphism satisfying I2 =-1. Consider its v/-1-
eigenspace BLO(M)c BeCcToM =TM ® C. Suppose that [B1,0, B1.0]c B1.0,
Then (B,I) is called a CR-structure on M.

Example: A complex manifold is CR, with B=TM. Indeed, [T1.O0M, T1.0M] c
T1.0M is equivalent to integrability of the complex structure (Newlander-
Nirenberg).

Example: Let X be a complex manifold, and M c X a hypersurface. Then
B:=dimcTMnI(TM)=dimgX -1, hence rk B=n-1. Since [T1.0X, T1.0X]c
T1.0X, M is a CR-manifold.

Definition: The Frobenius form of a CR-manifold is the tensor B B—TM/B
mapping X,Y to the projection Mz p([X,Y]). It is an obstruction to inte-
grability of the foliation given by B.
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Contact CR-manifolds.
Complex algebraic geometry is a rich source of contact structures.

Definition: Let (M,B,I) be a CR-manifold, with codimB =1. Then M is
called a contact CR-manifold if its Frobenius form is non-degenerate.

Remark: Since [B10, B1.0]c B1.0 and [B%1,B0:1]c BO.1, the Frobenius form
is a pairing between BO:1 and B1.0. This means that it is Hermitian.

DEFINITION: This Hermitian form is called Levi form of a CR-manifold.

Definition: Let (M, B,I) be a CR-manifold, with codimB =1. Then M is
called a strictly pseudoconvex CR-manifold if its Levi form is positive
definite.

Example: Let h be a function on a complex manifold such that 90h = w is
a positive definite Hermitian form, and X = h~1(c) its level set. Then the
Frobenius form of X is equal to w|x (see the next slide). In particular, X is
a strictly pseudoconvex CR-manifold.
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CR-manifolds and plurisubharmonic functions.

PROPOSITION: Let M be a complex manifold, ¢ e C*°M a smooth function,
and s a regular value of ¢. Consider S := ¢ 1(s) as a CR-manifold, with
B=TSnI(TS) and let ® be its Levi form, taking values in

TS/B =kerdp/kerdpn I(kerdyp)

Then d¢p: TS/B— C*®S trivializes T'S/B. Consider tangent vectors u,v € B;S.
Then -d%%(P(u,v)) =ddp(z,y))-

Proof: Extend u,v to vector fields u,v € B = kerdpnl(kerdy). Then —-d¢p(P(u,v)) =
—d°p([u,v]) = ddp(u,v). =

COROLLARY: Let M be a complex manifold, o e C*°M a strictly plurisub-
harmonic function, and s a regular value of ¢. Then S := ¢ 1(s) is strictly
pseudoconvex.

Proof: By the above proposition, the Levi form of S is expressed as ddp(u,v),
hence it is positive definite. m
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Geometry of strictly pseudoconvex CR-manifolds

The following results are highly non-trivial. I state them without giving
or indicating the proof.

THEOREM: (Grauert’s solution of the Levi problem) Let M be a com-
plex manifold with smooth boundary S. Assume that the Levi form on S is
strictly pseudoconvex. Then M is holomorphically convex.

DEFINITION: Let (S,B,I) be a CR-manifold. A function f on S is called
CR-holomorphic if for any vector field v ¢ B9l we have Lie, f = 0.

THEOREM: (Rossi-Andreotti-Siu)

Let S be a compact strictly pseudoconvex CR-manifold, dimp$S > 5, and
HO9(Ogq), the ring of bounded CR-holomorphic functions. Then S is a bound-
ary of a Stein manifold M with isolated singularities, such that H9(Og); =
HO(Oy)p, where HO(©;,), denotes the ring of bounded holomorphic functions.
Moreover, M is defined uniquely, M =Spec(H°(Og);).

THEOREM: (Dan Burns, John M. Lee)
Let S be a compact strictly pseudoconvex CR-manifold, and Autg(S) the con-
nected component of its group of automorphisms. Then Autg(S) is compact
unless S is equivalent to the standard sphere S27-1 c C" with its induced CR-
structure. In the latter case Autg(S)=U(1,n).
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