Complex analytic spaces

lecture 30: Stein manifolds

Misha Verbitsky

IMPA, sala 236,

November 29, 2023, 17:00

Plurisubharmonic functions (reminder)

DEFINITION: A function f on a complex manifold is called **plurisubharmonic** (or **psh**) if $dd^c f$ is a positive (1,1)-form, and **strictly plurisubharmonic** if $dd^c f$ is a positive definite (and ipso facto Kähler) form.

REMARK: For any plurisubharmonic function f, and any Hermitian form ω , we have $\Delta(f) \ge 0$, where Δ is an elliptic operator. Applying the strong maximum principle, we obtain

COROLLARY: A plurisubharmonic function on a manifold **cannot have a local maximum, unless it is constant.**

EXAMPLE: A sum of plurisubharmonic functions is plurisubharmonic. **EXAMPLE:** Let f be a holomorphic function. Then $dd^c|f|^2 = 2\sqrt{-1}\partial\overline{\partial}f\overline{f} = 2\sqrt{-1}(\partial f \wedge \overline{\partial}f)$, hence $|f|^2$ is plurisubharmonic.

COROLLARY: Let $f_1, ..., f_n$ be a collection of holomorphic functions on a complex manifold. Then $\sum_i |f_i|^2$ is plurisubharmonic, hence it cannot have a maximum.

EXAMPLE: Let $\mu \in C^{\infty} \mathbb{R}$. Then

 $dd^{c}(\mu(f))|_{m} = \mu'(f(z))^{2}dd^{c}f + \mu''(f(z))df \wedge d^{c}f.$

Therefore, for any psh function f, the composition $\mu(f)$ is psh when $\mu'' \ge 0$ and $\mu' > 0$.

Regularized maximum

CLAIM: Let $\mu : \mathbb{R}^n \to \mathbb{R}$ be a smooth function, monotonous in all arguments and convex, and $\varphi_1, ..., \varphi_n$ a set of plurisubfarmonic functions. Then $\mu(\varphi_1, ..., \varphi_n)$ is also plurisubharmonic.

Proof: The same formula

$$dd^{c}(\mu(f))|_{m} = \mu'(f(z))^{2}dd^{c}f + \mu''(f(z))df \wedge d^{c}f.$$

(appropriately re-conceptualized). ■

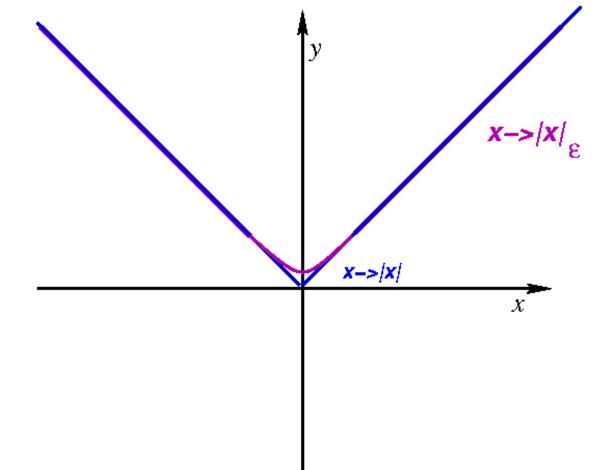
DEFINITION: (Demailly) Let $\mu : \mathbb{R}^2 \to \mathbb{R}$ be a smooth, convex function, increasing in both arguments. Suppose that for all $|x - y| \ge \varepsilon$, one has $\mu(x, y) = \max(x, y)$, and also $\mu(x, y) = \mu(y, x)$, $\mu(y + \alpha, x + \alpha) = \mu(x, y) + \alpha$. Then μ is called a regularized maximum and denoted as $\max_{\varepsilon}(x, y)$.

COROLLARY: A regularized maximum of smooth (strictly) plurisubharmonic functions is smooth and (strictly) psh.

Proof: Apply the previous claim to $\mu(x,y) = \max_{\varepsilon}(x,y)$.

Regularized maximum (2)

EXAMPLE: Take a smooth, convex function $x \mapsto |x|_{\varepsilon}$ which approximates $x \mapsto |x|$



Then $\max_{\varepsilon}(x,y) \coloneqq 1/2|x-y|_{\varepsilon} + 1/2|x+y|_{\varepsilon}$ is a regularized maximum (prove this).

Pseudoconvexity (reminder)

DEFINITION: A function $\psi : X \to [-\infty, \infty[$ on a topological space X is called **exhaustion** if all sublevel sets $\psi^{-1}([-\infty, c])$ are compact.

DEFINITION: A complex manifold X is called weakly pseudoconvex if X admits a plurisubharmonic exhausting function $\psi : X \to \mathbb{R}$, and strongly pseudoconvex if ψ is strictly psh.

THEOREM: Every holomorphically convex manifold X is weakly pseudoconvex.

REMARK: There exists a weakly pseudoconvex manifold which is not holomorphically convex.

Stein manifolds

DEFINITION: Let X be a complex manifold. We say that \mathcal{O}_X locally separates points if every point $x \in X$ has a neighbourhood V such that for any $y \in V \setminus x$ there exists a function $f \in H^0(X, \mathcal{O}_X)$ such that $f(x) \neq f(y)$. A Stein manifold is a holomorphically convex manifold X such that \mathcal{O}_X locally separate points.

PROPOSITION: Let X be a complex manifold such that \mathcal{O}_X locally separate points. Then X admits a smooth, non-negative, strictly psh function.

Proof. Step 1: Let $x \in X$ We start by showing that there exists a smooth, non-negative psh function u_x which is strictly psh in neighbourhood of x. Fix an open set $V \ni x$ such that for all $y \in V \setminus x$ there exists a function $f_y \in H^0(X, \mathcal{O}_X)$ such that $f(x) \neq f(y)$. Rescaling and adding a constant, we may assume that $f(x) = 0, f_y(y) > 1$. Without restricting generality, we may assume that $V \in X$. By compactness of ∂V , we find finitely many functions $f_{y_1}, ..., f_{y_N} \in \mathcal{O}_X$ such that $\psi_x := \sum |f_{y_i}|^2$ satisfies $\psi_x(x) = 0$ and $\sup_{\partial V} \psi_x > 1$.

Stein manifolds (2)

Step 2: Without restricting the generality, we may assume that *V* is biholomorphic to an open ball. We denote by $|z|^2$ the standard Kähler potential on *V*. Let $\varphi_x \coloneqq \max_{\varepsilon}(\psi_x, (|z|^2 + 1)/3)$. This function is plurisubharmonic on *V*, equal to $(|z|^2 + 1)/3$ in a neighbourhood of 0, and to ψ_x near the boundary of *V*; we extend it to *X* by setting $\varphi_x = \psi_x$ on $X \setminus V$. The function $\psi_x \in C^{\infty}X$ is positive, plurisubharmonic, and strictly plurisubharmonic in a neighbourhood U_{x_i} of $x \in X$.

Step 3: Choose a locally finite covering of X by open balls with centers in x_i , and let φ_{x_i} be the corresponding psh functions constructed in Step 1. Choosing an appropriate sequence of ψ_{x_i} , we can always assume that $X = \bigcup_i U_{x_i}$, where U_{x_i} is a neighbiurhood where ψ_{x_i} is strictly psh. Choose a sequence $\varepsilon_i > 0$ such that the sum $\sum_i \varepsilon_i \varphi_{x_i}$ converges (this is possible to show using the diagonal method; prove it). Then $\sum_i \varepsilon_i \varphi_{x_i}$ is strictly plurisubharmonic.

COROLLARY: Every Stein manifold is strongly pseudoconvex.

Proof: In Lecture 29, we constructed an exhausting psh function Ψ on any holomorphically convex manifold. Let $\Phi \in C^{\infty}X$ be a positive, strictly psh function constructed in the previous proposition. Then $\Psi + \Phi$ is exhausting and strictly psh.

Equivalent definitions of Stein manifolds

The following results are highly non-trivial. I state them without giving or indicating the proof.

REMARK: K. Oka (1942, 1954) has proven that, conversely, **any strongly pseudoconvex complex manifold is Stein.** Then, **could define Stein manifold as Kähler manifold admitting an exhausting Kähler potential.**

REMARK: Clearly, any closed complex submanifold in \mathbb{C}^n is Stein (prove it). The converse statement is also true: any Stein manifold can be realized as a closed complex submanifold in \mathbb{C}^n . This result is due to Remmert, Narasimhan and Bishop.

REMARK: Another characterization of Stein manifolds is due to H. Cartan: a complex manifold X is Stein if and only if $H^i(X,F) = 0$ for all i > 0 and all coherent sheaves F on X.

CR-manifolds

Definition: Let M be a smooth manifold, $B \in TM$ a sub-bundle in a tangent bundle, and $I: B \longrightarrow B$ an endomorphism satisfying $I^2 = -1$. Consider its $\sqrt{-1}$ eigenspace $B^{1,0}(M) \subset B \otimes \mathbb{C} \subset T_C M = TM \otimes \mathbb{C}$. Suppose that $[B^{1,0}, B^{1,0}] \subset B^{1,0}$. Then (B, I) is called a **CR-structure on** M.

Example: A complex manifold is CR, with B = TM. Indeed, $[T^{1,0}M, T^{1,0}M] \subset T^{1,0}M$ is equivalent to integrability of the complex structure (Newlander-Nirenberg).

Example: Let X be a complex manifold, and $M \in X$ a hypersurface. Then $B := \dim_{\mathbb{C}} TM \cap I(TM) = \dim_{\mathbb{C}} X - 1$, hence $\operatorname{rk} B = n - 1$. Since $[T^{1,0}X, T^{1,0}X] \subset T^{1,0}X$, M is a CR-manifold.

Definition: The Frobenius form of a CR-manifold is the tensor $B \otimes B \longrightarrow TM/B$ mapping X, Y to the projection $\prod_{TM/B}([X,Y])$. It is an obstruction to integrability of the foliation given by B.

Contact CR-manifolds.

Complex algebraic geometry is a rich source of contact structures.

Definition: Let (M, B, I) be a CR-manifold, with codim B = 1. Then M is called a contact CR-manifold if its Frobenius form is non-degenerate.

Remark: Since $[B^{1,0}, B^{1,0}] \subset B^{1,0}$ and $[B^{0,1}, B^{0,1}] \subset B^{0,1}$, the Frobenius form is a pairing between $B^{0,1}$ and $B^{1,0}$. This means that it is Hermitian.

DEFINITION: This Hermitian form is called **Levi form** of a CR-manifold.

Definition: Let (M, B, I) be a CR-manifold, with codim B = 1. Then M is called a strictly pseudoconvex CR-manifold if its Levi form is positive definite.

Example: Let *h* be a function on a complex manifold such that $\partial \overline{\partial} h = \omega$ is a positive definite Hermitian form, and $X = h^{-1}(c)$ its level set. Then the Frobenius form of *X* is equal to $\omega|_X$ (see the next slide). In particular, *X* is a strictly pseudoconvex CR-manifold.

CR-manifolds and plurisubharmonic functions.

PROPOSITION: Let M be a complex manifold, $\varphi \in C^{\infty}M$ a smooth function, and s a regular value of φ . Consider $S \coloneqq \varphi^{-1}(s)$ as a CR-manifold, with $B = TS \cap I(TS)$ and let Φ be its Levi form, taking values in

 $TS/B = \ker d\varphi / \ker d\varphi \cap I(\ker d\varphi)$

Then $d^c \varphi \colon TS/B \longrightarrow C^{\infty}S$ trivializes TS/B. Consider tangent vectors $u, v \in B_xS$. **Then** $-d^c \varphi(\Phi(u, v)) = dd^c \varphi(x, y)$.

Proof: Extend u, v to vector fields $u, v \in B = \ker d\varphi \cap I(\ker d\varphi)$. Then $-d^c\varphi(\Phi(u, v)) = -d^c\varphi([u, v]) = dd^c\varphi(u, v)$.

COROLLARY: Let *M* be a complex manifold, $\varphi \in C^{\infty}M$ a strictly plurisubharmonic function, and *s* a regular value of φ . Then $S \coloneqq \varphi^{-1}(s)$ is strictly pseudoconvex.

Proof: By the above proposition, the Levi form of S is expressed as $dd^c\varphi(u,v)$, hence it is positive definite.

Geometry of strictly pseudoconvex CR-manifolds

The following results are highly non-trivial. I state them without giving or indicating the proof.

THEOREM: (Grauert's solution of the Levi problem) Let M be a complex manifold with smooth boundary S. Assume that the Levi form on S is strictly pseudoconvex. Then M is holomorphically convex.

DEFINITION: Let (S, B, I) be a CR-manifold. A function f on S is called **CR-holomorphic** if for any vector field $v \in B^{0,1}$, we have $\text{Lie}_v f = 0$.

THEOREM: (Rossi-Andreotti-Siu)

Let S be a compact strictly pseudoconvex CR-manifold, $\dim_{\mathbb{R}} S \ge 5$, and $H^{0}(\mathcal{O}_{S})_{b}$ the ring of bounded CR-holomorphic functions. Then S is a boundary of a Stein manifold M with isolated singularities, such that $H^{0}(\mathcal{O}_{S})_{b} = H^{0}(\mathcal{O}_{M})_{b}$, where $H^{0}(\mathcal{O}_{M})_{b}$ denotes the ring of bounded holomorphic functions. Moreover, M is defined uniquely, $M = \operatorname{Spec}(H^{0}(\mathcal{O}_{S})_{b})$.

THEOREM: (Dan Burns, John M. Lee)

Let S be a compact strictly pseudoconvex CR-manifold, and $Aut_0(S)$ the connected component of its group of automorphisms. Then $Aut_0(S)$ is compact unless S is equivalent to the standard sphere $S^{2n-1} \subset \mathbb{C}^n$ with its induced CR-structure. In the latter case $Aut_0(S) = U(1, n)$.