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Plurisubharmonic functions (reminder)

DEFINITION: A function f on a complex manifold is called plurisubhar-
monic (or psh) if ddcf is a positive (1,1)-form, and strictly plurisubharmonic
if ddcf is a positive definite (and ipso facto Kähler) form.

REMARK: For any plurisubharmonic function f , and any Hermitian form
ω, we have ∆(f) ⩾ 0, where ∆ is an elliptic operator. Applying the strong
maximum principle, we obtain
COROLLARY: A plurisubharmonic function on a manifold cannot have a
local maximum, unless it is constant.

EXAMPLE: A sum of plurisubharmonic functions is plurisubharmonic.
EXAMPLE: Let f be a holomorphic function. Then ddc∣f ∣2 = 2

√
−1 ∂∂ff =

2
√
−1 (∂f ∧ ∂f), hence ∣f ∣2 is plurisubharmonic.

COROLLARY: Let f1, ..., fn be a collection of holomorphic functions on a
complex manifold. Then ∑i ∣fi∣

2 is plurisubharmonic, hence it cannot have
a maximum.
EXAMPLE: Let µ ∈ C∞R. Then

ddc(µ(f))∣m = µ′(f(z))2ddcf + µ′′(f(z))df ∧ dcf.

Therefore, for any psh function f, the composition µ(f) is psh when
µ′′ ⩾ 0 and µ′ > 0.
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Regularized maximum

CLAIM: Let µ ∶ RnÐ→R be a smooth function, monotonous in all argu-

ments and convex, and ϕ1, ...,ϕn a set of plurisubfarmonic functions. Then

µ(ϕ1, ...,ϕn) is also plurisubharmonic.

Proof: The same formula

ddc(µ(f))∣m = µ′(f(z))2ddcf + µ′′(f(z))df ∧ dcf.

(appropriately re-conceptualized).

DEFINITION: (Demailly) Let µ ∶ R2Ð→R be a smooth, convex function,

increasing in both arguments. Suppose that for all ∣x− y∣ ⩾ ε, one has µ(x,y) =

max(x,y), and also µ(x,y) = µ(y,x), µ(y +α,x +α) = µ(x,y) +α. Then µ is called

a regularized maximum and denoted as maxε(x,y).

COROLLARY: A regularized maximum of smooth (strictly) plurisub-

harmonic functions is smooth and (strictly) psh.

Proof: Apply the previous claim to µ(x,y) = maxε(x,y).
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Regularized maximum (2)

EXAMPLE: Take a smooth, convex function x ↦ ∣x∣ε which approximates

x↦ ∣x∣

Then maxε(x,y) ∶= 1/2∣x−y∣ε+1/2∣x+y∣ε is a regularized maximum (prove this).
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Pseudoconvexity (reminder)

DEFINITION: A function ψ ∶ X → [−∞,∞[ on a topological space X is called

exhaustion if all sublevel sets ψ−1([−∞, c]) are compact.

DEFINITION: A complex manifold X is called weakly pseudoconvex if

X admits a plurisubharmonic exhausting function ψ ∶ X → R, and strongly

pseudoconvex if ψ is strictly psh.

THEOREM: Every holomorphically convex manifold X is weakly pseu-

doconvex.

REMARK: There exists a weakly pseudoconvex manifold which is not

holomorphically convex.
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Stein manifolds

DEFINITION: Let X be a complex manifold. We say that OX locally

separates points if every point x ∈ X has a neighbourhood V such that for

any y ∈ V /x there exists a function f ∈ H0(X,OX) such that f(x) ≠ f(y). A

Stein manifold is a holomorphically convex manifold X such that OX locally

separate points.

PROPOSITION: Let X be a complex manifold such that OX locally separate

points. Then X admits a smooth, non-negative, strictly psh function.

Proof. Step 1: Let x ∈ X We start by showing that there exists a smooth,

non-negative psh function ux which is strictly psh in neighbourhood of x. Fix

an open set V ∋ x such that for all y ∈ V /x there exists a function fy ∈H0(X,OX)

such that f(x) ≠ f(y). Rescaling and adding a constant, we may assume that

f(x) = 0, fy(y) > 1. Without restricting generality, we may assume that V ⋐X.

By compactness of ∂V , we find finitely many functions fy1, ..., fyN ∈ OX

such that ψx ∶= ∑ ∣fyi∣
2 satisfies ψx(x) = 0 and sup

∂V
ψx > 1.
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Stein manifolds (2)

Step 2: Without restricting the generality, we may assume that V is biholo-
morphic to an open ball. We denote by ∣z∣2 the standard Kähler potential
on V . Let ϕx ∶= maxε(ψx, (∣z∣2 + 1)/3). This function is plurisubharmonic on
V , equal to (∣z∣2 + 1)/3 in a neighbourhood of 0, and to ψx near the bound-
ary of V ; we extend it to X by setting ϕx = ψx on X/V . The function
ψx ∈ C∞X is positive, plurisubharmonic, and strictly plurisubharmonic in
a neighbourhood Uxi of x ∈X.

Step 3: Choose a locally finite covering of X by open balls with centers in xi,
and let ϕxi be the corresponding psh functions constructed in Step 1. Choos-
ing an appropriate sequence of ψxi, we can always assume that X = ⋃iUxi,
where Uxi is a neighbiurhood where ψxi is strictly psh. Choose a sequence
εi > 0 such that the sum ∑i εiϕxi converges (this is possible to show using the
diagonal method; prove it). Then ∑i εiϕxi is strictly plurisubharmonic.

COROLLARY: Every Stein manifold is strongly pseudoconvex.

Proof: In Lecture 29, we constructed an exhausting psh function Ψ on any
holomorphically convex manifold. Let Φ ∈ C∞X be a positive, strictly psh
function constructed in the previous proposition. Then Ψ + Φ is exhausting
and strictly psh.
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Equivalent definitions of Stein manifolds

The following results are highly non-trivial. I state them without giving

or indicating the proof.

REMARK: K. Oka (1942, 1954) has proven that, conversely, any strongly

pseudoconvex complex manifold is Stein. Then, could define Stein

manifold as Kähler manifold admitting an exhausting Kähler potential.

REMARK: Clearly, any closed complex submanifold in Cn is Stein (prove it).

The converse statement is also true: any Stein manifold can be realized

as a closed complex submanifold in Cn. This result is due to Remmert,

Narasimhan and Bishop.

REMARK: Another characterization of Stein manifolds is due to H. Cartan:

a complex manifold X is Stein if and only if Hi(X,F ) = 0 for all i > 0 and

all coherent sheaves F on X.
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CR-manifolds

Definition: Let M be a smooth manifold, B ⊂ TM a sub-bundle in a tangent

bundle, and I ∶ BÐ→B an endomorphism satisfying I2 = −1. Consider its
√
−1-

eigenspace B1,0(M) ⊂ B ⊗C ⊂ TCM = TM ⊗C. Suppose that [B1,0,B1,0] ⊂ B1,0.

Then (B,I) is called a CR-structure on M .

Example: A complex manifold is CR, with B = TM . Indeed, [T1,0M,T1,0M] ⊂

T1,0M is equivalent to integrability of the complex structure (Newlander-

Nirenberg).

Example: Let X be a complex manifold, and M ⊂ X a hypersurface. Then

B ∶= dimCTM ∩ I(TM) = dimCX − 1, hence rkB = n − 1. Since [T1,0X,T1,0X] ⊂

T1,0X, M is a CR-manifold.

Definition: The Frobenius form of a CR-manifold is the tensor B⊗BÐ→ TM/B

mapping X,Y to the projection ΠTM/B([X,Y ]). It is an obstruction to inte-

grability of the foliation given by B.
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Contact CR-manifolds.

Complex algebraic geometry is a rich source of contact structures.

Definition: Let (M,B,I) be a CR-manifold, with codimB = 1. Then M is

called a contact CR-manifold if its Frobenius form is non-degenerate.

Remark: Since [B1,0,B1,0] ⊂ B1,0 and [B0,1,B0,1] ⊂ B0,1, the Frobenius form

is a pairing between B0,1 and B1,0. This means that it is Hermitian.

DEFINITION: This Hermitian form is called Levi form of a CR-manifold.

Definition: Let (M,B,I) be a CR-manifold, with codimB = 1. Then M is

called a strictly pseudoconvex CR-manifold if its Levi form is positive

definite.

Example: Let h be a function on a complex manifold such that ∂∂h = ω is

a positive definite Hermitian form, and X = h−1(c) its level set. Then the

Frobenius form of X is equal to ω∣X (see the next slide). In particular, X is

a strictly pseudoconvex CR-manifold.
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CR-manifolds and plurisubharmonic functions.

PROPOSITION: Let M be a complex manifold, ϕ ∈ C∞M a smooth function,

and s a regular value of ϕ. Consider S ∶= ϕ−1(s) as a CR-manifold, with

B = TS ∩ I(TS) and let Φ be its Levi form, taking values in

TS/B = kerdϕ/kerdϕ ∩ I(kerdϕ)

Then dcϕ ∶ TS/BÐ→C∞S trivializes TS/B. Consider tangent vectors u,v ∈ BxS.

Then −dcϕ(Φ(u,v)) = ddcϕ(x,y)).

Proof: Extend u,v to vector fields u,v ∈ B = kerdϕ∩I(kerdϕ). Then −dcϕ(Φ(u,v)) =

−dcϕ([u,v]) = ddcϕ(u,v).

COROLLARY: Let M be a complex manifold, ϕ ∈ C∞M a strictly plurisub-

harmonic function, and s a regular value of ϕ. Then S ∶= ϕ−1(s) is strictly

pseudoconvex.

Proof: By the above proposition, the Levi form of S is expressed as ddcϕ(u,v),

hence it is positive definite.
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Geometry of strictly pseudoconvex CR-manifolds

The following results are highly non-trivial. I state them without giving
or indicating the proof.

THEOREM: (Grauert’s solution of the Levi problem) Let M be a com-
plex manifold with smooth boundary S. Assume that the Levi form on S is
strictly pseudoconvex. Then M is holomorphically convex.

DEFINITION: Let (S,B, I) be a CR-manifold. A function f on S is called
CR-holomorphic if for any vector field v ∈ B0,1, we have Liev f = 0.

THEOREM: (Rossi-Andreotti-Siu)
Let S be a compact strictly pseudoconvex CR-manifold, dimRS ⩾ 5, and
H0(OS)b the ring of bounded CR-holomorphic functions. Then S is a bound-
ary of a Stein manifold M with isolated singularities, such that H0(OS)b =

H0(OM)b, where H0(OM)b denotes the ring of bounded holomorphic functions.
Moreover, M is defined uniquely, M = Spec(H0(OS)b).

THEOREM: (Dan Burns, John M. Lee)
Let S be a compact strictly pseudoconvex CR-manifold, and Aut0(S) the con-
nected component of its group of automorphisms. Then Aut0(S) is compact
unless S is equivalent to the standard sphere S2n−1 ⊂ Cn with its induced CR-
structure. In the latter case Aut0(S) = U(1, n).
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