Complex varieties 4, written test: Germs of complex varieties

Rules: This is a written test for the next week. Please write your solutions and bring me no later than the Monday class the week after. We shall discuss this test in class afterwards.

Exercise 4.1. Let R be the ring of germs of a variety $X \subset \mathbb{C}^3$ given by an equation $x^2 = yz$ in zero; equivalently, $R := \mathcal{O}_3/(x^2 - yz)$.

- a. Prove that the images of x, y and z in R cannot be decomposed onto a product of non-invertible functions.
- b. Prove that $\frac{x}{y}$ is not holomorphic in R.
- c. Prove that R is not factorial.

Exercise 4.2. Let $A, B \subset \mathbb{C}^n$ be complex subvarieties, and $J_A, J_B \subset \mathcal{O}_{\mathbb{C}^n}$ their ideals. Find an example of A, B such that $J_{A \cap B} \supseteq J_A + J_B$.

Exercise 4.3. Determine the singular set of the germs of complex varieties defined by the following ideals.

- a. $(xy, yz, zx) \subset \mathcal{O}_{\mathbb{C}^3}$
- b. $(xy, yz) \subset \mathcal{O}_{\mathbb{C}^3}$