Literature for "Smooth ergodic theory",
Misha Verbitsky, IMPA, 2017
Here are some of the books that I am using.
-
Fundamentos da Teoria Ergódica, por Krerley
Oliveira e Marcelo Viana.
-
Operator Theoretic Aspects of Ergodic Theory, by
Eisner, T., Farkas, B., Haase, M., Nagel, R.
- Yakov G. Sinai,
Topics in Ergodic Theory.
- Curtis MacMullen, Hyperbolic manifolds, discrete groups and
ergodic theory.
- Robert J. Zimmer,
Dave Witte Morris,
Ergodic Theory, Groups, and Geometry
- Dave Witte Morris, Ratner's Theorems on Unipotent Flows
- Amie
Wilkinson, Smooth
Ergodic Theory
- David
Ruelle,
Chaotic evolution and strange attractors
- A. Katok B. Hasselblatt, Handbook of Dynamical Systems.
- The Ergodic Theorem (from Joel Moreira's Math Blog).
- John Milnor: Expanding maps.
Books on differential and metric geometry
- D. Hilbert, S. Cohn-Vossen, "Geometry and the Imagination".
- Dmitri Burago, Yuri Burago, and Sergei Ivanov,
A course
in metric theory.
- John Milnor, Morse theory.
- Sylvestre Gallot, Dominique Hulin, Jacques Lafontaine, Riemannian Geometry.
- Misha Gromov, Metric structures for Riemannian and non-Riemannian spaces.