Teoria Ergódica Diferenciável

lecture 1: spaces with measure

Instituto Nacional de Matemática Pura e Aplicada

Misha Verbitsky, August 09, 2017

Boolean algebras

I will start with a brief formal treatment of measure theory. I assume that the students know the measure theory well enough.

DEFINITION: The set of subsets of X is denoted by 2^X . Boolean algebra of subsets if X is a subset of 2^X closed under boolean operations of intersection and complement,

EXERCISE: Prove that the rest of logical operations, such as union and symmetric difference can be expressed through intersection and the complement.

REMARK: The Boolean algebras can be defined axiomatically through the axioms called **de Morgan's Laws**. Realization of a Boolean algebra as a subset of 2^X is called **an exact representation**. Existence of an exact representation for any given Boolean algebra is a non-trivial theorem, called **Moore's representation theorem**.

M. Verbitsky

σ -algebras and measures

DEFINITION: Let M be a set **A** σ -algebra of subsets of X is a Boolean algebra $\mathfrak{A} \subset 2^X$ such that for any countable family $A_1, ..., A_n, ... \in \mathfrak{A}$ the union $\bigcup_{i=1}^{\infty} A_i$ is also an element of \mathfrak{A} .

REMARK: We define the operation of addition on the set $\mathbb{R} \cup \{\infty\}$ in such a way that $x + \infty = \infty$ and $\infty + \infty = \infty$. On finite numbers the addition is defined as usually.

DEFINITION: A function $\mu : \mathfrak{A} \longrightarrow \mathbb{R} \cup \{\infty\}$ is called **finitely additive** if for all non-intersecting $A, B \in \mathfrak{U}, \ \mu(A \coprod B) = \mu(A) + \mu(B)$. The sign \coprod denotes union of non-intersecting sets. μ is called σ -additive if $\mu(\coprod_{i=1}^{\infty} A_i) = \sum \mu(A_i)$ for any pairwise disjoint countable family of subsets $A_i \in \mathfrak{A}$.

DEFINITION: A measure in a σ -algebra $\mathfrak{A} \subset 2^X$ is a σ -additive function $\mu : \mathfrak{A} \longrightarrow \mathbb{R} \cup \{\infty\}.$

EXAMPLE: Let X be a topological space. The **Borel** σ -algebra is a smallest σ -algebra $\mathfrak{A} \subset 2^X$ containing all open subsets. **Borel measure** is a measure on Borel σ -algebra.

Lebesgue measure

DEFINITION: Pseudometric on X is a function $d : X \times X \longrightarrow \mathbb{R}^{\geq 0}$ which is symmetric and satisfies the triangle inequality and d(x, x) = 0 for all $x \in X$. In other words, pseudometric is a metric which can take 0 on distinct points.

EXERCISE: Let $\mathfrak{A} \subset 2^X$ be a Boolean algebra with positive, additive function μ . Given $U, V \in 2^X$, denote by $U \triangle V$ their **symmetric difference**, that is, $U \triangle V := (U \cup V) \setminus (U \cap V)$. **Prove that the function** $d_{\mu}(U, V) := \mu(U \triangle V)$ **defines a pseudometric on** \mathfrak{A} .

DEFINITION: Let $\mathfrak{A} \subset 2^X$ be a Boolean algebra with positive, additive function μ . A set $U \subset X$ has measure 0 if for each $\varepsilon > 0$, U can be covered by a union of $A_i \in \mathfrak{A}$, that is, $U \subset \bigcup_{i=1}^{\infty} A_i$, with $\sum_{i=0}^{\infty} \mu(A_i) < \varepsilon$.

REMARK: Consider a completion of \mathfrak{A} with respect to the pseudometric d_{μ} . A limit of a Cauchy sequence $\{A_i\} \subset \mathfrak{A}$ can be realized as an element of 2^X ; this realization is unique up to a set of measure 0. A set which can be obtained this way is called a Lebesgue measurable set. Extending μ to the metric completion of \mathfrak{A} by continuity, we obtain the Lebesgue measure on the σ -algebra of Lebesgue measurable sets.

REMARK: This construction is also used **for constructing Borel measures**.

Measurable maps and measurable functions

DEFINITION: Let X, Y be sets equipped with σ -algebras $\mathfrak{A} \subset 2^X$ and $\mathfrak{B} \subset 2^Y$. We say that a map $f : X \longrightarrow Y$ is **compatible with the** σ -algebra, or **measurable**, if $f^{-1}(B) \in \mathfrak{A}$ for all $B \in \mathfrak{B}$.

REMARK: This is similar to the definition of continuity. In fact, any continuous map of topological spaces is compatible with Borel σ -algebras.

DEFINITION: Let X be a space with σ -algebra $\mathfrak{A} \subset 2^X$. A function f: $X \longrightarrow \mathbb{R}$ is called **measurable** if f is compatible with the Borel σ -algebra on \mathbb{R} , that is, if the preimage of any Borel set $A \subset \mathbb{R}$ belongs to \mathfrak{A} .

DEFINITION: Let X, Y be sets equipped with σ -algebras $\mathfrak{A} \subset 2^X$ and $\mathfrak{B} \subset 2^Y$, $f: X \longrightarrow Y$ a measurable map. Let μ be a measure on X. Consider the function $f_*\mu$ mapping $B \in \mathfrak{B}$ to $\mu(f^{-1}(B))$.

EXERCISE: Prove that $f_{*\mu}$ is a measure on *Y*.

DEFINITION: The measure $f_*\mu$ is called **the pushforward measure**, or **pushforward** of μ .

Integral

DEFINITION: Let $f : X \longrightarrow \mathbb{R}$ be a measurable function on a measured space (X, μ) . We define **integral** $\int_X f\mu$ as an integral of the Borel measure in \mathbb{R} ,

$$\int_X f\mu := \int_{\mathbb{R}} f_*\mu.$$

Of course, this definition assumes we already know how to integrate Borel measurable functions on \mathbb{R} .

Spaces with measure: examples

DEFINITION: Lebesgue measure on \mathbb{R}^n is defined starting from the algebra \mathfrak{A} , generated by parallelepipeds with sides parallel to coordinate lines. The measure μ on \mathfrak{A} takes a parallelepiped with sides $a_1, a_2, ..., a_n$ to $a_1a_2...a_n$. The completion of this algebra with respect to μ is called **the algebra of** Lebesgue measurable sets. It contains all Borel sets.

DEFINITION: Let M be an oriented manifold, and Φ a positive volume form. For each coordinate patch $U_i \subset \mathbb{R}^n$, and a compact subset $K \subset U_i$, write Φ restricts to U_i as $\alpha dx_1 \wedge dx_2 \wedge ... dx_n$, with $\alpha \in C^{\infty}U_i$ a positive function. Let $\mu(K) := \int_K \alpha d$ Vol, where $\int_K \alpha dK$ is defined as above, and dK the Lebesgue measure on K. This is called the Lebesgue measure on a manifold M associated with the volume form Φ .

Spaces with measure: more examples

DEFINITION: Let P be a finite set, and $P^{\mathbb{Z}}$ the product of \mathbb{Z} copies of P, and $\pi_i : P^{\mathbb{Z}} \longrightarrow P$ projection to the p-th component. Fix distinct numbers $i_1, ..., i_n \in \mathbb{Z}$ and let $K_1, ..., K_n \subset P$ be subsets. Cylindrical set is an intersection

$$C := \bigcup_{k=i_1,\ldots,i_n} \pi_{i_k}^{-1}(K_k) \subset P^{\mathbb{Z}}.$$

Tychonoff topology, or **product topology** on $P^{\mathbb{Z}}$ is topology with the base consisting of all cylindrical sets. **Bernoulli measure** on $P^{\mathbb{Z}}$ is a measure μ such that $\mu(C) := \frac{\prod_{i=1}^{n} |K_i|}{|P|^n}$.

Bernoulli measure can be understood probabilistically as follows: we throw a dice with |P| sides, randomly with equal probability chosing one of its sides, and look at the probability that i_k -th throw would land in the set $K_k \subset P$.

Categories

DEFINITION: A category C is a collection of data called "objects" and "morphisms between objects" which satisfies the axioms below.

DATA.

Objects: A class $\mathcal{O}b(\mathcal{C})$ of **objects** of \mathcal{C} .

Morphisms: For each $X, Y \in Ob(C)$, one has a set Mor(X, Y) of morphisms from X to Y.

Composition of morphisms: For each $\varphi \in \mathcal{M}or(X, Y), \psi \in \mathcal{M}or(Y, Z)$ there exists **the composition** $\varphi \circ \psi \in \mathcal{M}or(X, Z)$

Identity morphism: For each $A \in Ob(C)$ there exists a morphism $Id_A \in Mor(A, A)$.

AXIOMS.

Associativity of composition: $\varphi_1 \circ (\varphi_2 \circ \varphi_3) = (\varphi_1 \circ \varphi_2) \circ \varphi_3$.

Properties of identity morphism: For each $\varphi \in \mathcal{M}or(X, Y)$, one has $Id_x \circ \varphi = \varphi = \varphi \circ Id_Y$

Categories (2)

DEFINITION: Let $X, Y \in Ob(\mathcal{C})$ – objects of \mathcal{C} . A morphism $\varphi \in \mathcal{M}or(X, Y)$ is called **an isomorphism** if there exists $\psi \in \mathcal{M}or(Y, X)$ such that $\varphi \circ \psi = \operatorname{Id}_X$ and $\psi \circ \varphi = \operatorname{Id}_Y$. In this case, the objects X and Y are called **isomorphic**.

Examples of categories:

Category of sets: its morphisms are arbitrary maps.
Category of vector spaces: its morphisms are linear maps.
Categories of rings, groups, fields: morphisms are homomorphisms.
Category of topological spaces: morphisms are continuous maps.
Category of smooth manifolds: morphisms are smooth maps.

Category of spaces with measure

DEFINITION: Let C be the category of spaces with measure, or measured spaces, where Ob(C) – spaces (X, μ_X) with measure, and $\mathcal{M}or((X, \mu_X), (Y, \mu_Y))$ the set of all measurable maps $f: X \longrightarrow Y$ such that $f_*\mu_X = \mu_Y$.

REMARK: Isomorphism of spaces with measure is a **bijection which pre**serves the σ -algebra and the measure.

OBSERVATION: Category of spaces with measure **is not very interesting.** Indeed, pretty much all measured spaces are isomorphic.

EXERCISE: Prove that unit cubes of any given dimension are isomorphic as measured spaces. Prove that a unit cube is isomorphic to a Bernoulli space as a space with measure.

Category of spaces with measure: exercises

Spaces with measure are very similar to the sets.

EXERCISE: ("Cantor-Schröder-Bernstein theorem for measured spaces".) Let X, Y spaces with measure, and $X_0 \subset X$, $Y_0 \subset Y$ measured subsets. Suppose that X_0 is isomorphic to Y and Y_0 is isomorphic to X as a space with measure. Prove that X is isomorphic to Y.

EXERCISE: Let C be a cube and $x \in C$ a point. Prove that $C \setminus x$ is isomorphic to C as a space with measure.

EXERCISE: Let *C* be a cube and $R \subset C$ a countable set. Prove that $C \setminus R$ is isomorphic to *C* as a space with measure.

Category of spaces with measure: more exercises

EXERCISE: Let $B = \{0, 1\}^{\mathbb{Z}^{\geq 0}}$ be the set of all sequences of numbers $a_i \in \{0, 1\}$ with Bernoulli measure, and $B_0 \subset B$ the set of all sequences not ending with an infinite string of "1". **Prove that** B_0 **is isomorphic, as a measured space to an interval** $[0, 1] \subset \mathbb{R}$.

EXERCISE: Let $B = \{0,1\}^{\mathbb{Z}^{\geq 0}}$ be the set of all sequences of numbers $a_i \in \{0,1\}$ with Bernoulli measure. Define the natural measure on the product of measured spaces, and prove that B is isomorphic to B^n as a space with measure for any n > 0.

EXERCISE: Prove that unit cubes of any given dimension are isomorphic as measured spaces.