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σ-algebras and measures (reminder)

DEFINITION: Let M be a set A σ-algebra of subsets of X is a Boolean

algebra A ⊂ 2X such that for any countable family A1, ..., An, ... ∈ A the union⋃∞
i=1Ai is also an element of A.

REMARK: We define the operation of addition on the set R ∪ {∞} in such

a way that x +∞ = ∞ and ∞+∞ = ∞. On finite numbers the addition is

defined as usually.

DEFINITION: A function µ : A−→ R ∪ {∞} is called finitely additive if for

all non-intersecting A,B ∈ U, µ(A
∐
B) = µ(A) + µ(B). The sign

∐
denotes

union of non-intersecting sets. µ is called σ-additive if µ(
∐∞
i=1Ai) =

∑
µ(Ai)

for any pairwise disjoint countable family of subsets Ai ∈ A.

DEFINITION: A measure in a σ-algebra A ⊂ 2X is a σ-additive function

µ : A−→ R ∪ {∞}.

EXAMPLE: Let X be a topological space. The Borel σ-algebra is a smallest

σ-algebra A ⊂ 2X containing all open subsets. Borel measure is a measure

on Borel σ-algebra.
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Measurable maps and measurable functions (reminder)

DEFINITION: Let X,Y be sets equipped with σ-algebras A ⊂ 2X and B ⊂
2Y . We say that a map f : X −→ Y is compatible with the σ-algebra, or

measurable, if f−1(B) ∈ A for all B ∈ B.

REMARK: This is similar to the definition of continuity. In fact, any con-

tinuous map of topological spaces is compatible with Borel σ-algebras.

DEFINITION: Let X be a space with σ-algebra A ⊂ 2X. A function f :

X −→ R is called measurable if f is compatible with the Borel σ-algebra on

R, that is, if the preimage of any Borel set A ⊂ R belongs to A.

DEFINITION: Let X,Y be sets equipped with σ-algebras A ⊂ 2X and B ⊂
2Y , f : X −→ Y a measurable map. Let µ be a measure on X. Consider the

function f∗µ mapping B ∈ B to µ(f−1(B)).

EXERCISE: Prove that f∗µ is a measure on Y .

DEFINITION: The measure f∗µ is called the pushforward measure, or

pushforward of µ.
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Category of spaces with measure (reminder)

DEFINITION: We define the category of spaces with measure, or mea-

sured spaces. Its objects are spaces (X,µX) with measure, and morphisms

are measurable maps f : X −→ Y such that f∗µX = µY .

REMARK: Isomorphism of spaces with measure is a bijection which pre-

serves the σ-algebra and the measure.

OBSERVATION: Category of spaces with measure is not very interesting.

Indeed, pretty much all measured spaces are isomorphic.

EXERCISE: Prove that unit cubes of any given dimension are isomor-

phic as measured spaces. Prove that a unit cube is isomorphic to a

Bernoulli space as a space with measure.
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Poicaré recurrence theorem

DEFINITION: A measure µ on M is called probabilistic if µ(M) = 1. A

measurable subset X ⊂M is called full measure subset if µ(M\X) = 0.

DEFINITION: Let M be a topological space, and ϕ : M −→M a continuous

map. Recurrence set of π is a set of all x ∈M such that for some unbounded

sequence {mi} of natural numbers, one has limiϕ
mi(x) = x.

THEOREM: (Poincaré recurrence theorem)

Let M be a second-countable metrisable topological space, µ a probabilistic

Borel measure, and ϕ : M −→M a homeomorphism preserving measure.

Then the recurrence set R of ϕ has full measure.
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Poicaré recurrence theorem

THEOREM: (Poincaré recurrence theorem)

Let M be a second-countable metrisable topological space, µ a probabilistic
Borel measure, and ϕ : M −→M a homeomorphism preserving measure.
Then the recurrence set R of ϕ has full measure.

Proof. Step 1: Fix a metric on M , and met Bε(x) denote an ε-ball centered
in x Define an ε-recurrence set Rε as

Rε := {x ∈M | Bε(x) ∩ {ϕ(x), ϕ2(x), ϕ3(x), ...} 6= 0}

Then R =
⋂
εRε (prove it). To prove that R has full measure, it would

suffice to show that each Rε has full measure.

Step 2: Recall that diameter of a metric space B is diam(B) := supx,y∈B d(x, y).
Let Aε := M\Rε. Suppose that Aε has positive measure, and let B ⊂ Aε be a
subset of positive measure and diameter ε. Since

⋃
iϕ

i(B) has finite measure,
for some i 6= j, the sets ϕi(B) and ϕj(B) have non-trivial intersection.

Step 3: Let i > j. Since ϕi(B) ∩ ϕj(B) 6= ∅, there exists x ∈ ϕi−j(B) ∩
B. Then d(x, ϕi−j(x)) < diam(B) 6 ε, which implies that x /∈ Aε, giving a

contradiction.
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Heat death of the universe!

Jules Henri Poincaré
(1854 - 1912)

Ludwig Eduard Boltzmann
(1844 - 1906)

...I do not know if it has been remarked that the English kinetic theories can extricate
themselves from this contradiction. The world, according to them, tends at first toward
a state where it remains for a long time without apparent change; and this is consistent
with experience; but it does not remain that way forever, if the theorem cited above is not
violated; it merely stays there for an enormously long time, a time which is longer the more
numerous are the molecules. This state will not be the final death of the universe, but a sort
of slumber, from which it will awake after millions of millions of centuries. According to this
theory, to see heat pass from a cold body to a warm one, it will not be necessary to have
the acute vision, the intelligence, and dexterity of Maxwell’s demon; it will suffice to have a
little patience.

H. Poincare (1893) Le mécanisme et l’expérience.

Revue de Metaphysique et de Morale, 4, 534.
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Heat death!

...One has the choice between two kinds of pictures. One can assume that the entire universe
finds itself at present in a very improbable state. However, one may suppose that the aeons
during which this improbable state lasts, and the distance from here to Sirius, are minute
compared to the age and size of the universe. There must then be in the universe, which is in
thermal equilibrium as a whole and therefore dead, here and there relatively small regions of
the size of our galaxy (which we call worlds), which during the relatively short time of aeons
deviate significantly from thermal equilibrium. Among these worlds the state probability
increases as often as it decreases. For the universe as a whole the two directions of time
are indistinguishable, just as in space there is no up and down. However, just as at a certain
place on the earth we can call ”down” the direction toward the centre of the earth, so a living
being that finds itself in such a world at a certain period of time can define the time direction
as going from less probable to more probable states (the former will be the ”past”, the latter
the ”future”) and by virtue of this definition he will find that this small region, isolated from
the rest of the universe, is ”initially” always in an improbable state. This viewpoint seems
to me the only way in which one can understand the validity of the Second Law and the
heat death of each individual world, without invoking an unidirectional change of the entire
universe from a definite initial state to final state...

L. Boltzmann (1897). Zu Hrn. Zermelo Abhandlung fiber die mechanische Erklarungen

irreversible!’ Vorgange. Wiedemann’s Annalen, 60, 392-8.

Boltzmann’s Ergodic Hypothesis: For large systems of interacting par-

ticles in equilibrium time averages are close to the ensemble, or equi-

librium average.
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er·god·ic

Earliest Known Uses of Some of the Words of Mathematics:
http://jeff560.tripod.com/mathword.html

ERGODIC. Ludwig Boltzmann (1844-1906) coined the term Ergode (from the Greek words

for work + way) for what Gibbs later called a ”micro-canonical ensemble”; Ergode appears

in the 1884 article in Wien. Ber. 90, 231. Later P. & T. Ehrenfest (1911) ”Begriffiche

Grundlagen der statistischen Auffassung in der Mechanik” (Encyklopädie der mathematischen

Wissenschaften, vol. 4, Part 32) discussed ”ergodische mechanischer Systeme” the existence

of which they saw as underlying the gas theory of Boltzmann and Maxwell. (Based on a note

on p. 297 of Lectures on Gas Theory, S. G. Brush’s translation of Boltzmann’s Vorlesungen

über Gastheorie.)
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Ergodic measures

REMARK: Let M,µ be a space with measure. We say that “property P

holds for almost all x ∈M” when property P holds for all x ∈M outside of
a measure 0 subset.

DEFINITION: Let Γ be a group acting on a measured space (M.µ) and
preserving its σ-algebra. We say that the Γ-action is ergodic if for each Γ-
invariant, measurable set U ⊂ M , either µ(U) = 0 or µ(M\U) = 0. In this
case µ is called an ergodic measure.

THEOREM: Let M be a second countable topological space, and µ a Borel
measure on M . Let Γ be a group acting on M by homeomorphisms. Suppose
that any non-empty open subset of M has positive measure, and action of Γ
is ergodic. Then for almost all x ∈M, the orbit Γ · x is dense in M.

Proof. Step 1: Let Ui be a countable base of topology on M . The orbit
Γ · x is dense in M if (Γ · x) ∩ Ui 6= 0 for all i. This is equivalent to x ∈ Γ · Ui.
Therefore, the set of all x with dense orbits is

⋂
i(Γ · Ui).

Step 2: Since Γ·Ui is Γ-invariant and has positive measure, it has full measure
because of ergodicity. Then

⋂
i(Γ ·Ui) is an intersection of sets which have

full measure.
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Ergodic measures and integrable functions

Rule of a thumb: If your group action preserves measure and almost all its
orbits are dense, it is most likely ergodic. Not always!

THEOREM: Let (M,µ) be a space with finite measure, and Γ a group acting
on M and preserving the measure. Then the following are equivalent.

(a) The action of Γ is ergodic.

(b) For each integrable, Γ-invariant function f : M −→ R, f is constant
almost everywhere.

Proof: To obtain (a) from (b), take the characteristic function χU of a Γ-
invariant set U ⊂ M . Then it is constant almost everywhere, hence U is of
full measure (in this case χU = 1 almost everywhere) or measure zero, in later
case χU = 0 almost everywhere.

To obtain (b) from (a), let c be the average value of f on M , and let M+
ε :=

f−1([c + ε,∞[) and M−ε := f−1(] −∞, c + ε]). Both sets are Γ-invariant and
not of full measure, hence they have measure zero. This means that for all
ε > 0, c− ε < f(x) < c+ ε for almost all x.
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Exercises (for discussion in class)

EXERCISE: Let α be an irrational number, and ϕα : S1 −→ S1 be a rotation
by πα. Prove that ϕα has dense orbits.

EXERCISE: Prove that ϕα is ergodic.

DEFINITION: (reminder) Let P be a finite set, and PZ the product of Z
copies of P , and πi : PZ −→ P projection to the p-th component. Fix dictinct
numbers i1, ..., in ∈ Z and let K1, ...,Kn ⊂ P be subsets. Cylindrical set is an
intersection

C :=
⋃

k=i1,...,in

π−1
ik

(Kk) ⊂ PZ.

Tychonoff topology, or product topology on PZ is topology with the base
consisting of all cylindrical sets. Bernoulli measure on PZ is a measure µ

such that µ(C) :=
∏n
i=1 |Ki|
|P |n .

DEFINITION: Bernoulli shift maps a sequence a−n, a−n+1, ..., a0, a1, ... to
the sequence b−n, b−n+1, ..., b0, b1, ..., bi = ai−1.

EXERCISE: Find a dense orbit for the Bernoulli shift.

EXERCISE: Prove that the Bernoulli shift is ergodic.
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