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o-algebras and measures (reminder)

DEFINITION: Let M be a set A o-algebra of subsets of X is a Boolean
algebra 20 ¢ 2% such that for any countable family Aq, ..., An, ... € A the union
U2 1 A; is also an element of L.

REMARK: We define the operation of addition on the set RU {co} in such
a way that x + oo = oo and oo + co = oco. On finite numbers the addition is
defined as usually.

DEFINITION: A function p: 2 — RU {oco} is called finitely additive if for
all non-intersecting A,B € U, u(AJIB) = u(A) + n(B). The sign J] denotes
union of non-intersecting sets. p is called o-additive if u([1°21 A;) = > p(A;)
for any pairwise disjoint countable family of subsets A; € 2.

DEFINITION: A measure in a o-algebra A C 2X is a o-additive function
p: A—RU{co}.

EXAMPLE: Let X be a topological space. The Borel o-algebra is a smallest
o-algebra A C 2X containing all open subsets. Borel measure is a measure
on Borel o-algebra.
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Measurable maps and measurable functions (reminder)

DEFINITION: Let X,Y be sets equipped with o-algebras 2 C 2X and B C
2Y  We say that a map f: X — Y is compatible with the o-algebra, or
measurable, if f~1(B) € 2 for all B € B.

REMARK: This is similar to the definition of continuity. In fact, any con-
tinuous map of topological spaces is compatible with Borel o-algebras.

DEFINITION: Let X be a space with o-algebra 2 c 2%. A function f :
X — R is called measurable if f is compatible with the Borel o-algebra on
R, that is, if the preimage of any Borel set A C R belongs to 4.

DEFINITION: Let X,Y be sets equipped with g-algebras 2l C 2X and B C
2Y f: X —»Y a measurable map. Let u be a measure on X. Consider the
function fiu mapping B € B to u(f~1(B)).

EXERCISE: Prove that f.u is a measure on Y.

DEFINITION: The measure f«u is called the pushforward measure, or
pushforward of pu.
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Ergodic measures (reminder)

REMARK: Let M,u be a space with measure. We say that “property P
holds for almost all x € M"” when property P holds for all x € M outside of
a measure 0O subset.

DEFINITION: Let ' be a group acting on a measured space (M.u) and
preserving its o-algebra. We say that the [-action is ergodic if for each [ -
invariant, measurable set U C M, either u(U) = 0 or u(M\U) = 0. In this
case u is called an ergodic measure.

THEOREM: Let M be a second countable topological space, and u a Borel
measure on M. Let [ be a group acting on M by homeomorphisms. Suppose
that any non-empty open subset of M has positive measure, and action of I
is ergodic. Then for almost all x € M, the orbit I - x is dense Iin M.

THEOREM: Let (M, 1) be a space with finite measure, and I a group acting
on M and preserving the measure. Then the following are equivalent.

(a) The action of I' is ergodic.

(b) For each integrable, -invariant function f: M — R, f is constant
almost everywhere.
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Hilbert spaces

DEFINITION: Hilbert space is a complete, infinite-dimensional Hermitian
space which is second countable (that is, has a countable dense set).

DEFINITION: Orthonormal basis in a Hilbert space H is a set of pairwise
orthogonal vectors {xq} which satisfy |zqo| = 1, and such that H is the closure
of the subspace generated by the set {zq}.

THEOREM: Any Hilbert space has a basis, and all such bases are
countable.

Proof: A basis is found using Zorn lemma. If it's not countable, open balls
with centers in =, and radius € < 2—1/2 don't intersect, which means that the
second countability axiom is not satisfied. =

THEOREM: AIll Hilbert spaces are isometric.

Proof: Each Hilbert space has a countable orthonormal basis. =
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Fourier series

EXAMPLE: Let (M,u) be a space with measure. Consider the space V
of measurable functions f : M — C such that [,;|f|?x < oco. For each
f,g € V, the integral [ fgu is well defined, by Cauchy inequality: [|fglp <
\/fM|f|2MfM lg|?. This gives a Hermitian form on V Let L2(M) denote the
completion of V with respect to this metric. It is called the space of square-
integrable functions on M. Its elements are called L2-functions.

CLAIM: (" Fourier series”) Functions ep(t) = e2™V—1kt L c 7 on S =R/Z
form an orthonormal basis in the space L2(S1).

Proof: Orthogonality is clear from [¢1 €™V =1 gt =0 for all k # 0 (prove it).

To show that the space of Fourier polynomials Z,?:_n arer(t) is dense in the

space of continuous functions on circle, use the Stone-Weierstrass approxi-
mation theorem. =
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Integrable functions on spaces with finite measure are square integrable

LEMMA: Let (M,u) be a space with finite measure (that is, [j;u < 00).
Then any square integrable function is integrable.

Proof: Cauchy inequality gives

[1£1u < ¢ [ 7P [ 1




Smooth ergodic theory, lecture 3 M. Verbitsky

Hilbert spaces and ergodicity

COROLLARY: Let (M,u) be a space with finite measure and I a group
acting on M. Then the following are equivalent.

(a) The action of I is ergodic.

(b) For each square integrable, -invariant function f: M —R, fiIs
constant almost everywhere.

(c) For each integrable, -invariant function f: M — R, f is constant
almost everywhere.

Proof: (c) implies (b) by the previous lemma, (b) implies (a) because a
characteristic function of a measurable subset is square integrable, and (a)
= (c) was already proven. m

COROLLARY: Let a be an irrational number, and ¢, : S! — Sl be a
rotation by ma. Then na is ergodic.

Proof: Let e, (t) = e2™V~1kt pe the Fourier series basis. For any L2-function
f = Yrezarer, one has o} (f) = Zkeze\/_—lkmakek. Since « is irrational,
eV—lkma £ 1 for all k # 0, and the action of o, on L2(S;) has no non-
constant invariant L2-functions. =
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Ergodic systems

DEFINITION: Let M be a space with measure, and ® : M — M a mea-
surable map. We say that a funcion f: M — R is ®-invariant if &*(f) = f
almost everywhere, that is, o f = f. We say that a subset U C M is
d-invariant, if @~ 1(U) = U up to measure 0 subset.

REMARK: A subset U C M is ®-invariant if and only if the corresponding
characteristic function x; Is ®-invariant.

DEFINITION: Dynamical system is a triple (M, u,®), where (M, ) is a
space with measure, and ® : M — M a measurable map.

DEFINITION: Let (M, pu,®) be a dynamical system. It is called ergodic
system if any ®d-invariant measurable subset has full measure or has zero
measure.
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The doubling map

THEOREM: Let (M, u,®) be a dynamical system, with p finite. Then the
following are equivalent.

(a) (M, pu,P) is ergodic.

(b) For each square integrable, ®-invariant function f: M —R, fis
constant almost everywhere.

(c) For each integrable, ®-invariant function f: M — R, f is constant
almost everywhere.

Proof: Same as above. =

EXAMPLE: Let S1 =R/Z, and the doubling map ® map a to 2a.
CLAIM: The doubling map defines an ergodic system on Sl

Proof: Let e, (t) = e2™V~1kt pe the Fourier series basis. For any L2-function
f = Ykez ager, one has D*(f) = ez arear. Then the action of oo on L2(S7)

has no non-constant invariant L2-functions. =
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Lebesque measure (reminder)

DEFINITION: Pseudometric on X is a function d : X x X — R=9 which
is symmetric and satisfies the triangle inequality and d(z,z) = 0 for all x € X.
In other words, pseudometric is a metric which can take 0 on distinct points.

EXERCISE: Let 2l ¢ 2% be a Boolean algebra with positive, additive function
w. Given U,V € 2X denote by UAV their symmetric difference, that is,
UAV = (UUV)\(UnNnV). Prove that the function d,(U,V) = p(UAV)
defines a pseudometric on .

DEFINITION: Let 2 C 2% be a Boolean algebra with positive, additive
function u. A set U C X has measure O if for each € > 0, U can be covered
by a union of A; € %, thatis, U C U2 A;, with 322 5 u(A;) <e.

REMARK: Consider a completion of 2 with respect to the pseudometric
dy. A limit of a Cauchy sequence {A;} C 21 can be realized as an element of
2X- this realization is unique up to a set of measure 0. A set which can be
obtained this way is called a Lebesgue measurable set. Extending u to the
metric completion of A by continuity, we obtain the Lebesgue measure on
the o-algebra of Lebesgue measurable sets.

REMARK: This construction is also used for constructing Borel measures.
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Lebesque approximation theorem

THEOREM: (Lebesque approximation theorem)

Let M be a topological space, and 2lg a Boolean algebra of Borel subsets
such that the corresponding o-algebra 2 contains all Borel subsets. Consider
an additive, finite measure on 2y which continually extends to its completion
2A. Then for each X € 2 and each ¢ > 0 there exists Xy € 2y such that
w(XAXp) < e.

Proof: X is a limit of a Cauchy sequence from 2. =

EXERCISE: Let C be a cube in R"™, and 2y be an algebra generated by
parallelepipeds. Prove that for each each T € 2, there exists an open
subset T’ € g such that u(TAT") = 0.

COROLLARY: For each measurable subset X C C, and each € > 0, there
exists an open subset Xy € g such that u(XAXp) <e. =
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Lebesque approximation theorem for Bernoulli space

DEFINITION: Let P be a finite set, PZ the product of Z copies of P,
2 C Z a finite subset, and 7y : PZ __ pl¥| projection to the corresponding
components. Tychonoff topology, or product topology is topology where
the base of open sets are given by cylindrical sets Cgp = wil(R), where
R c P>l is any subset.

REMARK: For Bernoulli space, a complement to an cylindrical set is
again an open set, and the cylindrical sets form a Boolean algebra.

DEFINITION: Bernoulli measure on PZ is a measure u such that u(Cp) =
||
|P|I=l"

THEOREM: (Lebesque approximation theorem)
For each Lebesgue measurable set S C PZ and ¢ > 0, there exists a cylindrical
subset Cp = mx1(R) such that u(CrAX) < e.

Proof: The o-algebra of Lebesgue measurable sets is by definition a comple-
tion of the Boolean algebra of cylindrical sets. =
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Bernoulli shifts are ergodic

We represent an element of Bernulli space PZ by a sequence A—ny Q15 +vv5 A0y ALy +eey
with a; € P.

DEFINITION: Bernoulli shift maps a sequence a—pn,a_y,41,...,a0,a1,... tO
the sequence b_p,b_p41,...,00,b1,..., b = a;_1.

CLAIM: The corresponding Z-action is ergodic on the Bernoulli space.

Proof. Step 1: Let Cp = wil(R) and Cp = wi,l(R’) be two open sets,
where > C Z and ¥/ C Z don't intersect. Then u(CrNCr) = u(Cr)u(Cr).
Indeed,

|R||R|
ConC = i
,u( R R’) |P||Z|—|-|Z’|

This gives p(CrACR) = p(CRr) + u(Cr) — p(Cr)pn(Crr).
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Bernoulli shifts are ergodic (2)

CLAIM: The Bernoulli shift action is ergodic on the Bernoulli space.
Proof. Step 1: Let Cr and Cpg be two cylindrical sets, where > C Z and
>/ C Z don't intersect. Then /L(CRACR/) = ,LL(CR) + /L(CR/) — Q/L(CR),LL(CR/).

Step 2: Let U C P%Z be a shift-invariant subset with ¢ < uw(U) < 1 — ¢, and
Cpr C P% an open subset satisfying u(CrAU) < §, for a given § < %e. Such Cpr
exists by Lebesgue approximation theorem. Replacing U by its complement if
necessary, we may assume that e < u(U) < 1/2, givinge—6 < u(Cgr) < 1/249.

Step 3: Denote by & a sufficiently big power of the Bernoulli shift such that
u(CrN ®(CR)) = u(Cr)? (Step 1). Then

u(CrA®(CR)) = 2u(CR) — 2u(CRr)? = 2u(CR)(1 — u(CR)).
Since e —§d < u(Cpr) < 1/2+ 46, this gives

-

w(CrRAP(CR)) = 2u(CR) — 21(CR)* > 2( = 8)(1/2 = ) > e,

(for the last inequality use § < %5). Since U is ®-invariant, we have

T e < ORAS(CR)) < W(CRAV) + W(@(CRAGW)) <20 < Fe,

giving a contradiction. =
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Rotation and doubling are ergodic via Lebesgue approximation

EXERCISE: Prove that irrational rotations of a circle are ergodic using
the Lebesgue approximation theorem.

EXERCISE: Prove that the doubling map is ergodic using the Lebesgue
approximation theorem.
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