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o-algebras and measures (reminder)

DEFINITION: Let M be a set A o-algebra of subsets of X is a Boolean
algebra 20 ¢ 2% such that for any countable family Aq, ..., An, ... € A the union
U2 1 A; is also an element of L.

REMARK: We define the operation of addition on the set RU {co} in such
a way that x + oo = oo and oo + co = oco. On finite numbers the addition is
defined as usually.

DEFINITION: A function p: 2 — RU {oco} is called finitely additive if for
all non-intersecting A,B € U, u(AJIB) = u(A) + n(B). The sign J] denotes
union of non-intersecting sets. p is called o-additive if u([1°21 A;) = > p(A;)
for any pairwise disjoint countable family of subsets A; € 2.

DEFINITION: A measure in a o-algebra A C 2X is a o-additive function
p: A—RU{co}.

EXAMPLE: Let X be a topological space. The Borel o-algebra is a smallest
o-algebra A C 2X containing all open subsets. Borel measure is a measure
on Borel o-algebra.
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Measurable maps and measurable functions (reminder)

DEFINITION: Let X,Y be sets equipped with o-algebras 2 C 2X and B C
2Y  We say that a map f: X — Y is compatible with the o-algebra, or
measurable, if f~1(B) € 2 for all B € B.

REMARK: This is similar to the definition of continuity. In fact, any con-
tinuous map of topological spaces is compatible with Borel o-algebras.

DEFINITION: Let X be a space with o-algebra 2 c 2%. A function f :
X — R is called measurable if f is compatible with the Borel o-algebra on
R, that is, if the preimage of any Borel set A C R belongs to 4.

DEFINITION: Let X,Y be sets equipped with g-algebras 2l C 2X and B C
2Y f: X —»Y a measurable map. Let u be a measure on X. Consider the
function fiu mapping B € B to u(f~1(B)).

EXERCISE: Prove that f.u is a measure on Y.

DEFINITION: The measure f«u is called the pushforward measure, or
pushforward of pu.
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Ergodic measures (reminder)

DEFINITION: Let ' be a group acting on a measured space (M.u) and
preserving its o-algebra. We say that the -action is ergodic if for each I -
invariant, measurable set U C M, either u(U) = 0 or u(M\U) = 0. In this
case u is called an ergodic measure.

THEOREM: Let M be a second countable topological space, and u a Borel
measure on M. Let [ be a group acting on M by homeomorphisms. Suppose
that any non-empty open subset of M has positive measure, and action of I
is ergodic. Then for almost all x € M, the orbit I - x is dense Iin M.

THEOREM: Let (M, ) be a space with finite measure, and I a group acting
on M and preserving the measure. Then the following are equivalent.

(a) The action of I is ergodic.

(b) For each integrable, -invariant function f: M — R, f is constant
almost everywhere.

(c) For each square integrable, -invariant function f: M —R, fIs
constant almost everywhere.
4



Smooth ergodic theory, lecture 4 M. Verbitsky

Radon-Nikodym theorem

DEFINITION: Let S be a space equipped with a o-algebra, and u,v two
measures on this o-algebra. We say that v is absolutely continuous with
respect to u if for each measurable set A, u(A) = 0 implies v(A) = 0. This
relation is denoted v < u; clearly, it defines a partial order on measures.

EXERCISE: Find an example of a Borel measure on R"™ which is not abso-
lutely continuous with respect to the usual Lebesgue measure.

EXERCISE: Find an infininite family 9t of measures on R" such that each

measure p € 9 i1s not absolutely continuous with respect to each other
/

poe M.

EXERCISE: Let 4 be a measure on a space M with o-algebra, and f :
M — R>Y an integrable function. Define a measure fu by A —» J4 fie. Prove

that fu < pu.

THEOREM: (Radon-Nikodym) Let u,v be two measures on a space S
with a o-algebra, satisfying u(S) < oo, v(S) < o0 and v <« u. Then there
exists an integrable function f: S —+R>0 such that v = fu.

Proof: I will distribute it at certain point. =
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Convex cones and extremal rays

DEFINITION: Let V be a vector space over R, and K C V a subset. We
say that K is convex if for all z,y € K, the interval ax + (1 — o)y, o € [0, 1]
lies in K. We say that K is a convex cone if it is convex and for all A > 0O,
the homothety map x — A\x preserves K.

EXAMPLE: Let M be a space equipped with a o-algebra 2l C QM, and V
the space formally generated by all X € 2. Denote by S subspace in V*
generated by all finite measures. This space is called the space of finite
signed measures. The measures constitute a convex cone in S.

DEFINITION: Extreme point of a convex set K is a point x € K such that
for any a,b € K and any t € [0,1], ta+ (1 —t)b = z implies a = b = x. Extremal
ray of a convex cone K is a non-zero vector xz such that for any a,b € K and
t1,to > 0, a decomposition x = t1a + tob implies that a,b are proportional to
ZI.

DEFINITION: Convex hull of a set X C V is the smallest convex set
containing X.

EXAMPLE: Let V be a vector space, and =zx1,...,xn,... linearly independent
vectors. Simplex is the convex hull of {x;}. Its extremal points are {x;}
(prove it).
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Ergodic measures as extremal rays (1)

Lemma 1: Let (M,u) be a measured space, and I a group which acts
ergodically on M. Consider a measure v on M which is -invariant and
satisfies v < u. Then v = const - p.

Proof: Radon-Nikodym gives v = fu. The function f = % is [-invariant,
because both v and p are [-invariant. Then f = const almost everywhere. =

Lemma 2: Let u1,uo be measures, t1,to € R>9, and wi=tiu1 +tour. Then
p1 << -

Proof: u1(U) < t;lu(U), hence 1 (U) = 0 whenever u(U) = 0. =
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Ergodic measures as extremal rays (2)

THEOREM: Let (M, ) be a space equipped with a o-algebra and a group I
acting on M and preserving the o-algebra, and M the cone of finite inivariant
measures on M. Consider a finite, I-invariant measure on M. Then the
following are equivalent.

(a) n € M lies in the extremal ray of M
(b) u is ergodic.

(a) implies (b): Let U be an I-invariant measurable subset. Then p = u|y +
N‘M\Uv and one of these two measures must vanish, because u is extremal.

(b) implies (a): Let u = pu1+u> be a decomposition of the measure p onto a
sum of two invariant measures. Then u > uq and u > us (Lemma 2), hence
1 is proportional to 1 and us (Lemma 1). =

REMARK: A probability measure u lies on an extremal ray if and only if
it iIs extreme as a point in the convex set of all probability measures
(prove it).
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EXxistence of ergodic measures: strategy
To prove existence of ergodic measures, we shall use the following strategy:

1. Define topology on the space M of finite measures (" measure topol-
ogy” or "weak-x topology” ) such that the space of probability measures is
compact.

2. Prove Krein-Milman theorem

THEOREM: (Krein-Milman) Let K C V be a compact, convex subset in
a locally convex topological vector space. Then K is the closure of the
convex hull of the set of its extreme points.

This theorem implies that any [-invariant finite measure is a limit of finite
sums of ergodic measures.

EXERCISE: Find all ergodic measures on a cube with trivial group action
and the standard measure.
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Weak-x topology

DEFINITION: Let M be a topological space, and CQ(M) the space of con-
tinuous function with compact support. Any finite Borel measure u defines a
functional C9(M) — R mapping f to [,; fu. We say that a sequence {u;} of
measures converges in weak-x topology (or in measure topology) to u if

i g 0= fy I

for all f € C9(M). The base of open sets of weak-x topology is given by
Uglap) Where ]Ja,b[C R is an interval, and Uy, is the set of all measures p
such that a < [ fu <b.
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Tychonoff topology

DEFINITION: Let {X,} be a family of topological spaces, parametrized by
a € Z. Product topology, or Tychonoff topology on the product [[, X« iS
topology where the open sets are generated by unions and finite intersections
of 7,7 1(U), where q : [], Xa is a projection to the X,-component, and U C X,
IS an open set.

REMARK: Tychonoff topology is also called topology of pointwise con-
vergence, because the points of [[, Xa can be considered as maps from
the set of indices Z to the corresponding X,, and a sequence of such maps
converges if and only if it converges for each a € 7.

REMARK: Consider a finite measure as an element in the product of CQ(M)
copies of R, that is, as a continuous map from CQ(M) to R. Then the
weak-x topology is induced by the Tychonoff topology on this product.
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Measures as functionals on C9(M)

DEFINITION: Locally finite measure is a Borel measure which is finite on
a certain base of open sets.

DEFINITION: Uniform topology on functions is induced by the metric
d(f,g9) =sup|[f —gl.

Theorem (*): Let M be a metrizable, locally compact topological vector
space, and CO(M)* the space of functionals continuous in uniform topology.
Then locally finite measures can be characterized as elements p €
c9(M)* which are non-negative on all non-negative functions.

Proof: Clearly, all measures give such functionals. Conversely, consider a
functional u € CQ(M)* which is non-negative on all non-negative functions.
Given a closed set K C M, the characteristic function x i can be obtained as a
monotonously decreasing limit of continuous functions f; which are equal to 1
on K (prove it). Define u(K) = lim; u(f;); this limit is well defined because
the sequence u(f;) is monotonous. This gives an additive Borel measure on
M (prove it). =
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Space of measures and Tychonoff topology

REMARK: (Tychonoff theorem)
A product of any number of compact spaces is compact.

This theorem is hard and its proof is notoriously counter-intiutive. However,
from Tychonoff the following theorem follows immediately.

THEOREM: Let M be a compact topological space, and P the space of
probability measures on M equipped with the measure topology. Then P is
compact.

Proof. Step 1: For any probability measure on M, and any f € CQ(M),
one has min(f) < [y fru < max(f). Therefore, u can be considered as an
element of the product erco(M)[miﬂ(f), max(f)] of closed intervals indexed

by f € CQ(M), and Tychonoff topology on this product induces the
weak-x topology.

Step 2: A closed subset of a compact set is again compact, hence it suf-
fices to show that all limit points of P C erCQ(M [min(f), max(f)] are
probability measures. This is implied by Theorem (*%. The limit measure
satisfies u(M) = 1 because the constant function f = 1 has compact support,
hence lim [y, u; = [y Whenever lim; p; = . =
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The space C?(M) is second countable (an exercise)

DEFINITION: Let C € R0, A function f: M — R is called C-Lipschitz if
f(x) — f(y)| < Cd(x,y), and Lipschitz if it is C-Lipschitz for some C > 0.

EXERCISE: Let M be a second countable metrizable topological space.
Prove that the space of all Lipschitz maps with uniform topology has
a countable dense subset.

EXERCISE: Let M be a second countable metrizable topological space.
Prove that CQ(M) has a countable dense subset.
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The space of Lipschitz functions is second countable

DEFINITION: An e-net in a metric space M is a subset Z7 C M such that
any m € M lies in an e-ball with center in Z.

REMARK: A metric space is compact if and only if it has a finite s-net
for each ¢ > 0 (prove it).

Claim 1: Let M be a compact metrizable topological space. Then the
space of C-Lipschitz functions has a countable dense subset.

Proof. Step 1: Let Z be a finite ¢/C-net in Mg. Then for any C-Lipschitz
functions f, g, one has

sup |f — gl —sup|f —gl| <2,
M z€/

me
because for each m € M there exists m’ € Z such that d(m,m’) < ¢/C, and
then [£(m) — f(m')] < Ce/C =&, giving |f(m) — g(m)| < |f(m') — g(m")| + 2=.
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The space of Lipschitz functions is second countable

Proof. Step 1: Let Z be a finite ¢/C-net in Mg. Then for any C-Lipschitz
functions f, g,

sup |f —g|l —sup|f —g|| <Z2e.
meM ze/

Step 2: Let R: be the set of all functions on Z with values in Q. For each
¢ € R denote by U, an open set of all C-Lipschitz functions f satisfying
maX,cz |f(z) —p(2)| <e. Then for all f,g € Uy, one has max,cz |f(z) —g(2)| <
2¢, and by Step 1 this gives sup,,cas|f — g] < 4e.

Step 3: The set of all such U, is countable; choosing a function f, in each
non-empty Uy, we use sup,,car|f — gl < 4e to see that {f,} is a countable
4de-net in the space of C-Lipschitz functions. m

COROLLARY: Let M be a compact metrizable topological space. Then
CQ(M) has a countable dense subset.

Proof: Using Claim 1, we see that it is sufficient to show that Lipschitz
functions are dense in the set of all continuous functions; this follows from

the Stone-Weierstrass theorem. =
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Tychonoff theorem for countable families

REMARK: Let {F;} be a countable, dense set in CO(M). Then any measure
p is determined by [,; F;u, and weak-x topology is topology of pointwise
convergence on F;. This implies that compactness of the space of mea-
sures is implied by the compactness of the product [[x [min(F;), max(F;)],
which is countable.

THEOREM: (Countable Tychonoff theorem)
A countable product of metrizable compacts is compact.

Proof: Let {M;} be a countable family of metrizable compacts. We need
to show that the space of sequences {a; € M;} with topology of pointwise
convergence is compact. Take a sequence {a;(j)} of such sequences, and
replace it by a subsequence {a/(j) € M;} where a3(i) converges. Let b :=
lima’(1). Replace this sequence by a subsequence {a/(j) € M;} where ay(7)
converges. Put bp = lim;a/(2) and so on. Then {b;} is a limit point of our
original sequence {a;(j)}. By Heine-Borel, compactness for second countable
spaces is equivalent to sequential compactness, hence [[; M; is compact. =
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