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Teoria Ergódica Diferenciável
lecture 4: Weak-∗ topology on measures

Instituto Nacional de Matemática Pura e Aplicada
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σ-algebras and measures (reminder)

DEFINITION: Let M be a set A σ-algebra of subsets of X is a Boolean

algebra A ⊂ 2X such that for any countable family A1, ..., An, ... ∈ A the union⋃∞
i=1Ai is also an element of A.

REMARK: We define the operation of addition on the set R ∪ {∞} in such

a way that x +∞ = ∞ and ∞+∞ = ∞. On finite numbers the addition is

defined as usually.

DEFINITION: A function µ : A−→ R ∪ {∞} is called finitely additive if for

all non-intersecting A,B ∈ U, µ(A
∐
B) = µ(A) + µ(B). The sign

∐
denotes

union of non-intersecting sets. µ is called σ-additive if µ(
∐∞
i=1Ai) =

∑
µ(Ai)

for any pairwise disjoint countable family of subsets Ai ∈ A.

DEFINITION: A measure in a σ-algebra A ⊂ 2X is a σ-additive function

µ : A−→ R ∪ {∞}.

EXAMPLE: Let X be a topological space. The Borel σ-algebra is a smallest

σ-algebra A ⊂ 2X containing all open subsets. Borel measure is a measure

on Borel σ-algebra.
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Measurable maps and measurable functions (reminder)

DEFINITION: Let X,Y be sets equipped with σ-algebras A ⊂ 2X and B ⊂
2Y . We say that a map f : X −→ Y is compatible with the σ-algebra, or

measurable, if f−1(B) ∈ A for all B ∈ B.

REMARK: This is similar to the definition of continuity. In fact, any con-

tinuous map of topological spaces is compatible with Borel σ-algebras.

DEFINITION: Let X be a space with σ-algebra A ⊂ 2X. A function f :

X −→ R is called measurable if f is compatible with the Borel σ-algebra on

R, that is, if the preimage of any Borel set A ⊂ R belongs to A.

DEFINITION: Let X,Y be sets equipped with σ-algebras A ⊂ 2X and B ⊂
2Y , f : X −→ Y a measurable map. Let µ be a measure on X. Consider the

function f∗µ mapping B ∈ B to µ(f−1(B)).

EXERCISE: Prove that f∗µ is a measure on Y .

DEFINITION: The measure f∗µ is called the pushforward measure, or

pushforward of µ.
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Ergodic measures (reminder)

DEFINITION: Let Γ be a group acting on a measured space (M.µ) and
preserving its σ-algebra. We say that the Γ-action is ergodic if for each Γ-
invariant, measurable set U ⊂ M , either µ(U) = 0 or µ(M\U) = 0. In this
case µ is called an ergodic measure.

THEOREM: Let M be a second countable topological space, and µ a Borel
measure on M . Let Γ be a group acting on M by homeomorphisms. Suppose
that any non-empty open subset of M has positive measure, and action of Γ
is ergodic. Then for almost all x ∈M, the orbit Γ · x is dense in M.

THEOREM: Let (M,µ) be a space with finite measure, and Γ a group acting
on M and preserving the measure. Then the following are equivalent.

(a) The action of Γ is ergodic.

(b) For each integrable, Γ-invariant function f : M −→ R, f is constant
almost everywhere.

(c) For each square integrable, Γ-invariant function f : M −→ R, f is
constant almost everywhere.
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Radon-Nikodym theorem

DEFINITION: Let S be a space equipped with a σ-algebra, and µ, ν two
measures on this σ-algebra. We say that ν is absolutely continuous with
respect to µ if for each measurable set A, µ(A) = 0 implies ν(A) = 0. This
relation is denoted ν � µ; clearly, it defines a partial order on measures.

EXERCISE: Find an example of a Borel measure on Rn which is not abso-
lutely continuous with respect to the usual Lebesgue measure.

EXERCISE: Find an infininite family M of measures on Rn such that each
measure µ ∈M is not absolutely continuous with respect to each other
µ′ ∈M.

EXERCISE: Let µ be a measure on a space M with σ-algebra, and f :
M −→ R>0 an integrable function. Define a measure fµ by A−→

∫
A fµ. Prove

that fµ� µ.

THEOREM: (Radon-Nikodym) Let µ, ν be two measures on a space S

with a σ-algebra, satisfying µ(S) < ∞, ν(S) < ∞ and ν � µ. Then there
exists an integrable function f : S −→ R>0 such that ν = fµ.

Proof: I will distribute it at certain point.
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Convex cones and extremal rays

DEFINITION: Let V be a vector space over R, and K ⊂ V a subset. We
say that K is convex if for all x, y ∈ K, the interval αx + (1 − α)y, α ∈ [0,1]
lies in K. We say that K is a convex cone if it is convex and for all λ > 0,
the homothety map x−→ λx preserves K.

EXAMPLE: Let M be a space equipped with a σ-algebra A ⊂ 2M , and V
the space formally generated by all X ∈ A. Denote by S subspace in V ∗

generated by all finite measures. This space is called the space of finite
signed measures. The measures constitute a convex cone in S.

DEFINITION: Extreme point of a convex set K is a point x ∈ K such that
for any a, b ∈ K and any t ∈ [0,1], ta+(1−t)b = x implies a = b = x. Extremal
ray of a convex cone K is a non-zero vector x such that for any a, b ∈ K and
t1, t2 > 0, a decomposition x = t1a + t2b implies that a, b are proportional to
x.

DEFINITION: Convex hull of a set X ⊂ V is the smallest convex set
containing X.

EXAMPLE: Let V be a vector space, and x1, ..., xn, ... linearly independent
vectors. Simplex is the convex hull of {xi}. Its extremal points are {xi}
(prove it).
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Ergodic measures as extremal rays (1)

Lemma 1: Let (M,µ) be a measured space, and Γ a group which acts

ergodically on M . Consider a measure ν on M which is Γ-invariant and

satisfies ν � µ. Then ν = const · µ.

Proof: Radon-Nikodym gives ν = fµ. The function f = ν
µ is Γ-invariant,

because both ν and µ are Γ-invariant. Then f = const almost everywhere.

Lemma 2: Let µ1, µ2 be measures, t1, t2 ∈ R>0, and µ := t1µ1 + t2µ2. Then

µ1 � µ.

Proof: µ1(U) 6 t−1
1 µ(U), hence µ1(U) = 0 whenever µ(U) = 0.
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Ergodic measures as extremal rays (2)

THEOREM: Let (M,µ) be a space equipped with a σ-algebra and a group Γ

acting on M and preserving the σ-algebra, and M the cone of finite inivariant

measures on M . Consider a finite, Γ-invariant measure on M . Then the

following are equivalent.

(a) µ ∈M lies in the extremal ray of M

(b) µ is ergodic.

(a) implies (b): Let U be an Γ-invariant measurable subset. Then µ = µ|U +

µ
∣∣∣M\U , and one of these two measures must vanish, because µ is extremal.

(b) implies (a): Let µ = µ1+µ2 be a decomposition of the measure µ onto a

sum of two invariant measures. Then µ� µ1 and µ� µ2 (Lemma 2), hence

µ is proportional to µ1 and µ2 (Lemma 1).

REMARK: A probability measure µ lies on an extremal ray if and only if

it is extreme as a point in the convex set of all probability measures

(prove it).
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Existence of ergodic measures: strategy

To prove existence of ergodic measures, we shall use the following strategy:

1. Define topology on the space M of finite measures (”measure topol-

ogy” or ”weak-∗ topology”) such that the space of probability measures is

compact.

2. Prove Krein-Milman theorem

THEOREM: (Krein-Milman) Let K ⊂ V be a compact, convex subset in

a locally convex topological vector space. Then K is the closure of the

convex hull of the set of its extreme points.

This theorem implies that any Γ-invariant finite measure is a limit of finite

sums of ergodic measures.

EXERCISE: Find all ergodic measures on a cube with trivial group action

and the standard measure.
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Weak-∗ topology

DEFINITION: Let M be a topological space, and C0
c (M) the space of con-

tinuous function with compact support. Any finite Borel measure µ defines a

functional C0
c (M)−→ R mapping f to

∫
M fµ. We say that a sequence {µi} of

measures converges in weak-∗ topology (or in measure topology) to µ if

lim
i

∫
M
fµi =

∫
M
fµ

for all f ∈ C0
c (M). The base of open sets of weak-∗ topology is given by

Uf,]a,b[ where ]a, b[⊂ R is an interval, and Uf,]a,b[ is the set of all measures µ

such that a <
∫
M fµ < b.
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Tychonoff topology

DEFINITION: Let {Xα} be a family of topological spaces, parametrized by

α ∈ I. Product topology, or Tychonoff topology on the product
∏
αXα is

topology where the open sets are generated by unions and finite intersections

of π−1
a (U), where πa :

∏
αXα is a projection to the Xa-component, and U ⊂ Xa

is an open set.

REMARK: Tychonoff topology is also called topology of pointwise con-

vergence, because the points of
∏
αXα can be considered as maps from

the set of indices I to the corresponding Xα, and a sequence of such maps

converges if and only if it converges for each α ∈ I.

REMARK: Consider a finite measure as an element in the product of C0
c (M)

copies of R, that is, as a continuous map from C0
c (M) to R. Then the

weak-∗ topology is induced by the Tychonoff topology on this product.

11



Smooth ergodic theory, lecture 4 M. Verbitsky

Measures as functionals on C0
c (M)

DEFINITION: Locally finite measure is a Borel measure which is finite on

a certain base of open sets.

DEFINITION: Uniform topology on functions is induced by the metric

d(f, g) = sup |f − g|.

Theorem (*): Let M be a metrizable, locally compact topological vector

space, and C0
c (M)∗ the space of functionals continuous in uniform topology.

Then locally finite measures can be characterized as elements µ ∈
C0
c (M)∗ which are non-negative on all non-negative functions.

Proof: Clearly, all measures give such functionals. Conversely, consider a

functional µ ∈ C0
c (M)∗ which is non-negative on all non-negative functions.

Given a closed set K ⊂M , the characteristic function χK can be obtained as a

monotonously decreasing limit of continuous functions fi which are equal to 1

on K (prove it). Define µ(K) := limi µ(fi); this limit is well defined because

the sequence µ(fi) is monotonous. This gives an additive Borel measure on

M (prove it).
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Space of measures and Tychonoff topology

REMARK: (Tychonoff theorem)
A product of any number of compact spaces is compact.

This theorem is hard and its proof is notoriously counter-intiutive. However,
from Tychonoff the following theorem follows immediately.

THEOREM: Let M be a compact topological space, and P the space of
probability measures on M equipped with the measure topology. Then P is
compact.

Proof. Step 1: For any probability measure on M , and any f ∈ C0
c (M),

one has min(f) 6
∫
M fµ 6 max(f). Therefore, µ can be considered as an

element of the product
∏
f∈C0

c (M)[min(f),max(f)] of closed intervals indexed

by f ∈ C0
c (M), and Tychonoff topology on this product induces the

weak-∗ topology.

Step 2: A closed subset of a compact set is again compact, hence it suf-
fices to show that all limit points of P ⊂

∏
f∈C0

c (M)[min(f),max(f)] are
probability measures. This is implied by Theorem (*). The limit measure
satisfies µ(M) = 1 because the constant function f = 1 has compact support,
hence lim

∫
M µi =

∫
M µ whenever limi µi = µ.
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The space C0
c (M) is second countable (an exercise)

DEFINITION: Let C ∈ R>0. A function f : M −→ R is called C-Lipschitz if

|f(x)− f(y)| < Cd(x, y), and Lipschitz if it is C-Lipschitz for some C > 0.

EXERCISE: Let M be a second countable metrizable topological space.

Prove that the space of all Lipschitz maps with uniform topology has

a countable dense subset.

EXERCISE: Let M be a second countable metrizable topological space.

Prove that C0
c (M) has a countable dense subset.
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The space of Lipschitz functions is second countable

DEFINITION: An ε-net in a metric space M is a subset Z ⊂ M such that

any m ∈M lies in an ε-ball with center in Z.

REMARK: A metric space is compact if and only if it has a finite ε-net

for each ε > 0 (prove it).

Claim 1: Let M be a compact metrizable topological space. Then the

space of C-Lipschitz functions has a countable dense subset.

Proof. Step 1: Let Z be a finite ε/C-net in M0. Then for any C-Lipschitz

functions f, g, one has ∣∣∣∣∣ sup
m∈M

|f − g| − sup
z∈Z
|f − g|

∣∣∣∣∣ < 2ε,

because for each m ∈ M there exists m′ ∈ Z such that d(m,m′) < ε/C, and

then |f(m)− f(m′)| < Cε/C = ε, giving |f(m)− g(m)| < |f(m′)− g(m′)|+ 2ε.
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The space of Lipschitz functions is second countable

Proof. Step 1: Let Z be a finite ε/C-net in M0. Then for any C-Lipschitz
functions f, g, ∣∣∣∣∣ sup

m∈M
|f − g| − sup

z∈Z
|f − g|

∣∣∣∣∣ < 2ε.

Step 2: Let Rε be the set of all functions on Z with values in Q. For each
ϕ ∈ Rε denote by Uϕ an open set of all C-Lipschitz functions f satisfying
maxz∈Z |f(z)−ϕ(z)| < ε. Then for all f, g ∈ Uϕ, one has maxz∈Z |f(z)−g(z)| <
2ε, and by Step 1 this gives supm∈M |f − g| < 4ε.

Step 3: The set of all such Uϕ is countable; choosing a function fϕ in each
non-empty Uϕ, we use supm∈M |f − g| < 4ε to see that {fϕ} is a countable
4ε-net in the space of C-Lipschitz functions.

COROLLARY: Let M be a compact metrizable topological space. Then

C0
c (M) has a countable dense subset.

Proof: Using Claim 1, we see that it is sufficient to show that Lipschitz
functions are dense in the set of all continuous functions; this follows from
the Stone-Weierstrass theorem.
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Tychonoff theorem for countable families

REMARK: Let {Fi} be a countable, dense set in C0(M). Then any measure

µ is determined by
∫
M Fiµ, and weak-∗ topology is topology of pointwise

convergence on Fi. This implies that compactness of the space of mea-

sures is implied by the compactness of the product
∏
Fi[min(Fi),max(Fi)],

which is countable.

THEOREM: (Countable Tychonoff theorem)

A countable product of metrizable compacts is compact.

Proof: Let {Mi} be a countable family of metrizable compacts. We need

to show that the space of sequences {ai ∈ Mi} with topology of pointwise

convergence is compact. Take a sequence {ai(j)} of such sequences, and

replace it by a subsequence {a′i(j) ∈ Mi} where a1(i) converges. Let b1 :=

lim a′i(1). Replace this sequence by a subsequence {a′′i (j) ∈ Mi} where a2(i)

converges. Put b2 = limi a
′′
i (2) and so on. Then {bi} is a limit point of our

original sequence {ai(j)}. By Heine-Borel, compactness for second countable

spaces is equivalent to sequential compactness, hence
∏
iMi is compact.
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