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Weak-x topology (reminder)

DEFINITION: Let M be a topological space, and CQ(M) the space of con-
tinuous function with compact support. Any finite Borel measure u defines a
functional C9(M) — R mapping f to [,; fu. We say that a sequence {u;} of
measures converges in weak-x topology (or in measure topology) to u if

i g 0= fy I

for all f € C9(M). The base of open sets of weak-x topology is given by
Uglap) Where ]Ja,b[C R is an interval, and Uy, is the set of all measures p
such that a < [ fu <b.
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Tychonoff topology (reminder)

DEFINITION: Let {X,} be a family of topological spaces, parametrized by
a € Z. Product topology, or Tychonoff topology on the product [[, X« iS
topology where the open sets are generated by unions and finite intersections
of 7,7 1(U), where q : [], Xa is a projection to the X,-component, and U C X,
IS an open set.

REMARK: Tychonoff topology is also called topology of pointwise con-
vergence, because the points of [[, Xa can be considered as maps from
the set of indices Z to the corresponding X,, and a sequence of such maps
converges if and only if it converges for each a € 7.

REMARK: Consider a finite measure as an element in the product of CQ(M)
copies of R, that is, as a continuous map from CQ(M) to R. Then the
weak-x topology is induced by the Tychonoff topology on this product.
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Radon measures

DEFINITION: Radon measure (or regular measure on a locally com-
pact topological space M is a Borel measure u which satisfies the following
assumptions.

1. p is finite on all compact sets.

2. For any Borel set E, one has u(E) = inf u(U), where infimum is taken over
all open U containing E.

3. For any open set E, one has u(FE) = sup u(K), where infimum is taken
over all compact K contained in E.

DEFINITION: Uniform topology on functions is induced by the metric



Smooth ergodic theory, lecture 5 M. Verbitsky

Riesz representation theorem

Riesz representation theorem: Let M be a metrizable, locally compact
topological space, and C9(M)* the space of functionals continuous in uniform
topology. Then Radon can be characterized as functionals u € CQ(M)*
which are non-negative on all non-negative functions.

Proof: Clearly, all measures give such functionals. Conversely, consider a
functional u € CQ(M)* which is non-negative on all non-negative functions.
Given a closed set K C M, the characteristic function x i can be obtained as a
monotonously decreasing limit of continuous functions f; which are equal to 1
on K (prove it). Define u(K) = lim; u(f;); this limit is well defined because
the sequence u(f;) is monotonous. This gives an additive Borel measure on
M (prove it). =
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Space of measures and Tychonoff topology (reminder)

REMARK: (Tychonoff theorem)
A product of any number of compact spaces is compact.

This theorem is hard and its proof is notoriously counter-intiutive. However,
from Tychonoff the following theorem follows immediately.

THEOREM: Let M be a compact topological space, and P the space of
probability measures on M equipped with the measure topology. Then P is
compact.

Proof. Step 1: For any probability measure on M, and any f € CQ(M),
one has min(f) < [y fru < max(f). Therefore, u can be considered as an
element of the product erco(M)[miﬂ(f), max(f)] of closed intervals indexed

by f € CQ(M), and Tychonoff topology on this product induces the
weak-x topology.

Step 2: A closed subset of a compact set is again compact, hence it suf-
fices to show that all limit points of P C HfECg(M)[min(f),max(f)] are
probability measures. This is implied by Riesz representation theorem. The
limit measure satisfies u(M) = 1 because the constant function f = 1 has
compact support, hence Iim [;; p; = [y 4 Whenever lim; p; = p. =

6
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The space of Lipschitz functions is second countable

DEFINITION: An e-net in a metric space M is a subset Z7 C M such that
any m € M lies in an e-ball with center in Z.

REMARK: A metric space is compact if and only if it has a finite s-net
for each ¢ > 0 (prove it).

Claim 1: Let M be a compact metrizable topological space. Then the
space of C-Lipschitz functions has a countable dense subset.

Proof. Step 1: Let Z be a finite ¢/C-net in Mg. Then for any C-Lipschitz
functions f, g, one has

sup |f — gl —sup|f —gl| <2,
M z€/

me
because for each m € M there exists m’ € Z such that d(m,m’) < ¢/C, and
then [£(m) — f(m')] < Ce/C =&, giving |f(m) — g(m)| < |f(m') — g(m")| + 2=.
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The space of Lipschitz functions is second countable (2)

Proof. Step 1: Let Z be a finite ¢/C-net in Mg. Then for any C-Lipschitz
functions f, g,

sup |f —g|l —sup|f —g|| <Z2e.
meM ze/

Step 2: Let R: be the set of all functions on Z with values in Q. For each
¢ € R denote by U, an open set of all C-Lipschitz functions f satisfying
maX,cz |f(z) —p(2)| <e. Then for all f,g € Uy, one has max,cz |f(z) —g(2)| <
2¢, and by Step 1 this gives sup,,cas|f — g] < 4e.

Step 3: The set of all such U, is countable; choosing a function f, in each
non-empty Uy, we use sup,,car|f — gl < 4e to see that {f,} is a countable
4de-net in the space of C-Lipschitz functions. m

COROLLARY: Let M be a compact metrizable topological space. Then
CQ(M) has a countable dense subset.

Proof: Using Claim 1, we see that it is sufficient to show that Lipschitz
functions are dense in the set of all continuous functions; this follows from

the Stone-Weierstrass theorem. =
8
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Tychonoff theorem for countable families

REMARK: Let {F;} be a countable, dense set in CO(M). Then any measure
p is determined by [,; F;u, and weak-x topology is topology of pointwise
convergence on F;. This implies that compactness of the space of mea-
sures is implied by the compactness of the product [[x [min(F;), max(F;)],
which is countable.

THEOREM: (Countable Tychonoff theorem)
A countable product of metrizable compacts is compact.

Proof: Let {M;} be a countable family of metrizable compacts. We need
to show that the space of sequences {a; € M;} with topology of pointwise
convergence is compact. Take a sequence {a;(j)} of such sequences, and
replace it by a subsequence {a/(j) € M;} where a3(i) converges. Let b :=
lima’(1). Replace this sequence by a subsequence {a/(j) € M;} where ay(7)
converges. Put bp = lim;a/(2) and so on. Then {b;} is a limit point of our
original sequence {a;(j)}. By Heine-Borel, compactness for second countable
spaces is equivalent to sequential compactness, hence [[; M; is compact. =

9



Smooth ergodic theory, lecture 5 M. Verbitsky

Fréchet spaces

DEFINITION: A seminorm on a vector space V is a functionv: V _ v Rr=>0
satisfying

1. v(Ax) = |Mv(x) foreach Ae Rand all z € V

2. v(z+y) <viz) +v(y).

DEFINITION: We say that topology on a vector space V is defined by
a family of seminorms {v.} if the base of this topology is given by the finite
intersections of the sets

Buoe(z) ' ={y eV | valz—y) <e}

(" open balls with respect to the seminorm’ ). It is complete if each sequence
x; € V which is Cauchy with respect to each of the seminorms converges.

DEFINITION: A Fréchet space is a Hausdorff second countable topological
vector space V with the topology defined by a countable family of seminorms,
complete with respect to this family of seminorms.

10
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Seminorms and weak-x topology

REMARK: Let M be a manifold and W be the subspace in functionals on
C9(M) generated by all Borel measures ("'the space of signed measures”).
Recall that the Hahn decomposition is a decomposition of u € W as u =
p4 — p—, where p,pu— are measures with non-intersecting support.

EXAMPLE: Then the weak-x topology is defined by a countable family
of seminorms. Indeed, we can choose a dense, countable family of functions
f; € C9(M), and define the seminorms vy On measures by v (u) = [pr fine
extending it to W by ve(u) = [y finge + Jas fin—, where p = py — p is the
Hahn decomposition.

EXERCISE: Prove that the space W of signed measures with weak-x
topology is complete.

REMARK: This exercise is hard, but for our purposes it is sufficient
to replace W by its seminorm completion W. Since the space of finite
measures is compact, it is also complete in W.

11
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Fréchet spaces: some examples

EXERCISE: Prove that the space of continuous functions on R" with
topology of uniform convergence with compact support is Fréchet.

EXERCISE: Prove that the space of smooth functions on a compact mani-
fold admits a structure of a Fréchet space.

12
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Existence of invariant measures
Further on, we shall prove the following theorem

Theorem 1: Let K C V be a compact, convex subset of a topological vector
space with topology defined by a family of seminorms, and A: V —V a2
continuous linear map which preserves K. Then there exists a point z € K
such that A(z) = =.

We shall prove this theorem in the next slide.

COROLLARY: Let M be a compact topological space and f: M — M a
continuous map. Then there exists an f-invariant probability measure
on M.

Proof: Take the compact space K C W of all probability measures, and let
A. K— K map u to fsu. Then A has a fixed point, as follows from Theorem
1. =

13
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Linear maps on convex compact sets

Theorem 1: Let K C V be a compact, convex subset of a topological vector
space with topology defined by a family of seminorms, and A: V —V a2
continuous linear map which preserves K. Then there exists a point z €¢ K
such that A(z) = =.

Proof: Consider the linear map An(x) := —Z” 1A7J(az). Since it is an average
of points in K, one has An(x) € K. Let z € K be a limit point of the sequence
{An(x)} for some x € K. Since
(1-A) (XPZg A") 1 gn
(1—-A)An(z) = ( ) = :

n n

for each seminorm v; on V one has

VAAR()) — An(@)) <

where

C:= sup vz —1y).
r,yc K
By continuity of v, this gives v(A(z) —z2) < = ¢ for each n > 0, hence A(z) = 2.

|
14
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Linear maps on convex compact sets: properties of the limit

Claim 1: Let K C V be a compact, convex subset of a topological vector
space with topology defined by a family of seminorms, and A : V —V
a continuous linear map which preserves K. Consider the map An(z) =
%2?:_5 A"(x), and let Map(K,K) be the space of maps from K to itself
with the Tychonoff topology. Then {A;} has a subsequence converging to a
linear map B from K to itself. Consider B as a linear map from the space
V! C V generated by K to itself. for two such limits B; and B, the difference
FE := By — B satisfies imE C Vy,ker E C V, where Vg = ker(1 — A)nV’.

Proof. Step 1: Consider the space Map(K, K) of maps from K to itself
with the product topology. By Tychonoff theorem, it is compact. The set of
linear maps is closed in Map(K,K) (prove it). Then the sequence {A, €
Map(K, K)} has a limit point B: K — K which is a linear map on K. Then
B defines a linear (possibly discontinuous) endomorphism of V.

Step 2: Since (1 - A)A,(x) = 1_nAn, one has (1-A)B=B(1—-—A)=0. This
implies that im B C V. Since B‘VO = A, we also have E|VO =Vp. B

15
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Birkhoff Ergodic T heorem

Lemma 1: Let C > 0 be a constant, »r a measure on S, and Ka,, be the
space of measures p on S which satisfy u(U) < Cv(U). for all measurable
sets. Then K, is closed in weak-x topology. Proof: KC,,/ = ﬂfecg(M) Kf,
where K; = {measures pu | [q|flu < C [g|f|v.} =

THEOREM: (Birkhoff Ergodic Theorem) Let f: M — M be a con-
tinuous map on a compact topological space, and p a probability measure.
Assume that u = dv, where fuw = v, and |P| < C is a bounded measur-
able function. Then the sequence pu, := 12?:_3(]”*)% converges to a

probability measure. !

Proof. Step 1: The sequence uy := %Z?:_&(f*)iu has a limit point x/ which is
absolut/ely continuous with respect to v by Lemma 1. Moreover, the func;bcion

= £ is bounded by the same constant C. Since |un — fapn| < |“"|_7|,Lf* |
the limit function WV is f-invariant.

Step 2: Consider the map £ : K — Vy of Claim 1. Restricted to func-
tions which we consider as signed measures, this map defines an f«-invariant
Vpo-valued functional & : C9(M) — Vp which is absolutely continuous with
respect to u. Composing it with a linear functional, and applying Radon-
Nikodym, we obtain an integrable fs-invariant function ® € L1(M). Then
v(®) # 0, because [,; 2 > 0. This is impossible, because Elyg=0. m
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