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Weak-∗ topology (reminder)

DEFINITION: Let M be a topological space, and C0
c (M) the space of con-

tinuous function with compact support. Any finite Borel measure µ defines a

functional C0
c (M)−→ R mapping f to

∫
M fµ. We say that a sequence {µi} of

measures converges in weak-∗ topology (or in measure topology) to µ if

lim
i

∫
M
fµi =

∫
M
fµ

for all f ∈ C0
c (M). The base of open sets of weak-∗ topology is given by

Uf,]a,b[ where ]a, b[⊂ R is an interval, and Uf,]a,b[ is the set of all measures µ

such that a <
∫
M fµ < b.
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Tychonoff topology (reminder)

DEFINITION: Let {Xα} be a family of topological spaces, parametrized by

α ∈ I. Product topology, or Tychonoff topology on the product
∏
αXα is

topology where the open sets are generated by unions and finite intersections

of π−1
a (U), where πa :

∏
αXα is a projection to the Xa-component, and U ⊂ Xa

is an open set.

REMARK: Tychonoff topology is also called topology of pointwise con-

vergence, because the points of
∏
αXα can be considered as maps from

the set of indices I to the corresponding Xα, and a sequence of such maps

converges if and only if it converges for each α ∈ I.

REMARK: Consider a finite measure as an element in the product of C0
c (M)

copies of R, that is, as a continuous map from C0
c (M) to R. Then the

weak-∗ topology is induced by the Tychonoff topology on this product.
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Radon measures

DEFINITION: Radon measure (or regular measure on a locally com-

pact topological space M is a Borel measure µ which satisfies the following

assumptions.

1. µ is finite on all compact sets.

2. For any Borel set E, one has µ(E) = inf µ(U), where infimum is taken over

all open U containing E.

3. For any open set E, one has µ(E) = supµ(K), where infimum is taken

over all compact K contained in E.

DEFINITION: Uniform topology on functions is induced by the metric

d(f, g) = sup |f − g|.
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Riesz representation theorem

Riesz representation theorem: Let M be a metrizable, locally compact

topological space, and C0
c (M)∗ the space of functionals continuous in uniform

topology. Then Radon can be characterized as functionals µ ∈ C0
c (M)∗

which are non-negative on all non-negative functions.

Proof: Clearly, all measures give such functionals. Conversely, consider a

functional µ ∈ C0
c (M)∗ which is non-negative on all non-negative functions.

Given a closed set K ⊂M , the characteristic function χK can be obtained as a

monotonously decreasing limit of continuous functions fi which are equal to 1

on K (prove it). Define µ(K) := limi µ(fi); this limit is well defined because

the sequence µ(fi) is monotonous. This gives an additive Borel measure on

M (prove it).
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Space of measures and Tychonoff topology (reminder)

REMARK: (Tychonoff theorem)
A product of any number of compact spaces is compact.

This theorem is hard and its proof is notoriously counter-intiutive. However,
from Tychonoff the following theorem follows immediately.

THEOREM: Let M be a compact topological space, and P the space of
probability measures on M equipped with the measure topology. Then P is
compact.

Proof. Step 1: For any probability measure on M , and any f ∈ C0
c (M),

one has min(f) 6
∫
M fµ 6 max(f). Therefore, µ can be considered as an

element of the product
∏
f∈C0

c (M)[min(f),max(f)] of closed intervals indexed

by f ∈ C0
c (M), and Tychonoff topology on this product induces the

weak-∗ topology.

Step 2: A closed subset of a compact set is again compact, hence it suf-
fices to show that all limit points of P ⊂

∏
f∈C0

c (M)[min(f),max(f)] are
probability measures. This is implied by Riesz representation theorem. The
limit measure satisfies µ(M) = 1 because the constant function f = 1 has
compact support, hence lim

∫
M µi =

∫
M µ whenever limi µi = µ.
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The space of Lipschitz functions is second countable

DEFINITION: An ε-net in a metric space M is a subset Z ⊂ M such that

any m ∈M lies in an ε-ball with center in Z.

REMARK: A metric space is compact if and only if it has a finite ε-net

for each ε > 0 (prove it).

Claim 1: Let M be a compact metrizable topological space. Then the

space of C-Lipschitz functions has a countable dense subset.

Proof. Step 1: Let Z be a finite ε/C-net in M0. Then for any C-Lipschitz

functions f, g, one has ∣∣∣∣∣ sup
m∈M

|f − g| − sup
z∈Z
|f − g|

∣∣∣∣∣ < 2ε,

because for each m ∈ M there exists m′ ∈ Z such that d(m,m′) < ε/C, and

then |f(m)− f(m′)| < Cε/C = ε, giving |f(m)− g(m)| < |f(m′)− g(m′)|+ 2ε.
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The space of Lipschitz functions is second countable (2)

Proof. Step 1: Let Z be a finite ε/C-net in M0. Then for any C-Lipschitz
functions f, g, ∣∣∣∣∣ sup

m∈M
|f − g| − sup

z∈Z
|f − g|

∣∣∣∣∣ < 2ε.

Step 2: Let Rε be the set of all functions on Z with values in Q. For each
ϕ ∈ Rε denote by Uϕ an open set of all C-Lipschitz functions f satisfying
maxz∈Z |f(z)−ϕ(z)| < ε. Then for all f, g ∈ Uϕ, one has maxz∈Z |f(z)−g(z)| <
2ε, and by Step 1 this gives supm∈M |f − g| < 4ε.

Step 3: The set of all such Uϕ is countable; choosing a function fϕ in each
non-empty Uϕ, we use supm∈M |f − g| < 4ε to see that {fϕ} is a countable
4ε-net in the space of C-Lipschitz functions.

COROLLARY: Let M be a compact metrizable topological space. Then

C0
c (M) has a countable dense subset.

Proof: Using Claim 1, we see that it is sufficient to show that Lipschitz
functions are dense in the set of all continuous functions; this follows from
the Stone-Weierstrass theorem.
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Tychonoff theorem for countable families

REMARK: Let {Fi} be a countable, dense set in C0(M). Then any measure

µ is determined by
∫
M Fiµ, and weak-∗ topology is topology of pointwise

convergence on Fi. This implies that compactness of the space of mea-

sures is implied by the compactness of the product
∏
Fi[min(Fi),max(Fi)],

which is countable.

THEOREM: (Countable Tychonoff theorem)

A countable product of metrizable compacts is compact.

Proof: Let {Mi} be a countable family of metrizable compacts. We need

to show that the space of sequences {ai ∈ Mi} with topology of pointwise

convergence is compact. Take a sequence {ai(j)} of such sequences, and

replace it by a subsequence {a′i(j) ∈ Mi} where a1(i) converges. Let b1 :=

lim a′i(1). Replace this sequence by a subsequence {a′′i (j) ∈ Mi} where a2(i)

converges. Put b2 = limi a
′′
i (2) and so on. Then {bi} is a limit point of our

original sequence {ai(j)}. By Heine-Borel, compactness for second countable

spaces is equivalent to sequential compactness, hence
∏
iMi is compact.
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Fréchet spaces

DEFINITION: A seminorm on a vector space V is a function ν : V −→ R>0

satisfying

1. ν(λx) = |λ|ν(x) for each λ ∈ R and all x ∈ V

2. ν(x+ y) 6 ν(x) + ν(y).

DEFINITION: We say that topology on a vector space V is defined by

a family of seminorms {να} if the base of this topology is given by the finite

intersections of the sets

Bνα,ε(x) := {y ∈ V | να(x− y) < ε}

(”open balls with respect to the seminorm”). It is complete if each sequence

xi ∈ V which is Cauchy with respect to each of the seminorms converges.

DEFINITION: A Fréchet space is a Hausdorff second countable topological

vector space V with the topology defined by a countable family of seminorms,

complete with respect to this family of seminorms.
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Seminorms and weak-∗ topology

REMARK: Let M be a manifold and W be the subspace in functionals on

C0
c (M) generated by all Borel measures (”the space of signed measures”).

Recall that the Hahn decomposition is a decomposition of µ ∈ W as µ =

µ+ − µ−, where µ+, µ− are measures with non-intersecting support.

EXAMPLE: Then the weak-∗ topology is defined by a countable family

of seminorms. Indeed, we can choose a dense, countable family of functions

fi ∈ C0
c (M), and define the seminorms νfi on measures by νfi(µ) :=

∫
M fiµ

extending it to W by νfi(µ) =
∫
M fiµ+ +

∫
M fiµ−, where µ = µ+ − µ− is the

Hahn decomposition.

EXERCISE: Prove that the space W of signed measures with weak-∗
topology is complete.

REMARK: This exercise is hard, but for our purposes it is sufficient

to replace W by its seminorm completion W . Since the space of finite

measures is compact, it is also complete in W .
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Fréchet spaces: some examples

EXERCISE: Prove that the space of continuous functions on Rn with

topology of uniform convergence with compact support is Fréchet.

EXERCISE: Prove that the space of smooth functions on a compact mani-

fold admits a structure of a Fréchet space.
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Existence of invariant measures

Further on, we shall prove the following theorem

Theorem 1: Let K ⊂ V be a compact, convex subset of a topological vector

space with topology defined by a family of seminorms, and A : V −→ V a

continuous linear map which preserves K. Then there exists a point z ∈ K
such that A(z) = z.

We shall prove this theorem in the next slide.

COROLLARY: Let M be a compact topological space and f : M −→M a

continuous map. Then there exists an f-invariant probability measure

on M.

Proof: Take the compact space K ⊂ W of all probability measures, and let

A : K −→K map µ to f∗µ. Then A has a fixed point, as follows from Theorem

1.
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Linear maps on convex compact sets

Theorem 1: Let K ⊂ V be a compact, convex subset of a topological vector

space with topology defined by a family of seminorms, and A : V −→ V a

continuous linear map which preserves K. Then there exists a point z ∈ K
such that A(z) = z.

Proof: Consider the linear map An(x) := 1
n

∑n−1
i=0 A

i(x). Since it is an average

of points in K, one has An(x) ∈ K. Let z ∈ K be a limit point of the sequence

{An(x)} for some x ∈ K. Since

(1−A)An(x) =
(1−A)

(∑n−1
i=0 A

n
)

n
=

1−An

n
,

for each seminorm νi on V one has

ν(A(An(x))−An(x)) <
C

n
,

where

C := sup
x,y∈K

ν(x− y).

By continuity of ν, this gives ν(A(z)− z) < C
n for each n > 0, hence A(z) = z.
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Linear maps on convex compact sets: properties of the limit

Claim 1: Let K ⊂ V be a compact, convex subset of a topological vector

space with topology defined by a family of seminorms, and A : V −→ V

a continuous linear map which preserves K. Consider the map An(x) :=
1
n

∑n−1
i=0 A

n(x), and let Map(K,K) be the space of maps from K to itself

with the Tychonoff topology. Then {An} has a subsequence converging to a

linear map B from K to itself. Consider B as a linear map from the space

V ′ ⊂ V generated by K to itself. for two such limits B1 and B2, the difference

E := B1 −B2 satisfies imE ⊂ V0, kerE ⊂ V0, where V0 = ker(1−A) ∩ V ′.

Proof. Step 1: Consider the space Map(K,K) of maps from K to itself

with the product topology. By Tychonoff theorem, it is compact. The set of

linear maps is closed in Map(K,K) (prove it). Then the sequence {An ∈
Map(K,K)} has a limit point B : K −→K which is a linear map on K. Then

B defines a linear (possibly discontinuous) endomorphism of V ′.

Step 2: Since (1−A)An(x) = 1−An
n , one has (1−A)B = B(1−A) = 0. This

implies that imB ⊂ V0. Since B
∣∣∣V0

= A, we also have E
∣∣∣V0

= V0.
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Birkhoff Ergodic Theorem

Lemma 1: Let C > 0 be a constant, ν a measure on S, and KC,ν be the
space of measures µ on S which satisfy µ(U) 6 Cν(U). for all measurable
sets. Then Kν is closed in weak-∗ topology. Proof: KC,ν =

⋂
f∈C0

c (M)Kf ,
where Kf = {measures µ |

∫
S |f |µ 6 C

∫
S |f |ν.}

THEOREM: (Birkhoff Ergodic Theorem) Let f : M −→M be a con-
tinuous map on a compact topological space, and µ a probability measure.
Assume that µ = Φν, where f∗ν = ν, and |Φ| < C is a bounded measur-
able function. Then the sequence µn := 1

n

∑n−1
i=0 (f∗)iµ converges to a

probability measure.

Proof. Step 1: The sequence µn := 1
n

∑n−1
i=0 (f∗)iµ has a limit point µ′ which is

absolutely continuous with respect to ν by Lemma 1. Moreover, the function
Ψ := µ′

ν is bounded by the same constant C. Since |µn − f∗µn| < |µn|−|f
n
∗ µn|

n ,
the limit function Ψ is f-invariant.

Step 2: Consider the map E : K −→ V0 of Claim 1. Restricted to func-
tions which we consider as signed measures, this map defines an f∗-invariant
V0-valued functional ν̃ : C0

c (M)−→ V0 which is absolutely continuous with
respect to µ. Composing it with a linear functional, and applying Radon-
Nikodym, we obtain an integrable f∗-invariant function Φ ∈ L1(M). Then
ν(Φ) 6= 0, because

∫
M Φ2 > 0. This is impossible, because E|V 0 = 0.
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