Smooth ergodic theory, lecture 6 M. Verbitsky

Teoria Ergodica Diferenciavel

lecture 6: Hopf argument

Instituto Nacional de Matematica Pura e Aplicada

Misha Verbitsky, October 4, 2017



Smooth ergodic theory, lecture 6 M. Verbitsky

Volume functions

Today I would repeat the content of the previous lecture, taking advantage
of the material we have covered in September assignments.

DEFINITION: Let C be the set of compact subsets in a topological space
M. A function \: C —R=30 js

* Monotone, if A(A) < X(B) for AC B

* Additive, if AM(A]IB) = A(A) + X\(B)

* Semiadditive, if A\(AUB) < A(A) + \(B)
If these assumptions are satisfied, X\ is called volume function.

DEFINITION: Let X be a volume on M. For any S C M, define inner
measure \.(S) :=sup A(C), where supremum is taken over all compact C C
C

S, and outer measure \*(S) = i?]fA*(U), where infimum is taken over all
open U D S.

DEFINITION: A volume is called regular if A\*(S) = A(S) for any compact
subset S C M.
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Radon measures

DEFINITION: Radon measure. or regular measure on a locally compact
topological space M is a Borel measure u which satisfies the following as-
sumptions.

1. p is finite on all compact sets.

2. For any Borel set E, one has u(E) = inf u(U), where infimum is
taken over all open U containing E.

3. For any open set FE, one has u(E) = sup u(K), where infimum is
taken over all compact K contained in E.

THEOREM: Outer measure is always a Radon measure.

Proof:. Assignment 6. m
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Riesz representation theorem

DEFINITION: Uniform topology on functions is induced by the metric
d(f,g) =sup|f —gl.

Riesz representation theorem: Let M be a metrizable, locally compact
topological space, and CQ(M)* the space of functionals continuous in uni-
form topology. Then Radon measures can be characterized as continu-
ous functionals p € C2(M)* which are non-negative on all non-negative
functions.

Proof: Clearly, all measures define such functionals. Conversely, let p €
Cc9(M)* be a functional which is non-negative on non-negative functions.
Given a compact set K C M, denote by yx g its characteristic function, that
is, a function which is equal 1 on K and 0 on M\K. Consider the number
MK) = p(f), where the infimum is taken over all functions f € C9(M)
such that f > xx. This function is clearly subadditive and monotonous. It
is additive because for any two non-intersecting compact sets there exists
a continuous function taking O on one and 1 on another (prove it). The
corresponding outer measure p satisfies p(f) = [y fu (prove it). =
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Weak-x topology (reminder)

DEFINITION: Let M be a topological space, and CQ(M) the space of con-
tinuous function with compact support. Any finite Borel measure u defines a
functional C9(M) — R mapping f to [,; fu. We say that a sequence {u;} of
measures converges in weak-x topology (or in measure topology) to u if

i g 0= fy I

for all f € C9(M). The base of open sets of weak-x topology is given by
Uglap) Where ]Ja,b[C R is an interval, and Uy, is the set of all measures p
such that a < [ fu <b.
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Tychonoff topology (reminder)

DEFINITION: Let {X,} be a family of topological spaces, parametrized by
a € Z. Product topology, or Tychonoff topology on the product [[, X« iS
topology where the open sets are generated by unions and finite intersections
of 7,7 1(U), where q : [], Xa is a projection to the X,-component, and U C X,
IS an open set.

REMARK: Tychonoff topology is also called topology of pointwise con-
vergence, because the points of [[, Xa can be considered as maps from
the set of indices Z to the corresponding X,, and a sequence of such maps
converges if and only if it converges for each a € 7.

REMARK: Consider a finite measure as an element in the product of CQ(M)
copies of R, that is, as a continuous map from CQ(M) to R. Then the
weak-x topology is induced by the Tychonoff topology on this product.



Smooth ergodic theory, lecture 6 M. Verbitsky

Space of measures and Tychonoff topology (reminder)

REMARK: (Tychonoff theorem)
A product of any number of compact spaces is compact.

THEOREM: Let M be a compact topological space, and P the space of
probability measures on M equipped with the measure topology. Then P is
compact.

Proof. Step 1: For any probability measure on M, and any f € CQ(M),
one has min(f) < [y fr < max(f). Therefore, u can be considered as an
element of the product HfGCO(M)[min(f), max(f)] of closed intervals indexed

by f € CQ(M), and Tychonoff topology on this product induces the
weak-x topology.

Step 2: A closed subset of a compact set is again compact, hence it suffices
to show that all limit points of P C ercg(M)[min(f), max(f)] are proba-
bility measures. This is implied by Riesz representation theorem. The |limit
measure u satisfies u(M) = 1 because the constant function f =1 has com-
pact support, hence lim [y; u; = [y 4 Whenever lim; u; = p. It is continuous
because u(f) < e for any function taking values in [0,e]. =

-
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Fréchet spaces

DEFINITION: A seminorm on a vector space V is a functionv: V _ v Rr=>0
satisfying

1. v(Ax) = |Mv(x) foreach Ae Rand all z € V

2. v(z+y) <viz) +v(y).

DEFINITION: We say that topology on a vector space V is defined by
a family of seminorms {v.} if the base of this topology is given by the finite
intersections of the sets

Buoe(z) ' ={y eV | valz—y) <e}

(" open balls with respect to the seminorm’ ). It is complete if each sequence
x; € V which is Cauchy with respect to each of the seminorms converges.

DEFINITION: A Fréchet space is a Hausdorff second countable topological
vector space V with the topology defined by a countable family of seminorms,
complete with respect to this family of seminorms.

3
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Seminorms and weak-x topology

REMARK: Let M be a manifold and W be the subspace in functionals on
CQ(M) generated by all Borel measures ("the space of signed measures”).
Recall that the Hahn decomposition is a decomposition of u € W as u =
gy — p—, Where p,u— are measures with non-intersecting support.

EXAMPLE: Then the weak-x topology is defined by a countable family
of seminorms. Indeed, we can choose a dense, countable family of functions
f; € C9(M), and define the seminorms vy ONn measures by v (u) = [pf fin
extending it to W by vy (p) = [pf fing + [os fin—, where p = py — p— is the
Hahn decomposition.
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Existence of invariant measures
Further on, we shall prove the following theorem

Theorem 1: Let K C V be a compact, convex subset of a topological vector
space with topology defined by a family of seminorms, and A: V —V a2
continuous linear map which preserves K. Then there exists a point z € K
such that A(z) = =.

Its proof is in the next slide.

COROLLARY: Let M be a compact topological space and f: M — M a
continuous map. Then there exists an f-invariant probability measure
on M.

Proof: Take the compact space K C W of all probability measures, and let
A. K— K map u to fsu. Then A has a fixed point, as follows from Theorem
1. =
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Linear maps on convex compact sets

Theorem 1: Let K C V be a compact, convex subset of a topological vector
space with topology defined by a family of seminorms, and A: V —V a2
continuous linear map which preserves K. Then there exists a point z €¢ K
such that A(z) = =.

Proof: Consider the linear map An(xz) := %Z?};& A™(x). Since it is an average
of points in K, one has An(x) € K. Let z € K be a limit point of the sequence
{An(x)} for some x € K. Since
(1-A) (ZhZgA™) 1 — an
(1 — A)An(z) = (Zizo ") _ ,

n n

for each seminorm v; on V one has

VAAR()) — An(@)) <

where

C:= sup vz —1y).
r,yc K
By continuity of v, this gives v(A(z) —2) < % for each n > 0, hence A(z) = z.
u
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Linear maps on convex compact sets: properties of the limit

Lemma 1: Let K C V be a compact, convex subset of a topological vector
space with topology defined by a family of seminorms, and A : V —V
a continuous linear map which preserves K. Consider the map An(z) =
%Z?:_é A'(z), and let Map(K, K) be the space of maps from K to itself with
the Tychonoff topology. Then {A,} has a subsequence converging to a linear
map B from K to itself. Consider B as a linear map from the space V' C
V generated by K to itself. Then for two such limits By and B,, the
difference FE := B1 — By satisfies im E C V,ker E C Vj, where Vy = ker(1 —
ANV,

Proof. Step 1: Consider the space Map(K, K) of maps from K to itself
with the product topology. By Tychonoff theorem, it is compact. The set of
linear maps is closed in Map(K,K) (prove it). Then the sequence {A, €
Map(K, K)} has a limit point B: K — K which is a linear map on K. Then
B defines a linear (possibly discontinuous) endomorphism of V.

Step 2: Since (1 - A)An(x) = 1_nAn, one has (1-A)B=B(1—A)=0. This
implies that im B C V. Since B‘VO = A, we also have E|VO =Vph. =
12
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Measures with linear bound
Lemma 2 Let C > 0 be a constant, v a measure on S, and KC,,, be the space
of measures u on S which satisfy u(U) < Cv(U). for all measurable sets U.

Then K, is closed in weak-x topology.

Proof: Ko, = Nrccocn) Ky where Ky = {measures i | [g|flp < C [g|f|v.} m
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Birkhoff-Khinchin Ergodic Theorem

THEOREM: (Birkhoff-Hinchin Ergodic Theorem) Let f: M — M be a
continuous map on a compact topological space, and p a probability measure.
Assume that u = dv, where fir = v, and |P| < C a bounded measurable func-
tion. Then the sequence u, := %Z?;&(f*)iu converges to a probability
measure.

Proof. Step 1: The sequence uy (= %Z?:_(%(f*)iu has a limit point /' which is
absolut/ely continuous with respect to v by Lemma 2. Moreover, the func;:ion
W = £ is pounded by the same constant C. Since |un — fapin| < |“”|_7Lf* pin|,
the limit function WV is f-invariant.

Step 2: Consider the map £E: K — Vy of Lemma 1, where K is the space
of probability measures. Using the natural pairing f,g — [y; fgu, we embed
the space CO(M) to CO(M)*. Then E can be interpreted as an fi-invariant
Vo-valued functional Z : CE(M) — Vp, vanishing on all functions which have
measure O with respect to pu.

Composing Z with a linear functional s, and applying Radon-Nikodym the-
orem, we obtain an integrable fi-invariant function © € LY(M) such that
k(Z(dp)) = [1;©Pu. Then Z(©) # 0, because Z(Q) = [, ©2 > 0. This is
impossible, because Ejyyg=0. =
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Hopf Argument

DEFINITION: Let M be a metric space with a Borel measure and F' :
M — M a continuous map preserving measure. The “stable foliation” is
an equivalence relation on M, with gy when Ilim;d(F"*(x), F"(y)) = 0. The
“leaves” of stable foliation are equivalence classes.

THEOREM: (Hopf Argument) Any measurable, F-invariant function is
constant on the leaves of stable foliation outside of a measure O set.

Proof: Let A(f) := limyt>X"_J(F")*f be the map provided by Birkhoff-
Khinchin theorem. It suffices to prove that A(f) is constant only for the
functions in im A. Since Lipschitz functions are dense in Ll—topology, it suf-
fices to show this only when f is C-Lipschitz for some C' > O.

For any sequence «; € R converging to 0, the sequence %Z?:_é «; also con-

verges to 0. Therefore, whenever zy, one has

n_l . .
A(f)(@) — A ) =1lim > f(F'(z)) — f(F'(y)) =0
i=0

because o; = |f(F'(z)) — f(F'(y))| < Cd(F'(x), F*(y)) converges to 0. m
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