Teoria Ergódica Diferenciável

lecture 9: Conformal automorphisms of a disc

Instituto Nacional de Matemática Pura e Aplicada

Misha Verbitsky, October 13, 2017

Riemannian manifolds (reminder)

DEFINITION: Let $h \in \text{Sym}^2 T^*M$ be a symmetric 2-form on a manifold which satisfies h(x,x) > 0 for any non-zero tangent vector x. Then h is called **Riemannian metric**, of **Riemannian structure**, and (M,h) **Riemannian manifold**.

DEFINITION: For any $x, y \in M$, and any piecewise smooth path γ : $[a, b] \longrightarrow M$ connecting x and y, consider **the length** of γ defined as $L(\gamma) = \int_{\gamma} |\frac{d\gamma}{dt}| dt$, where $|\frac{d\gamma}{dt}| = h(\frac{d\gamma}{dt}, \frac{d\gamma}{dt})^{1/2}$. Define **the geodesic distance** as $d(x, y) = \inf_{\gamma} L(\gamma)$, where infimum is taken for all paths connecting x and y.

EXERCISE: Prove that the geodesic distance satisfies triangle inequality and defines a metric on *M*.

EXERCISE: Prove that this metric induces the standard topology on M.

EXAMPLE: Let $M = \mathbb{R}^n$, $h = \sum_i dx_i^2$. Prove that the geodesic distance coincides with d(x, y) = |x - y|.

EXERCISE: Using partition of unity, **prove that any manifold admits a Riemannian structure.**

M. Verbitsky

Conformal structures (reminder)

DEFINITION: Let h, h' be Riemannian structures on M. These Riemannian structures are called **conformally equivalent** if h' = fh, where f is a positive smooth function.

DEFINITION: Conformal structure on M is a class of conformal equivalence of Riemannian metrics.

DEFINITION: A Riemann surface is a 2-dimensional oriented manifold equipped with a conformal structure.

DEFINITION: Let $I : TM \longrightarrow TM$ be an endomorphism of a tangent bundle satisfying $I^2 = -$ Id. Then I is called **almost complex structure operator**, and the pair (M, I) **an almost complex manifold**.

CLAIM: Let M be a 2-dimensional oriented conformal manifold. Then M admits a unique orthogonal almost complex structure in such a way that the pair x, I(x) is positively oriented. Conversely, an almost complex structure uniquely determines the conformal structure nd orientation.

Homogeneous spaces (reminder)

DEFINITION: A Lie group is a smooth manifold equipped with a group structure such that the group operations are smooth. Lie group G acts on a manifold M if the group action is given by the smooth map $G \times M \longrightarrow M$.

DEFINITION: Let *G* be a Lie group acting on a manifold *M* transitively. Then *M* is called **a homogeneous space**. For any $x \in M$ the subgroup $St_x(G) = \{g \in G \mid g(x) = x\}$ is called **stabilizer of a point** *x*, or **isotropy subgroup**.

CLAIM: For any homogeneous manifold M with transitive action of G, one has M = G/H, where $H = St_x(G)$ is an isotropy subgroup.

Proof: The natural surjective map $G \longrightarrow M$ putting g to g(x) identifies M with the space of conjugacy classes G/H.

REMARK: Let g(x) = y. Then $St_x(G)^g = St_y(G)$: all the isotropy groups are conjugate.

Isotropy representation (reminder)

DEFINITION: Let M = G/H be a homogeneous space, $x \in M$ and $St_x(G)$ the corresponding stabilizer group. The **isotropy representation** is the natural action of $St_x(G)$ on T_xM .

DEFINITION: A Riemannian form Φ on a homogeneous manifold M = G/H is called **invariant** if it is mapped to itself by all diffeomorphisms which come from $g \in G$.

REMARK: Let Φ_x be an isotropy invariant scalar product on T_xM . For any $y \in M$ obtained as y = g(x), consider the form Φ_y on T_yM obtained as $\Phi_y := g(\Phi)$. The choice of g is not unique, however, for another $g' \in G$ which satisfies g'(x) = y, we have g = g'h where $h \in St_x(G)$. Since Φ_x is h-invariant, **the metric** Φ_y **is independent from the choice of** g.

We proved

THEOREM: Homogeneous Riemannian forms on M = G/H are in bijective correspondence with isotropy invariant spalar products on T_xM , for any $x \in M$.

Space forms (reminder)

DEFINITION: Simply connected space form is a homogeneous manifold of one of the following types:

positive curvature: S^n (an *n*-dimensional sphere), equipped with an action of the group SO(n+1) of rotations

zero curvature: \mathbb{R}^n (an *n*-dimensional Euclidean space), equipped with an action of isometries

negative curvature: SO(1,n)/O(n), equipped with the natural SO(1,n)-action. This space is also called **hyperbolic space**, and in dimension 2 **hyperbolic plane** or **Poincaré plane** or **Bolyai-Lobachevsky plane**

Riemannian metric on space forms

LEMMA: Let G = SO(n) act on \mathbb{R}^n in a natural way. Then there exists a unique *G*-invariant symmetric 2-form: the standard Euclidean metric.

Proof: Let g, g' be two *G*-invariant symmetric 2-forms. Since S^{n-1} is an orbit of *G*, we have g(x,x) = g(y,y) for any $x, y \in S^{n-1}$. Multiplying g' by a constant, we may assume that g(x,x) = g'(x,x) for any $x \in S^{n-1}$. Then $g(\lambda x, \lambda x) = g'(\lambda x, \lambda x)$ for any $x \in S^{n-1}$, $\lambda \in \mathbb{R}$; however, all vectors can be written as λx .

COROLLARY: Let M = G/H be a simply connected space form. Then M admits a unique, up to a constant multiplier, G-invariant Riemannian form.

Proof: The isotropy group is SO(n-1) in all three cases, and the previous lemma can be applied.

REMARK: From now on, all space forms are assumed to be homogeneous Riemannian manifolds.

Poincaré-Koebe uniformization theorem

DEFINITION: A **Riemannian manifold of constant curvature** is a Riemannian manifold which is locally isometric to a space form.

THEOREM: (Poincaré-Koebe uniformization theorem) Let *M* be a Riemann surface. Then *M* admits a unique complete metric of constant curvature in the same conformal class.

COROLLARY: Any Riemann surface is a quotient of a space form X by a discrete group of isometries $\Gamma \subset Iso(X)$.

COROLLARY: Any simply connected Riemann surface is conformally equivalent to a space form.

Lie groups and their properties

DEFINITION: Lie algebra of a Lie group G is the Lie algebra Lie(G) of leftinvariant vector fields. Adjoint representation of G is the standard action of G on Lie(G). For a Lie group G = GL(n), SL(n), etc., PGL(n), PSL(n), etc. denote the image of G in GL(Lie(G)) with respect to the adjoint action.

REMARK: This is the same as a quotient G/Z by the centre of G.

EXERCISE: Prove that the center of $PSL(n, \mathbb{R})$, $PSO(n, \mathbb{R})$, etc. is trivial.

EXERCISE: Prove that a discrete normal subgroup of $SL(n, \mathbb{R})$ is central (commutes with everything).

EXERCISE: Let Ψ : $G \longrightarrow G_1$ be a homomorphism of connected Lie groups of the same dimension with $d\Psi$ surjective. Prove that Ψ is a covering (quotient by a discrete subgroup).

Hint: Use the inverse function theorem.

Some low-dimensional Lie group isomorphisms

DEFINITION: Let $SO^+(1,2)$ be the connected component of the group of orthogonal matrices on a 3-dimensional space equipped with a scalar product of signature (1,2), and U(1,1) the group of complex linear maps $\mathbb{C}^2 \longrightarrow \mathbb{C}^2$ preserving a pseudio-Hermitian form of signature (1,1).

THEOREM: The groups PU(1,1), $PSL(2,\mathbb{R})$ and $SO^+(1,2)$ are isomorphic.

Proof: Isomorphism $PU(1,1) = SO^+(1,2)$ will be established later. To see $PSL(2,\mathbb{R}) \cong SO^+(1,2)$, consider the Killing form κ on the Lie algebra $\mathfrak{sl}(2,\mathbb{R})$, $a,b \longrightarrow \operatorname{Tr}(ab)$. Check that it has signature (1,2). Then the image of $SL(2,\mathbb{R})$ in automorphisms of its Lie algebra is $SO(\mathfrak{sl}(2,\mathbb{R}),\kappa) =$ $SO^+(1,2)$. Both groups are 3-dimensional, and differential of the map

$$\Psi: PSL(2,\mathbb{R}) \longrightarrow SO^+(1,2)$$

is an isomorphism. Then Ψ is surjective and has discrete kernel. However, the kernel subgroup has to be central, and $PSL(2,\mathbb{R})$ has no center by construction.

Holomorphic functions

DEFINITION: Let $I : TM \longrightarrow TM$ be an endomorphism of a tangent bundle satisfying $I^2 = -$ Id. Then I is called **almost complex structure operator**, and the pair (M, I) **an almost complex manifold**.

EXAMPLE: $M = \mathbb{C}^n$, with complex coordinates $z_i = x_i + \sqrt{-1} y_i$, and $I(d/dx_i) = d/dy_i$, $I(d/dy_i) = -d/dx_i$.

DEFINITION: A function $f : M \longrightarrow \mathbb{C}$ on an almost complex manifold is called **holomorphic** if df is \mathbb{C} -linear.

Holomorphic functions on \mathbb{C}^n

THEOREM: Let $f: M \longrightarrow \mathbb{C}$ be a differentiable function on an open subset $M \subset \mathbb{C}$, with the natural almost complex structure. Then the following are equivalent.

(1) f is holomorphic.

(2) f is conformal in all points where df is non-zero, and preserves the orientation.

(3) f is expressed as a sum of Taylor series around any point $z \in M$:

$$f(z+t) = \sum_{i=0}^{n} \frac{f^{(i)}(z)t^{i}}{i!}$$

(here we assume that the complex number t satisfies $|t| < \varepsilon$, where ε depends on f and z).

Proof: Taylor series decomposition on a line is implied by the Cauchy formula:

$$\int_{\partial \Delta} \frac{f(z)dz}{z-a} = 2\pi\sqrt{-1} f(a),$$

where $\Delta \subset \mathbb{C}$ is a disk, $a \in \Delta$ any point, and z coordinate on \mathbb{C} . Indeed, in this case, $2\pi\sqrt{-1}f(a) = \sum_{i \ge 0} a^i \int_{\partial \Delta} f(z)(z^{-1})^{i+1}$, because $\frac{1}{z-a} = z^{-1} \sum_{i \ge 0} (az^{-1})^i$.

Cauchy formula

Let's prove Cauchy formula, using Stokes' theorem. Since the space \mathbb{C} -linear 1-forms on \mathbb{C} is 1-dimensional, $df \wedge dz = 0$ for any holomorphic function on \mathbb{C} . This gives

CLAIM: A function on a disk $\Delta \subset \mathbb{C}$ is holomorphic if and only if the form $\eta := fdz$ is closed (that is, satisfies $d\eta = 0$).

Now, let S_{ε} be a radius ε circle around a point $a \in \Delta$, Δ_{ε} its interior, and $\Delta_0 := \Delta \setminus \Delta_{\varepsilon}$. Stokes' theorem gives

$$0 = \int_{\Delta_0} d\left(\frac{f(z)dz}{z-a}\right) = -\int_{S_{\varepsilon}} \frac{f(z)dz}{z-a} + \int_{\partial\Delta} \frac{f(z)dz}{z-a},$$

hence Cauchy formula would follow if we show that $\lim_{\varepsilon \to 0} \int_{S_{\varepsilon}} \frac{f(z)dz}{z-a} = 2\pi \sqrt{-1} f(a).$

Assuming for simplicity a = 0 and parametrizing the circle S_{ε} by $\varepsilon e^{\sqrt{-1}t}$, we obtain

$$\int_{S_{\varepsilon}} \frac{f(z)dz}{z} = \int_{0}^{2\pi} \frac{f(\varepsilon e^{\sqrt{-1}t})}{\varepsilon e^{\sqrt{-1}t}} d(\varepsilon e^{\sqrt{-1}t}) =$$
$$= \int_{0}^{2\pi} \frac{f(\varepsilon e^{\sqrt{-1}t})}{\varepsilon e^{\sqrt{-1}t}} \sqrt{-1} \varepsilon e^{\sqrt{-1}t} dt = \int_{0}^{2\pi} f(\varepsilon e^{\sqrt{-1}t}) \sqrt{-1} dt$$

as ε tends to 0, $f(\varepsilon e^{\sqrt{-1}t})$ tends to f(0), and this integral goes to $2\pi\sqrt{-1}f(0)$.

Schwartz lemma

CLAIM: (maximum principle) Let f be a holomorphic function defined on an open set U. Then f cannot have strict maxima in U. If f has non-strict maxima, it is constant.

EXERCISE: Prove the maximum principle.

LEMMA: (Schwartz lemma) Let $f : \Delta \to \Delta$ be a map from disk to itself fixing 0. Then $|f'(0)| \leq 1$, and equality can be realized only if $f(z) = \alpha z$ for some $\alpha \in \mathbb{C}$, $|\alpha| = 1$.

Proof: Consider the function $\varphi := \frac{f(z)}{z}$. Since f(0) = 0, it is holomorphic, and since $f(\Delta) \subset \Delta$, on the boundary $\partial \Delta$ we have $|\varphi||_{\partial \Delta} \leq 1$. Now, the **maximum principle implies that** $|f'(0)| = |\varphi(0)| \leq 1$, and equality is realized only if $\varphi = \text{const.}$