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Misha Verbitsky, October 13, 2017

1



Smooth ergodic theory, lecture 9 M. Verbitsky

Riemannian manifolds (reminder)

DEFINITION: Let h ∈ Sym2 T ∗M be a symmetric 2-form on a manifold
which satisfies h(x, x) > 0 for any non-zero tangent vector x. Then h is called
Riemannian metric, of Riemannian structure, and (M,h) Riemannian
manifold.

DEFINITION: For any x, y ∈M , and any piecewise smooth path γ : [a, b]−→M

connecting x and y, consider the length of γ defined as L(γ) =
∫
γ |
dγ
dt |dt, where

|dγdt | = h(dγdt ,
dγ
dt )

1/2. Define the geodesic distance as d(x, y) = infγ L(γ),
where infimum is taken for all paths connecting x and y.

EXERCISE: Prove that the geodesic distance satisfies triangle inequality
and defines a metric on M.

EXERCISE: Prove that this metric induces the standard topology on
M.

EXAMPLE: Let M = Rn, h =
∑
i dx

2
i . Prove that the geodesic distance

coincides with d(x, y) = |x− y|.

EXERCISE: Using partition of unity, prove that any manifold admits a
Riemannian structure.
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Conformal structures (reminder)

DEFINITION: Let h, h′ be Riemannian structures on M . These Riemannian

structures are called conformally equivalent if h′ = fh, where f is a positive

smooth function.

DEFINITION: Conformal structure on M is a class of conformal equiva-

lence of Riemannian metrics.

DEFINITION: A Riemann surface is a 2-dimensional oriented manifold

equipped with a conformal structure.

DEFINITION: Let I : TM −→ TM be an endomorphism of a tangent bundle

satisfying I2 = − Id. Then I is called almost complex structure operator,

and the pair (M, I) an almost complex manifold.

CLAIM: Let M be a 2-dimensional oriented conformal manifold. Then M

admits a unique orthogonal almost complex structure in such a way

that the pair x, I(x) is positively oriented. Conversely, an almost complex

structure uniquely determines the conformal structure nd orientation.
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Homogeneous spaces (reminder)

DEFINITION: A Lie group is a smooth manifold equipped with a group

structure such that the group operations are smooth. Lie group G acts on

a manifold M if the group action is given by the smooth map G×M −→M .

DEFINITION: Let G be a Lie group acting on a manifold M transitively.

Then M is called a homogeneous space. For any x ∈ M the subgroup

Stx(G) = {g ∈ G | g(x) = x} is called stabilizer of a point x, or isotropy

subgroup.

CLAIM: For any homogeneous manifold M with transitive action of G, one

has M = G/H, where H = Stx(G) is an isotropy subgroup.

Proof: The natural surjective map G−→M putting g to g(x) identifies M

with the space of conjugacy classes G/H.

REMARK: Let g(x) = y. Then Stx(G)g = Sty(G): all the isotropy groups

are conjugate.
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Isotropy representation (reminder)

DEFINITION: Let M = G/H be a homogeneous space, x ∈ M and Stx(G)

the corresponding stabilizer group. The isotropy representation is the nat-

ural action of Stx(G) on TxM .

DEFINITION: A Riemannian form Φ on a homogeneous manifold M = G/H

is called invariant if it is mapped to itself by all diffeomorphisms which come

from g ∈ G.

REMARK: Let Φx be an isotropy invariant scalar product on TxM . For

any y ∈ M obtained as y = g(x), consider the form Φy on TyM obtained as

Φy := g(Φ). The choice of g is not unique, however, for another g′ ∈ G which

satisfies g′(x) = y, we have g = g′h where h ∈ Stx(G). Since Φx is h-invariant,

the metric Φy is independent from the choice of g.

We proved

THEOREM: Homogeneous Riemannian forms on M = G/H are in bi-

jective correspondence with isotropy invariant spalar products on TxM,

for any x ∈M .
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Space forms (reminder)

DEFINITION: Simply connected space form is a homogeneous manifold

of one of the following types:

positive curvature: Sn (an n-dimensional sphere), equipped with an

action of the group SO(n+ 1) of rotations

zero curvature: Rn (an n-dimensional Euclidean space), equipped with

an action of isometries

negative curvature: SO(1, n)/O(n), equipped with the natural SO(1, n)-

action. This space is also called hyperbolic space, and in dimension 2 hy-

perbolic plane or Poincaré plane or Bolyai-Lobachevsky plane
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Riemannian metric on space forms

LEMMA: Let G = SO(n) act on Rn in a natural way. Then there exists a

unique G-invariant symmetric 2-form: the standard Euclidean metric.

Proof: Let g, g′ be two G-invariant symmetric 2-forms. Since Sn−1 is an

orbit of G, we have g(x, x) = g(y, y) for any x, y ∈ Sn−1. Multiplying g′ by

a constant, we may assume that g(x, x) = g′(x, x) for any x ∈ Sn−1. Then

g(λx, λx) = g′(λx, λx) for any x ∈ Sn−1, λ ∈ R; however, all vectors can be

written as λx.

COROLLARY: Let M = G/H be a simply connected space form. Then M

admits a unique, up to a constant multiplier, G-invariant Riemannian

form.

Proof: The isotropy group is SO(n − 1) in all three cases, and the previous

lemma can be applied.

REMARK: From now on, all space forms are assumed to be homoge-

neous Riemannian manifolds.
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Poincaré-Koebe uniformization theorem

DEFINITION: A Riemannian manifold of constant curvature is a Rie-

mannian manifold which is locally isometric to a space form.

THEOREM: (Poincaré-Koebe uniformization theorem) Let M be a Rie-

mann surface. Then M admits a unique complete metric of constant

curvature in the same conformal class.

COROLLARY: Any Riemann surface is a quotient of a space form X

by a discrete group of isometries Γ ⊂ Iso(X).

COROLLARY: Any simply connected Riemann surface is conformally

equivalent to a space form.
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Lie groups and their properties

DEFINITION: Lie algebra of a Lie group G is the Lie algebra Lie(G) of left-

invariant vector fields. Adjoint representation of G is the standard action

of G on Lie(G). For a Lie group G = GL(n), SL(n), etc., PGL(n), PSL(n),

etc. denote the image of G in GL(Lie(G)) with respect to the adjoint action.

REMARK: This is the same as a quotient G/Z by the centre of G.

EXERCISE: Prove that the center of PSL(n,R), PSO(n,R), etc. is trivial.

EXERCISE: Prove that a discrete normal subgroup of SL(n,R) is central

(commutes with everything).

EXERCISE: Let Ψ : G−→G1 be a homomorphism of connected Lie groups

of the same dimension with dΨ surjective. Prove that Ψ is a covering

(quotient by a discrete subgroup).

Hint: Use the inverse function theorem.
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Some low-dimensional Lie group isomorphisms

DEFINITION: Let SO+(1,2) be the connected component of the group of

orthogonal matrices on a 3-dimensional space equipped with a scalar product

of signature (1,2), and U(1,1) the group of complex linear maps C2 −→ C2

preserving a pseudio-Hermitian form of signature (1,1).

THEOREM: The groups PU(1,1), PSL(2,R) and SO+(1,2) are isomor-

phic.

Proof: Isomorphism PU(1,1) = SO+(1,2) will be established later. To

see PSL(2,R) ∼= SO+(1,2), consider the Killing form κ on the Lie alge-

bra sl(2,R), a, b−→ Tr(ab). Check that it has signature (1,2). Then the

image of SL(2,R) in automorphisms of its Lie algebra is SO(sl(2,R), κ) =

SO+(1,2). Both groups are 3-dimensional, and differential of the map

Ψ : PSL(2,R)−→ SO+(1,2)

is an isomorphism. Then Ψ is surjective and has discrete kernel. However,

the kernel subgroup has to be central, and PSL(2,R) has no center by

construction.
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Holomorphic functions

DEFINITION: Let I : TM −→ TM be an endomorphism of a tangent bundle

satisfying I2 = − Id. Then I is called almost complex structure operator,

and the pair (M, I) an almost complex manifold.

EXAMPLE: M = Cn, with complex coordinates zi = xi +
√
−1 yi, and

I(d/dxi) = d/dyi, I(d/dyi) = −d/dxi.

DEFINITION: A function f : M −→ C on an almost complex manifold is

called holomorphic if df is C-linear.
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Holomorphic functions on Cn

THEOREM: Let f : M −→ C be a differentiable function on an open subset
M ⊂ C, with the natural almost complex structure. Then the following are
equivalent.
(1) f is holomorphic.
(2) f is conformal in all points where df is non-zero, and preserves the
orientation.
(3) f is expressed as a sum of Taylor series around any point z ∈M :

f(z + t) =
n∑
i=0

f(i)(z)ti

i!

(here we assume that the complex number t satisfies |t| < ε, where ε depends
on f and z).

Proof: Taylor series decomposition on a line is implied by the Cauchy
formula: ∫

∂∆

f(z)dz

z − a
= 2π

√
−1 f(a),

where ∆ ⊂ C is a disk, a ∈∆ any point, and z coordinate on C. Indeed, in this
case, 2π

√
−1f(a) =

∑
i>0 a

i ∫
∂∆ f(z)(z−1)i+1, because 1

z−a = z−1∑
i>0(az−1)i.
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Cauchy formula

Let’s prove Cauchy formula, using Stokes’ theorem. Since the space C-linear
1-forms on C is 1-dimensional, df ∧dz = 0 for any holomorphic function on C.
This gives
CLAIM: A function on a disk ∆ ⊂ C is holomorphic if and only if the form
η := fdz is closed (that is, satisfies dη = 0).

Now, let Sε be a radius ε circle around a point a ∈ ∆, ∆ε its interior, and
∆0 := ∆\∆ε. Stokes’ theorem gives

0 =
∫

∆0

d

(
f(z)dz

z − a

)
= −

∫
Sε

f(z)dz

z − a
+
∫
∂∆

f(z)dz

z − a
,

hence Cauchy formula would follow if we show that lim
ε→0

∫
Sε

f(z)dz
z−a = 2π

√
−1f(a).

Assuming for simplicity a = 0 and parametrizing the circle Sε by εe
√
−1 t, we

obtain∫
Sε

f(z)dz

z
=
∫ 2π

0

f(εe
√
−1 t)

εe
√
−1 t

d(εe
√
−1 t) =

=
∫ 2π

0

f(εe
√
−1 t)

εe
√
−1 t

√
−1 εe

√
−1 tdt =

∫ 2π

0
f(εe

√
−1 t)

√
−1 dt

as ε tends to 0, f(εe
√
−1 t) tends to f(0), and this integral goes to 2π

√
−1f(0).
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Schwartz lemma

CLAIM: (maximum principle) Let f be a holomorphic function defined

on an open set U . Then f cannot have strict maxima in U. If f has

non-strict maxima, it is constant.

EXERCISE: Prove the maximum principle.

LEMMA: (Schwartz lemma) Let f : ∆−→∆ be a map from disk to itself

fixing 0. Then |f ′(0)| 6 1, and equality can be realized only if f(z) = αz

for some α ∈ C, |α| = 1.

Proof: Consider the function ϕ := f(z)
z . Since f(0) = 0, it is holomorphic,

and since f(∆) ⊂ ∆, on the boundary ∂∆ we have |ϕ||∂∆ 6 1. Now, the

maximum principle implies that |f ′(0)| = |ϕ(0)| 6 1, and equality is realized

only if ϕ = const.
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