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Riemannian manifolds (reminder)

DEFINITION: Let h € Sym2T*M be a symmetric 2-form on a manifold
which satisfies h(x,z) > 0 for any non-zero tangent vector . Then h is called
Riemannian metric, of Riemannian structure, and (M,h) Riemannian
manifold.

DEFINITION: For any x,y € M, and any piecewise smooth path ~ : [a,b] — M
connecting xz and y, consider the length of ~v defined as L(vy) = J~ |‘é—¥|dt, where

9| = (%Y, 9)1/2. Define the geodesic distance as d(z,y) = infy L(v),

where infimum is taken for all paths connecting x and y.

EXERCISE: Prove that the geodesic distance satisfies triangle inequality
and defines a metric on M.

EXERCISE: Prove that this metric induces the standard topology on
M.

EXAMPLE: Let M =R", h =), da:i2. Prove that the geodesic distance
coincides with d(z,y) = |z — y|.

EXERCISE: Using partition of unity, prove that any manifold admits a
Riemannian structure.
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Conformal structures (reminder)

DEFINITION: Let h,h’ be Riemannian structures on M. These Riemannian
structures are called conformally equivalent if A’ = fh, where f is a positive
smooth function.

DEFINITION: Conformal structure on M is a class of conformal equiva-
lence of Riemannian metrics.

DEFINITION: A Riemann surface is a 2-dimensional oriented manifold
equipped with a conformal structure.

DEFINITION: Let I : T'TM — T M be an endomorphism of a tangent bundle
satisfying I[2 = —1Id. Then I is called almost complex structure operator,
and the pair (M,I) an almost complex manifold.

CLAIM: Let M be a 2-dimensional oriented conformal manifold. Then M
admits a unique orthogonal almost complex structure in such a way
that the pair x,I(x) is positively oriented. Conversely, an almost complex
structure uniquely determines the conformal structure nd orientation.
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Homogeneous spaces (reminder)

DEFINITION: A Lie group is a smooth manifold equipped with a group
structure such that the group operations are smooth. Lie group G acts on
a manifold M if the group action is given by the smooth map G x M — M.

DEFINITION: Let G be a Lie group acting on a manifold M transitively.
Then M is called a homogeneous space. For any x € M the subgroup
St.(G) ={g9g€ G | g(x) =} is called stabilizer of a point z, or isotropy
subgroup.

CLAIM: For any homogeneous manifold M with transitive action of G, one
has M = G/H, where H = St;(G) is an isotropy subgroup.

Proof: The natural surjective map G — M putting g to ¢g(x) identifies M
with the space of conjugacy classes G/H. =

REMARK: Let g(x) =y. Then St;(G)J9 = Sty(G): all the isotropy groups
are conjugate.
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Isotropy representation (reminder)

DEFINITION: Let M = G/H be a homogeneous space, ¢ € M and St;(G)
the corresponding stabilizer group. The isotropy representation is the nat-
ural action of St;(G) on T, M.

DEFINITION: A Riemannian form ® on a homogeneous manifold M = G/H
is called invariant if it is mapped to itself by all diffeomorphisms which come
from g € G.

REMARK: Let &, be an isotropy invariant scalar product on T,M. For
any y € M obtained as y = g(x), consider the form &, on TyM obtained as
®, := g(P). The choice of g is not unique, however, for another ¢’ € G which
satisfies ¢’(x) = y, we have g = ¢’h where h € St.(G). Since &, is h-invariant,
the metric &, is independent from the choice of g.

We proved

THEOREM: Homogeneous Riemannian forms on M = G/H are in bi-
jective correspondence with isotropy invariant spalar products on 7, M,
foranyze M. m
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Space forms (reminder)

DEFINITION: Simply connected space form is a homogeneous manifold
of one of the following types:

positive curvature: S™ (an n-dimensional sphere), equipped with an
action of the group SO(n 4+ 1) of rotations

zero curvature: R" (an n-dimensional Euclidean space), equipped with
an action of isometries

negative curvature: SO(1,n)/O(n), equipped with the natural SO(1,n)-
action. This space is also called hyperbolic space, and in dimension 2 hy-
perbolic plane or Poincaré plane or Bolyai-Lobachevsky plane



Smooth ergodic theory, lecture 10 M. Verbitsky

Riemannian metric on space forms (reminder)

LEMMA: Let G = SO(n) act on R"™ in a natural way. Then there exists a
unique G-invariant symmetric 2-form: the standard Euclidean metric.

Proof: Let g,¢ be two G-invariant symmetric 2-forms. Since S 1 is an
orbit of G, we have g(z,z) = ¢(y,y) for any z,y € S*~1. Multiplying ¢ by
a constant, we may assume that g(z,z) = ¢'(z,z) for any z € S"~1. Then
gz, \x) = ¢z, \z) for any = € S 1, X\ € R; however, all vectors can be
written as \z. m

COROLLARY: Let M = G/H be a simply connected space form. Then M
admits a unique, up to a constant multiplier, G-invariant Riemannian
form.

Proof: The isotropy group is SO(n — 1) in all three cases, and the previous
lemma can be applied. =

REMARK: From now on, all space forms are assumed to be homoge-
neous Riemannian manifolds.
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Schwartz lemma (reminder)

CLAIM: (maximum principle) Let f be a holomorphic function defined
on an open set U. Then f cannot have strict maxima in U. If f has
non-strict maxima, it is constant.

EXERCISE: Prove the maximum principle.
LEMMA: (Schwartz lemma) Let f: A — A be a map from disk to itself

fixing 0. Then |f/(0)| < 1, and equality can be realized only if f(z) = az
for some a € C, |of = 1.

Proof: Consider the function ¢ := f(zz). Since f(0) = 0O, it is holomorphic,
and since f(A) C A, on the boundary 0A we have |p|llgan < 1. Now, the
maximum principle implies that |f/(0)| = |¢(0)| < 1, and equality is realized
only if ¢ = const. =
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Conformal automorphisms of the disk act transitively

CLAIM: Let A C C be the unit disk. Then the group Aut(A) of its
holomorphic automorphisms acts on A transitively.

Proof. Step 1: Let Vy(z) = 72 for some a € A. Then V4(0) = —a. ToO

l—az
prove transitivity, it remains to show that V,(A) = A.

Step 2: For |z| = 1, we have

Z2Z — az

Va(2)| = [Va(2)]|2] = = 1.

_‘1—0@

1 —az 1 —az
Therefore, V, preserves the circle. Maximum principle implies that V, maps

its interior to its interior.

Step 3: To prove invertibility, we interpret V,; as an element of PGL(2,C). =
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Transitive action is determined by a stabilizer of a point

Lemma 1: Let M = G/H be a homogeneous space, and WV : G; —G a
homomorphism such that G1 acts on M transitively and St;(G1) = Stz (G).
Then G = G.

Proof: Since any element in ker W belongs to St,(G7) = Stz (G) C G, the
homomorphism W is injective. It remais only to show that W is surjective.

Let ¢ € G. Since G171 acts on M transitively, gg1(x) = x for some g1 € G1.
Then gg1 € Stz (G1) = St (G) CimG1. Thisgives g€ G1. =
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Group of conformal automorphisms of the disk is PU(1,1)

REMARK: The group PU(1,1) Cc PGL(2,C) of unitary matrices preserving a
pseudo-Hermitian form h of signature (1,1) acts on a disk {l € CP! | h(i,1) >
0} by holomorphic automorphisms. Indeed, PGL(2,C) acts conformally on
cprl.

COROLLARY: Let A C C be the unit disk, Aut(A) the group of its con-
formal automorphisms, and W : PU(1,1) — Aut(A) the map constructed
above. Then W is a group isomorphism.

Proof: We use Lemma 1. Both groups act on A transitively, hence it suffices
only to check that St,(PU(1,1)) = S! and Stiz(Aut(A)) = SL. The first
isomorphism is clear, because the space of unitary automorphisms fixing a
vector v is U(vt). The second isomorphism follows from Schwartz lemma
(prove it!). =

11



Smooth ergodic theory, lecture 10 M. Verbitsky

Conformal automorphism and the Poincare metric on the disc

COROLLARY: Let h be a homogeneous metric on A = PU(1,1)/S!. Then
(A, h) is conformally equivalent to (A, flat metric).

Proof: The group Aut(A) = PU(1,1) acts on A holomorphically, that is,
preserving the conformal structure of the flat metric. However, the homoge-
neous conformal structure on PU(1,1)/S1 is unique for the same reason the
homogeneous metric is unique up to a contant multiplier (prove it). =

COROLLARY: All conformal automorphisms of a disk are isometries.

Proof: The group Aut(A) acts by homotheties, because an Aut(A)-invariant
metric on a space G/S1 IS unique up to homothety. However, a homothety
of a disk is an isometry by Schwartz lemma. =

DEFINITION: Poincare metric on a disc A C C is any Aut(A)-invariant
metric, where Aut(A) is the group of conformal isometries.
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Laurent power series: function in an annulus

THEOREM: (Laurent theorem)
Let f be a holomorphic function on an annulus (that is, a ring)

R={z | a<]|z|<p}

Then f can be expressed as a Laurent power series f(z) = Y,c7 2'a;
converging in R.

Proof: Same as Cauchy formula: for an annulus with components of the
boundary denoted as 8R+ and OR_, one has

/a f()dz /a f2d= _ o Tt

Ry z—a R z—a
This gives
2nV/=1f(@) =Y a' [ fEHF - e [ ()2
because -1 = 2715 q(az"1)? for |z| > |a| and -1 = a1 5,50(a"12) for
Z—a 1>=0 z—a 120
1z| < |a]. =

REMARK: This theorem remains valid if « = 0 and 5 = .
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Affine coordinates on CP!

DEFINITION: We identify CP! with the set of pairs z : y defined up to
equivalence = : y ~ Ax . Ay, for each A € C*. This representation is called
homogeneous coordimates. Affine coordinatesarel:zforz #0, z =y/x
and z:1 for y # 0, z = x/y. The corresponding gluing functions are given by

the map z — 2~ 1.

DEFINITION: Meromorphic function is a quotient f/g, where f,g are
holomorphic and g # 0.

REMARK: A holomorphic map C —s CP! is the same as a pair of maps
f g up to equivalence f: g~ fh:gh. In other words, holomorphic maps
C —s CP1l are identified with meromorphic functions on C.

REMARK: In homogeneous coordinates, an element CC" Z c PSL(2,0)
acts as x : y—ax + by : cx + dy. Therefore, in affine coordinates it acts as
. . az+b

" cz+d-

14



Smooth ergodic theory, lecture 10 M. Verbitsky

Mobius transforms

DEFINITION: Mobius transform is a conformal (that is, holomorphic)
diffeomorphism of CP1.

REMARK: The group PGL(2,C) acts on CPl holomorphially.
T he following theorem will be proven next lecture.

THEOREM: The natural map from PGL(2,C) to the group of MoObius
transforms is an isomorphism.
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