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Upper half-plane (reminder)

REMARK: The map z −→ −
√
−1 (z − 1)−1 induces a diffeomorphism from

the unit disc in C to the upper half-plane H.

PROPOSITION: The group Aut(∆) acts on the upper half-plane H as

z
A−→ az+b

cz+d, where a, b, c, d ∈ R, and det

(
a b
c d

)
> 0.

REMARK: The group of such A is naturally identified with PSL(2,R) ⊂
PSL(2,C).

Proof: The group PSL(2,R) preserves the line im z = 0, hence acts on H by

conformal automorphisms. The stabilizer of a point is S1 (prove it). Now,

Lemma 2 implies that PSL(2,R) = PU(1,1).

REMARK: We have shown that H = SO(1,2)/S1, hence H is conformally

equivalent to the hyperbolic space.
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Upper half-plane as a Riemannian manifold (reminder)

DEFINITION: Poincaré half-plane is the upper half-plane equipped with an

PSL(2,R)-invariant metric. By constructtion, t is isometric to the Poincare

disk and to the hyperbolic space form.

THEOREM: Let (x, y) be the usual coordinates on the upper half-plane H.

Then the Riemannian structure s on H is written as s = constdx
2+dy2

y2 .

Proof: Since the complex structure on H is the standard one and all Hermitian

structures are proportional, we obtain that s = µ(dx2+dy2), where µ ∈ C∞(H).

It remains to find µ, using the fact that s is PSL(2,R)-invariant.

For each a ∈ R, the parallel transport x−→ x+ a fixes s, hence µ is a function

of y. For any λ ∈ R>0, the map Hλ(x) = λx, being holomorphic, also fixes s;

since Hλ(dx2 + dy2) = λ2dx2 + dy2, we have µ(λx) = λ−2µ(x).
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Geodesics on Riemannian manifold (reminder)

DEFINITION: Minimising geodesic in a Riemannian manifold is a piecewise

smooth path connecting x to y such that its length is equal to the geodesic

distance. Geodesic is a piecewise smooth path γ such that for any x ∈ γ

there exists a neighbourhood of x in γ which is a minimising geodesic.

EXERCISE: Prove that a big circle in a sphere is a geodesic. Prove

that an interval of a big circle of length 6 π is a minimising geodesic.

REMARK: Further on, all Riemannian manifold are tacitly assumed to

be complete with respect to the geodesic distance.
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Geodesics in Poincaré half-plane (reminder)

THEOREM: Geodesics on a Poincaré half-plane are vertical straight

lines and their images under the action of SL(2,R).

Proof. Step 1: Let a, b ∈ H be two points satisfying Re a = Re b, and l the line

connecting these two points. Denote by Π the orthogonal projection from H
to the vertical line connecting a to b. For any tangent vector v ∈ TzH, one has

|Dπ(v)| 6 |v|, and the equality means that v is vertical (prove it). Therefore,

a projection of a path γ connecting a to b to l has length 6 L(γ), and

the equality is realized only if γ is a straight vertical interval.

Step 2: For any points a, b in the Poincaré half-plane, there exists an

isometry mapping (a, b) to a pair of points (a1, b1) such that Re(a1) =

Re(b1). (Prove it!)

Step 3: Using Step 2, we prove that any geodesic γ on a Poincaré half-

plane is obtained as an isometric image of a straight vertical line:

γ = v(γ0), v ∈ Iso(H) = PSL(2,R)
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Geodesics in Poincaré half-plane (reminder)

CLAIM: Let S be a circle or a straight line on a complex plane C = R2,

and S1the closure of its image in CP1 ⊂ C. Here C is embedded to CP1 by

the natural map z −→ 1 : z. Then S1 is a circle, and any circle in CP1 is

obtained this way.

Proof: The circle Sr(p) of radius r centered in p ∈ C is given by equation

|p− z| = r, in homogeneous coordinates it is |px− z|2 = r|x|2. This is the zero

set of the pseudo-Hermitian form h(x, z) = |px− z|2− |x|2, hence it is a circle.

COROLLARY: Geodesics on the Poincaré half-plane are vertical straight

lines and half-circles orthogonal to the line im z = 0 in the intersection

points.

Proof: We have shown that geodesics in the Poincaré half-plane are Möbius

transforms of straight lines orthogonal to im z = 0. However, any Möbius

transform preserves angles and maps circles or straight lines to circles or

straight lines.
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Geodesics on Poincare half-plane
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Geodesics on Poincare disc

REMARK: Geodesics on Poincare disc are half-circles orthogonal to

its boundary. Indeed, Poincare disc is obtained from Poincare plane by a

Möbius transform, and Möbius transforms preserve map circles and lines to

circles and lines.
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Maurits Cornelis Escher, Circle Limit IV (1960)
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Maurits Cornelis Escher, Circle Limit V (1960)
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Natural parametrization

DEFINITION: Let γ : [a, b]−→M be a path, and ψ : [a, b]−→ [c, d] Parametriza-
tion of the path γ is the map ψ ◦ γ : [c, d]−→M , the same path parametrized
differently. Natural parametrization of a minimizing geodesic γ, L(γ) = a

is parametrization γ : [0, a]−→M such that the length of γ
∣∣∣[0,t] is equal t.

Clearly, γ
∣∣∣[0,t] = t defines the parametrization of γ uniquely.

REMARK: Let γ : [0, a]−→M be a minimizing geodesic with natural parametriza-
tion. Then γ is an isometric embedding.

DEFINITION: A geodesic γ : [a, b]−→M has natural parametrization if
γ is locally an isometry.

THEOREM: Let M be a Riemannian manifold, x ∈ M and v ∈ TxM be a
tangent vector. Then there exists a unique geodesic γ : [0, a]−→M with
natural parametrization such that γ(0) = x and γ′(0) = v. Moreover, the
map γ smoothly depends on x and v.

Proof: We proved this theorem for the hyperbolic space; for Euclidean metric
it is well known. The proof for a more general Riemannian manifold is
left as an exercise.
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The exponential map

DEFINITION: Let M be a Riemannian manifold. For any v ∈ TxM with |v| =
1, denote the corresponding naturally parametrized geodesic by t−→ exp(tv).

The map TxM −→M mapping v ∈ TxM to exp
(
|v| v|v|

)
is called the exponen-

tial map.

THEOREM: Exponential map is a diffeomorphism for |v| sufficiently

small.

Proof: Again, for Euclidean and hyperbolic space this theorem is proven, and

for an arbitrary Riemannian manifold it is left as an exercise.
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Geodesic flow

DEFINITION: Let M be a manifold. Spherical tangent bundle SM ⊂ TM
is the space of all tangent vectors of length 1.

DEFINITION: Consider the map

Ψt(v, x) = (exp(tv), d exp(tv)(v))

mapping v ∈ TxM, t ∈ R to d exp(tv)(v)) ∈ Texp(tv)M ; here

d exp(tv) : TxM −→ Texp(tv)M

is the differential of the exponent map exp : TxM −→M . This defines an

action of R on SM , t−→Ψt ∈ Diff(SM). This action is called the geodesic

flow.

REMARK: Geodesic flow takes a unit tangent vector, takes a naturally

parametrized geodesic tangent to this vector, and moves this vector

along this geodesic.
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Riemannian volume

DEFINITION: Let M be an n-dimensional Riemannian manifold. Define

the Riemannian volume as a measure which sets the volume of a very small

n-cube with sides ε+ o(ε) to εn + o(ε).

DEFINITION: Let M be a manifold. It takes some work to define the

Riemannian structure on SM . However, for M Euclidean or hyperbolic, SM is

homogeneous, and we can take any metric at a point, average it with respect

to the isotropy group (which is compact, because it is contained in SO(n−1),

which is the stabilizer of a point of M), and extend the averaged metric to

SM by homogeneity. This defines a G-invariant Lebesgue measure on

SM, where M = G/H is a space form. This measure is called the Liouville

measure.

THEOREM: Geodesic flow preserves the Liouville measure on SM.

For M arbitrary this theorem takes lots of work, for M a space form we prove

it in the next slide.
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Riemannian volume and geodesic flow

REMARK: Let M = G/H be a homogeneous space. Then a G-invariant

volume form on M is unique up to a constant. Indeed, we can take the

volume form in a given tangent space and extend it to a G-invariant volume

by G-action; thus, a volume form on TxM determines the measure on M.

THEOREM: Let M = G/H be a space form, SM its spherical bundle and

Vol a G-invariant volume form. Then the geodesic flow preserves Vol.

Proof: Since the geodesic flow Ψt is G-equivariant, the map t−→ (Ψt)∗Vol =

λtVol defines an action of R on the 1-dimensional space of G-invariant volume

forms, that is, a homomorhism R−→ R∗. This gives λtλ−t = 1. However, Ψt

is conjugate to Ψ−t via central symmetry. Therefore, λt = λ−t = 1.
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