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Natural parametrization (reminder)

DEFINITION: Let γ : [a, b]−→M be a path, and ψ : [a, b]−→ [c, d] Parametriza-
tion of the path γ is the map ψ ◦ γ : [c, d]−→M , the same path parametrized
differently. Natural parametrization of a minimizing geodesic γ, L(γ) = a

is parametrization γ : [0, a]−→M such that the length of γ
∣∣∣[0,t] is equal t.

Clearly, γ
∣∣∣[0,t] = t defines the parametrization of γ uniquely.

REMARK: Let γ : [0, a]−→M be a minimizing geodesic with natural parametriza-
tion. Then γ is an isometric embedding.

DEFINITION: A geodesic γ : [a, b]−→M has natural parametrization if
γ is locally an isometry.

THEOREM: Let M be a Riemannian manifold, x ∈ M and v ∈ TxM be a
tangent vector. Then there exists a unique geodesic γ : [0, a]−→M with
natural parametrization such that γ(0) = x and γ′(0) = v. Moreover, the
map γ smoothly depends on x and v.

Proof: We proved this theorem for the hyperbolic space; for Euclidean metric
it is well known. The proof for a more general Riemannian manifold is
left as an exercise.
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The exponential map (reminder)

DEFINITION: Let M be a Riemannian manifold. For any v ∈ TxM with |v| =
1, denote the corresponding naturally parametrized geodesic by t−→ exp(tv).

The map TxM −→M mapping v ∈ TxM to exp
(
|v| v|v|

)
is called the exponen-

tial map.

THEOREM: Exponential map is a diffeomorphism for |v| sufficiently

small.

Proof: Again, for Euclidean and hyperbolic space this theorem is proven, and

for an arbitrary Riemannian manifold it is left as an exercise.
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Geodesic flow (reminder)

DEFINITION: Let M be a manifold. Spherical tangent bundle SM ⊂ TM
is the space of all tangent vectors of length 1.

DEFINITION: Consider the map

Ψt(v, x) = (exp(tv), d exp(tv)(v))

mapping v ∈ TxM, t ∈ R to d exp(tv)(v)) ∈ Texp(tv)M ; here

d exp(tv) : TxM −→ Texp(tv)M

is the differential of the exponent map exp : TxM −→M . This defines an

action of R on SM , t−→Ψt ∈ Diff(SM). This action is called the geodesic

flow.

REMARK: Geodesic flow takes a unit tangent vector, takes a naturally

parametrized geodesic tangent to this vector, and moves this vector

along this geodesic.
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Volume forms

DEFINITION: Grassmann algebra is an algebra Λ∗(V ∗) of a vector space
V is an algebra of antisymmetric k-forms on V (similar to polynomial, but
antisymmetric instead of symmetric).

THEOREM: Let x1, ..., xn be a basis in V ∗. Then the space ΛkV ∗ is gen-
erated by antisymmetric forms xi1 ∧ xi2 ∧ ... ∧ xik, i1 < i2 < ... < ik, which
are all linearly independent.

COROLLARY: The space Λk(V ∗) of k-linear antisymmetric forms is(
n
k

)
-dimensional, where n = dimV . In particular, Λn(V ∗) is 1-dimensional.

DEFINITION: The space of volume forms on an n-dimensional vector
space V is Λn(V ∗).

DEFINITION: Orientation on V is a choice of positive direction on Λn(V ∗).
A positive volume form on an oriented vector space V is a volume form which
is positive in the sense of orientation.

REMARK: There is a bijection between translation invariant Lebesgue
measures on Rn and positive volume forms on Rn.
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Differential forms

DEFINITION: Let M be a manifold. A differential form, or k-form, on M

is a choice of a vector λx ∈ Λk(T ∗xM) smoothly depending on x. The space

of all differential forms on M is denoted ΛkM .

DEFINITION: A positive volume form on an oriented n-manifold is a

differential form ν ∈ ΛnM such that at each x ∈ M , ν defines a positive

volume form on Λn(T ∗xM).

REMARK: Let f : M −→N be a smooth map of manifolds. Then f defines

a pullback map f∗ : ΛkN −→ ΛkM which takes a form η ∈ ΛkN and puts it

to

f∗(η)(v1, ..., vk) = η(Df(v1), Df(v2), ..., Df(vk)).
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Integral and measure associated with a differential form

DEFINITION: Let M be an oriented n-dimensional manifold, and ΛncM the
space of volume forms with compact support. Integral is a linear map

∫
M :

ΛncM −→ R which satisfies the following conditions.
(invariance) For any diffeomorphism f : M −→M , and any ν ∈ ΛncM ,

one has
∫
M ν =

∫
M f∗ν.

(positivity) For any non-negative volume form ν, one has
∫
M ν > 0.

THEOREM: The functional
∫
M : ΛnM −→ R satisfying these properties

exists and is unique.

This theorem is left as an exercise.

Riesz representation theorem: Let M be a metrizable, locally compact
topological space, and C0

c (M)∗ the space of functionals continuous in uni-
form topology. Then Radon measures can be characterized as continu-
ous functionals µ ∈ C0

c (M)∗ which are non-negative on all non-negative
functions.
Proof: Lecture 6.

DEFINITION: For any volume form ν on M define a Radon measure ν
associated to the functional w −→

∫
M wν. This measure is called Lebesgue

measure associated with a differential form.
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Smooth measures

DEFINITION: Let µ be a signed measure on a smooth manifold M . We

say that µ is of class C1 if for any vector field X ∈ TM there exists a signed

measure LieX µ such that
∫
M DX(f)µ =

∫
M f Liex µ. We say that µ is of class

Ci if it is of class C1 and LieX µ is of class Ci−1 for any vector field X, and

smooth (or of class C∞) if it is of class i for all i > 0.

THEOREM: A signed measure µ on an n-manifold M is of class Ci, i > 0,

if and only if it is associated with a differential form ν ∈ ΛnM of class

Ci.

This theorem is left as an exercise.
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Spherical bundle for a space form

REMARK: Let M = G/H be a homogeneous space. Then a G-invariant

volume form on M is unique up to a constant. Indeed, we can take the

volume form in a given tangent space and extend it to a G-invariant volume

by G-action; thus, a volume form on TxM determines the measure on M.

CLAIM: Let M = G/H be a space form. Then the natural action of G on

SM is transitive.

Proof: G acts transitively on M , and H = SO(n) acts transitively on the

sphere {v ∈ TxM | |v| = 1}.

REMARK: This also implies that SM = G/SO(n−1). Indeed, StSO(n)(v) =

SO(n− 1).
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Riemannian volume and geodesic flow

THEOREM: Let M = G/H be a space form, SM its spherical bundle, and

Vol a G-invariant volume form. Then the geodesic flow preserves Vol.

Proof. Step 1: Since the geodesic flow Ψt is G-equivariant, the map

t−→ (Ψt)∗Vol = λtVol defines an action of R on the 1-dimensional space

of G-invariant volume forms, that is, a homomorhism R−→ R∗. This gives

λ−t = λ−1
t .

Step 2: Let τx : M −→M be the central symmetry with center in x ∈ M .

Then Ψt ◦ τ
∣∣∣TxSM = τ ◦Ψ−t

∣∣∣TxSM because the central symmetry reverses the

orientation on geodesics. Then λt = λ−t.
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Hopf argument

DEFINITION: Let M be a metric space with a Borel measure and Ft :
M × R−→M a continuous flow preserving measure. The “stable foliation”
is an equivalence relation on M , with x ∼ y when lim

t 7→∞
d(Ft(x), Ft(y)) = 0.

The “leaves” of the stable foliation are the equivalence classes. Unstable
foliation is the stable foliation for F−t.

THEOREM: (Hopf Argument) Any measurable, Ft-invariant function is
constant on the leaves of the stable foliation outside of a measure 0 set.

Proof: Lecture 7.

DEFINITION: We say that M is a Riemannian manifold of constant
negative curvature if it is locally isometric to a hyperbolic space.

THEOREM: (E. Hopf) Let M be a complete Riemannian manifold of fi-
nite volume and constant negative curvature. Then the geodesic flow is
ergodic.

Proof (for dimension 2) is later in this lecture; it remains as an exercise to
extend this proof to any dimension.
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Absolute

Let V = R3 be a vector space with bilinear form of signature (1,2). Denote

by V + the positive cone of V , that is, one of two connected components of

{v ∈ V | (v, v) > 0}. Consider the hyperbolic space H = SO+(1,2)/SO(2)

as projectivization of V +, H = PV + = V +/R>0. Let H be the closure of

PV + ⊂ PV = RP2.

DEFINITION: The infinite circle ∂∆ considered as a boundary of the disk

PV + = H is called the absolute of the projective plane.

REMARK: Any isometry of the disk is naturally extended to the abso-

lute. Indeed, SO+(1,2) acts on the real projective space RP2, and absolute

is the boundary of PV + in RP2.
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Convergence of geodesics

REMARK: From now on, all geodesics are considered with their natural

parametrization.

REMARK: From the description of geodesics in Poincare disc, it is clear

that for any geodesic γ : ]∞,∞[−→∆ the limit points γ+ := lim
t 7→∞

γ(t) and

γ− := lim
t 7→−∞

γ(t) are well defined in the absolute ∂∆, and, moreover, the

points γ+, γ− ∈ ∂∆ determine the geodesic uniquely.

REMARK: The Poincaré metric on H is dP = dx2+dy2

y2 . Therefore,

lim
u−→∞ dP ((t1, u1 + u), (t2, u2 + u)) = 0.

This gives the following

COROLLARY: Let γ, δ be geodesics such that their +∞-limits γ+, δ+ ∈ ∂∆

are equal, and t1 ∈ R any number. Then there exists t2 ∈ R such that the

tangent vectors γ̇(t1), δ̇(t2) ∈ S∆ belong to the same leaf of the stable

foliation.
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Hopf theorem for manifolds of constant negative curvature

THEOREM: (E. Hopf) Let M be a complete 2-dimensional Riemannian

manifold of finite volume and constant negative curvature. Then the geodesic

flow Ψt is ergodic.

Proof. Step 1: Any such M is obtained as a quotient of the hyperbolic

plane ∆/Γ, where Γ is a discrete group acting on ∆ by isometries.

Step 2: To prove Hopf Theorem it would suffice to show that a function

which is (*) constant on orbits of the geodesic flow and on almost all leaves

of stable foliation on S∆ and (**) on orbits of the geodesic flow and on

almost all leaves of unstable foliation is necessarily constant. This follows

from the Hopf argument (Lecture 7).

Step 3: For (*) f should be constant on all Sα, where Sα is all v ∈ Tx∆ such

that the geodesic tangent to v end up in a point α ∈ ∂∆. For (**), f should

be constant on all Uβ, where Uβ is all vectors v ∈ Tx∆ such that the geodesic

tangent to v begins in β ∈ ∂∆. The sets Sα, Uβ intersect in a geodesic

connecting α to β which exists whenever α 6= β.
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