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Natural parametrization (reminder)

DEFINITION: Let v : [a,b] — M be a path, and % : [a,b] — [¢, d] Parametriza-
tion of the path ~ is the map Yo~ : [¢,d] — M, the same path parametrized
differently. Natural parametrization of a minimizing geodesic v, L(v) = a
is parametrization ~ : [0,a] — M such that the length of 7)[0,1&] is equal ¢.

Clearly, v|[pq =t defines the parametrization of ~ uniquely.

REMARK: Let v : [0,a] — M be a minimizing geodesic with natural parametriza-
tion. Then ~ is an isometric embedding.

DEFINITION: A geodesic v : [a,b] — M has natural parametrization if
~ is locally an isometry.

THEOREM: Let M be a Riemannian manifold, x € M and v € T,,M be a
tangent vector. Then there exists a unique geodesic ~: [0,a] — M with
natural parametrization such that ~(0) =z and +/(0) = v. Moreover, the
map v smoothly depends on x and v.

Proof: We proved this theorem for the hyperbolic space; for Euclidean metric
it is well known. The proof for a more general Riemannian manifold is
left as an exercise. =
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The exponential map (reminder)

DEFINITION: Let M be a Riemannian manifold. For any v € T, M with |v| =
1, denote the corresponding naturally parametrized geodesic by t — exp(tv).

The map TpM — M mapping v € T, M to exp <|v|ﬁ> is called the exponen-
tial map.

THEOREM: Exponential map is a diffeomorphism for |v| sufficiently
small.

Proof: Again, for Euclidean and hyperbolic space this theorem is proven, and
for an arbitrary Riemannian manifold it is left as an exercise. =
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Geodesic flow (reminder)

DEFINITION: Let M be a manifold. Spherical tangent bundle SM C T M
is the space of all tangent vectors of length 1.

DEFINITION: Consider the map

Wi(v,z) = (exp(tv), dexp(tv)(v))

mapping v € T,M,t € R to dexp(tv)(v)) &€ Texp(t)M; here

dexp(tv) T M —)Texp(t,u)M

is the differential of the exponent map exp : 1M — M. This defines an
action of R on SM, t — W; € Diff(SM). This action is called the geodesic
flow.

REMARK: Geodesic flow takes a unit tangent vector, takes a naturally
parametrized geodesic tangent to this vector, and moves this vector
along this geodesic.
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Volume forms

DEFINITION: Grassmann algebra is an algebra A*(V*) of a vector space
V is an algebra of antisymmetric k-forms on V (similar to polynomial, but
antisymmetric instead of symmetric).

THEOREM: Let z1,...,zn be a basis in V*. Then the space N*V* is gen-
erated by antisymmetric forms z; Az, A ... Az, i1 <ip <. <1, which
are all linearly independent.

COROLLARY: The space A*(V*) of k-linear antisymmetric forms is
(Z)—dimensional, where n = dim V. In particular, A"(V*) is 1-dimensional.

DEFINITION: The space of volume forms on an n-dimensional vector
space V is A"(V*).

DEFINITION: Orientation on V is a choice of positive direction on A" (V*).
A positive volume form on an oriented vector space V is a volume form which
IS positive in the sense of orientation.

REMARK: There is a bijection between translation invariant Lebesgue
measures on R"” and positive volume forms on R".
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Differential forms

DEFINITION: Let M be a manifold. A differential form, or k-form, on M
IS a choice of a vector \; € /\’“(T;M) smoothly depending on x. The space
of all differential forms on M is denoted AFM.

DEFINITION: A positive volume form on an oriented n-manifold is a
differential form v € A"M such that at each =z € M, v defines a positive
volume form on A"(T;M).

REMARK: Let f: M — N be a smooth map of manifolds. Then f defines
a pullback map f*: AN — AFM which takes a form n € AKN and puts it
to

f (v, .y vp) = n(Dy(v1), Dy(v2), ..., Dy(vg)).
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Integral and measure associated with a differential form

DEFINITION: Let M be an oriented n-dimensional manifold, and A’M the
space of volume forms with compact support. Integral is a linear map [, :
NP M — R which satisfies the following conditions.

(invariance) For any diffeomorphism f: M — M, and any v € A" M,

one has [y, v = [/ ffv.
(positivity) For any non-negative volume form v, one has [,;v > 0.

THEOREM: The functional [,; : A"M — R satisfying these properties
exists and is unique.

This theorem is left as an exercise.

Riesz representation theorem: Let M be a metrizable, locally compact
topological space, and CQ(M)* the space of functionals continuous in uni-
form topology. Then Radon measures can be characterized as continu-
ous functionals p € C2(M)* which are non-negative on all non-negative
functions.

Proof: Lecture 6.

DEFINITION: For any volume form v on M define a Radon measure v
associated to the functional w — [, wr. This measure is called Lebesgue
Mmeasure associated with a differential form.
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Smooth measures

DEFINITION: Let p be a signed measure on a smooth manifold M. We
say that u is of class Cl if for any vector field X € T'M there exists a signhed
measure Liex p such that [y Dx(f)u = [y f Liez u. We say that p is of class
C" if it is of class C1 and Liex u is of class C*~1 for any vector field X, and
smooth (or of class C*°) if it is of class ¢ for all 4 > 0.

THEOREM: A signed measure p on an n-manifold M is of class C*, i > 0,
if and only if it is associated with a differential form v € A"M of class

C".

This theorem is left as an exercise.
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Spherical bundle for a space form

REMARK: Let M = G/H be a homogeneous space. Then a G-invariant
volume form on M is unique up to a constant. Indeed, we can take the
volume form in a given tangent space and extend it to a G-invariant volume
by G-action; thus, a volume form on 7, M determines the measure on M.

CLAIM: Let M = G/H be a space form. Then the natural action of G on
SM is transitive.

Proof: G acts transitively on M, and H = SO(n) acts transitively on the
sphere {fv e T,M | |v|=1}. =

REMARK: This also implies that SM = G/SO(n—1). Indeed, Stgp,)(v) =
SO(n—1).
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Riemannian volume and geodesic flow

THEOREM: Let M = G/H be a space form, SM its spherical bundle, and
Vol a G-invariant volume form. Then the geodesic flow preserves Vol.

Proof. Step 1: Since the geodesic flow W; is G-equivariant, the map
t — (W)« Vol = A\t Vol defines an action of R on the 1-dimensional space
of G-invariant volume forms, that is, a homomorhism R — R*. This gives
A=At

Step 2: Let 7 : M — M be the central symmetry with center in x € M.
Then Wior|p oy = 7oW_ 4|90 Decause the central symmetry reverses the
orientation on geodesics. Then Ay = A_;. =
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Hopf argument

DEFINITION: Let M be a metric space with a Borel measure and F}; :

M x R — M a continuous flow preserving measure. The “stable foliation”

iS an equivalence relation on M, with  ~ y when tlim d(Fi(x), Fy(y)) = O.
00

The “leaves” of the stable foliation are the equivalence classes. Unstable
foliation is the stable foliation for F_;.

THEOREM: (Hopf Argument) Any measurable, Fi-invariant function is
constant on the leaves of the stable foliation outside of a measure 0 set.

Proof: Lecture 7. m

DEFINITION: We say that M is a Riemannian manifold of constant
negative curvature if it is locally isometric to a hyperbolic space.

THEOREM: (E. Hopf) Let M be a complete Riemannian manifold of fi-
nite volume and constant negative curvature. Then the geodesic flow is
ergodic.

Proof (for dimension 2) is later in this lecture; it remains as an exercise to
extend this proof to any dimension.
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Absolute

Let V = R3 be a vector space with bilinear form of signature (1,2). Denote
by VT the positive cone of V, that is, one of two connected components of
{fveV | (v,v)>0}. Consider the hyperbolic space H = SO1(1,2)/50(2)
as projectivization of VT, H = PVT = VT /R>0. Let H be the closure of
PV+ C PV = RPZ.

DEFINITION: The infinite circle 0A considered as a boundary of the disk
PV+ = H is called the absolute of the projective plane.

REMARK: Any isometry of the disk is naturally extended to the abso-
lute. Indeed, SOT(1,2) acts on the real projective space RP2, and absolute
is the boundary of PV T in RP2.
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Convergence of geodesics

REMARK: From now on, all geodesics are considered with their natural
parametrization.

REMARK: From the description of geodesics in Poincare disc, it is clear

that for any geodesic v : Joo,00[ — A the limit points 4 = tlim ~(t) and
00
N = tlim ~(t) are well defined in the absolute 904, and, moreover, the
——00
points v4,v- € OA determine the geodesic uniquely.

: - < : : _ dx?4dy?
REMARK: The Poincaré metric on H is dp = —Z T herefore,

lim _dp((t1,u1 +u), (t2,ux +u)) = 0.

U —— X0
This gives the following

COROLLARY: Let v,6 be geodesics such that their +oo-limits v4,64 € 0A
are equal, and t1 € R any number. Then there exists ¢, € R such that the
tangent vectors (t1),0(t2) € SA belong to the same leaf of the stable

foliation. m
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Hopf theorem for manifolds of constant negative curvature

THEOREM: (E. Hopf) Let M be a complete 2-dimensional Riemannian
manifold of finite volume and constant negative curvature. Then the geodesic
flow WV, is ergodic.

Proof. Step 1: Any such M is obtained as a quotient of the hyperbolic
plane A/I", where I is a discrete group acting on A by isometries.

Step 2: To prove Hopf Theorem it would suffice to show that a function
which is (*) constant on orbits of the geodesic flow and on almost all leaves
of stable foliation on SA and (**) on orbits of the geodesic flow and on
almost all leaves of unstable foliation is necessarily constant. This follows
from the Hopf argument (Lecture 7).

Step 3: For (*) f should be constant on all Su, where S, is all v € T, A such
that the geodesic tangent to v end up in a point o« € 90A. For (**), f should
be constant on all Ug, where Ug is all vectors v € Tz A such that the geodesic
tangent to v begins in 8 € 0A. The sets S,, UB intersect In a geodesic
connecting a to g which exists whenever aa = 5. =
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