Teoria Ergódica Diferenciável

lecture 13: Hopf theorem on geodesic flows

Instituto Nacional de Matemática Pura e Aplicada

Misha Verbitsky, October 27, 2017

M. Verbitsky

Natural parametrization (reminder)

DEFINITION: Let $\gamma : [a,b] \longrightarrow M$ be a path, and $\psi : [a,b] \longrightarrow [c,d]$ **Parametrization** of the path γ is the map $\psi \circ \gamma : [c,d] \longrightarrow M$, the same path parametrized differently. Natural parametrization of a minimizing geodesic γ , $L(\gamma) = a$ is parametrization $\gamma : [0,a] \longrightarrow M$ such that the length of $\gamma|_{[0,t]}$ is equal t. Clearly, $\gamma|_{[0,t]} = t$ defines the parametrization of γ uniquely.

REMARK: Let γ : $[0, a] \longrightarrow M$ be a minimizing geodesic with natural parametrization. Then γ is an isometric embedding.

DEFINITION: A geodesic γ : $[a,b] \longrightarrow M$ has natural parametrization if γ is locally an isometry.

THEOREM: Let M be a Riemannian manifold, $x \in M$ and $v \in T_x M$ be a tangent vector. Then there exists a unique geodesic $\gamma : [0, a] \longrightarrow M$ with natural parametrization such that $\gamma(0) = x$ and $\gamma'(0) = v$. Moreover, the map γ smoothly depends on x and v.

Proof: We proved this theorem for the hyperbolic space; for Euclidean metric it is well known. The proof for a more general Riemannian manifold is left as an exercise. ■

The exponential map (reminder)

DEFINITION: Let M be a Riemannian manifold. For any $v \in T_x M$ with |v| = 1, denote the corresponding naturally parametrized geodesic by $t \longrightarrow \exp(tv)$. The map $T_x M \longrightarrow M$ mapping $v \in T_x M$ to $\exp\left(|v|\frac{v}{|v|}\right)$ is called **the exponential map**.

THEOREM: Exponential map is a diffeomorphism for |v| sufficiently small.

Proof: Again, for Euclidean and hyperbolic space this theorem is proven, and for an arbitrary Riemannian manifold it is left as an exercise. ■

Geodesic flow (reminder)

DEFINITION: Let *M* be a manifold. **Spherical tangent bundle** $SM \subset TM$ is the space of all tangent vectors of length 1.

DEFINITION: Consider the map

 $\Psi_t(v, x) = (\exp(tv), d\exp(tv)(v))$

mapping $v \in T_x M, t \in \mathbb{R}$ to $d \exp(tv)(v)) \in T_{\exp(tv)} M$; here

 $d \exp(tv) : T_x M \longrightarrow T_{\exp(tv)} M$

is the differential of the exponent map $\exp : T_x M \longrightarrow M$. This defines an action of \mathbb{R} on SM, $t \longrightarrow \Psi_t \in \text{Diff}(SM)$. This action is called **the geodesic** flow.

REMARK: Geodesic flow takes a unit tangent vector, takes a naturally parametrized geodesic tangent to this vector, and moves this vector along this geodesic.

Volume forms

DEFINITION: Grassmann algebra is an algebra $\Lambda^*(V^*)$ of a vector space V is an algebra of antisymmetric k-forms on V (similar to polynomial, but antisymmetric instead of symmetric).

THEOREM: Let $x_1, ..., x_n$ be a basis in V^* . Then the space $\Lambda^k V^*$ is generated by antisymmetric forms $x_{i_1} \wedge x_{i_2} \wedge ... \wedge x_{i_k}$, $i_1 < i_2 < ... < i_k$, which are all linearly independent.

COROLLARY: The space $\Lambda^k(V^*)$ of k-linear antisymmetric forms is $\binom{n}{k}$ -dimensional, where $n = \dim V$. In particular, $\Lambda^n(V^*)$ is 1-dimensional.

DEFINITION: The space of volume forms on an *n*-dimensional vector space V is $\Lambda^n(V^*)$.

DEFINITION: Orientation on V is a choice of positive direction on $\Lambda^n(V^*)$. A **positive volume form** on an oriented vector space V is a volume form which is positive in the sense of orientation.

REMARK: There is a bijection between translation invariant Lebesgue measures on \mathbb{R}^n and positive volume forms on \mathbb{R}^n .

Differential forms

DEFINITION: Let M be a manifold. A differential form, or k-form, on M is a choice of a vector $\lambda_x \in \Lambda^k(T_x^*M)$ smoothly depending on x. The space of all differential forms on M is denoted $\Lambda^k M$.

DEFINITION: A positive volume form on an oriented *n*-manifold is a differential form $\nu \in \Lambda^n M$ such that at each $x \in M$, ν defines a positive volume form on $\Lambda^n(T_x^*M)$.

REMARK: Let $f: M \longrightarrow N$ be a smooth map of manifolds. Then f defines a **pullback map** $f^*: \Lambda^k N \longrightarrow \Lambda^k M$ which takes a form $\eta \in \Lambda^k N$ and puts it to

$$f^*(\eta)(v_1, ..., v_k) = \eta(D_f(v_1), D_f(v_2), ..., D_f(v_k)).$$

Integral and measure associated with a differential form

DEFINITION: Let M be an oriented n-dimensional manifold, and $\Lambda_c^n M$ the space of volume forms with compact support. Integral is a linear map $\int_M : \Lambda_c^n M \longrightarrow \mathbb{R}$ which satisfies the following conditions.

(invariance) For any diffeomorphism $f: M \longrightarrow M$, and any $\nu \in \Lambda_c^n M$, one has $\int_M \nu = \int_M f^* \nu$.

(positivity) For any non-negative volume form ν , one has $\int_M \nu \ge 0$.

THEOREM: The functional $\int_M : \Lambda^n M \longrightarrow \mathbb{R}$ satisfying these properties exists and is unique.

This theorem is left as an exercise.

Riesz representation theorem: Let M be a metrizable, locally compact topological space, and $C_c^0(M)^*$ the space of functionals continuous in uniform topology. Then Radon measures can be characterized as continuous functionals $\mu \in C_c^0(M)^*$ which are non-negative on all non-negative functions.

Proof: Lecture 6.

DEFINITION: For any volume form ν on M define a Radon measure ν associated to the functional $w \longrightarrow \int_M w\nu$. This measure is called **Lebesgue** measure associated with a differential form.

7

Smooth measures

DEFINITION: Let μ be a signed measure on a smooth manifold M. We say that μ is of class C^1 if for any vector field $X \in TM$ there exists a signed measure $\operatorname{Lie}_X \mu$ such that $\int_M D_X(f)\mu = \int_M f \operatorname{Lie}_X \mu$. We say that μ is of class C^i if it is of class C^1 and $\operatorname{Lie}_X \mu$ is of class C^{i-1} for any vector field X, and smooth (or of class C^{∞}) if it is of class i for all i > 0.

THEOREM: A signed measure μ on an *n*-manifold M is of class C^i , i > 0, if and only if it is associated with a differential form $\nu \in \Lambda^n M$ of class C^i .

This theorem is left as an exercise.

Spherical bundle for a space form

REMARK: Let M = G/H be a homogeneous space. Then a *G*-invariant volume form on *M* is unique up to a constant. Indeed, we can take the volume form in a given tangent space and extend it to a *G*-invariant volume by *G*-action; thus, a volume form on T_xM determines the measure on *M*.

CLAIM: Let M = G/H be a space form. Then the natural action of G on SM is transitive.

Proof: G acts transitively on M, and H = SO(n) acts transitively on the sphere $\{v \in T_x M \mid |v| = 1\}$.

REMARK: This also implies that SM = G/SO(n-1). Indeed, $St_{SO(n)}(v) = SO(n-1)$.

Riemannian volume and geodesic flow

THEOREM: Let M = G/H be a space form, SM its spherical bundle, and Vol a *G*-invariant volume form. Then the geodesic flow preserves Vol.

Proof. Step 1: Since the geodesic flow Ψ_t is *G*-equivariant, the map $t \longrightarrow (\Psi_t)_* \operatorname{Vol} = \lambda_t \operatorname{Vol}$ defines an action of \mathbb{R} on the 1-dimensional space of *G*-invariant volume forms, that is, a homomorphism $\mathbb{R} \longrightarrow \mathbb{R}^*$. This gives $\lambda_{-t} = \lambda_t^{-1}$.

Step 2: Let $\tau_x : M \longrightarrow M$ be the central symmetry with center in $x \in M$. Then $\Psi_t \circ \tau |_{T_xSM} = \tau \circ \Psi_{-t} |_{T_xSM}$ because the central symmetry reverses the orientation on geodesics. Then $\lambda_t = \lambda_{-t}$.

M. Verbitsky

Hopf argument

DEFINITION: Let M be a metric space with a Borel measure and F_t : $M \times \mathbb{R} \longrightarrow M$ a continuous flow preserving measure. The "stable foliation" is an equivalence relation on M, with $x \sim y$ when $\lim_{t \to \infty} d(F_t(x), F_t(y)) = 0$. The "leaves" of the stable foliation are the equivalence classes. Unstable foliation is the stable foliation for F_{-t} .

THEOREM: (Hopf Argument) Any measurable, F_t -invariant function is constant on the leaves of the stable foliation outside of a measure 0 set.

Proof: Lecture 7. ■

DEFINITION: We say that M is a **Riemannian manifold of constant negative curvature** if it is locally isometric to a hyperbolic space.

THEOREM: (E. Hopf) Let *M* be a complete Riemannian manifold of finite volume and constant negative curvature. Then the geodesic flow is ergodic.

Proof (for dimension 2) is later in this lecture; it remains as an exercise to extend this proof to any dimension.

Absolute

Let $V = \mathbb{R}^3$ be a vector space with bilinear form of signature (1,2). Denote by V^+ the positive cone of V, that is, one of two connected components of $\{v \in V \mid (v,v) > 0\}$. Consider the hyperbolic space $\mathbb{H} = SO^+(1,2)/SO(2)$ as projectivization of V^+ , $\mathbb{H} = \mathbb{P}V^+ = V^+/\mathbb{R}^{>0}$. Let $\overline{\mathbb{H}}$ be the closure of $\mathbb{P}V^+ \subset \mathbb{P}V = \mathbb{R}P^2$.

DEFINITION: The infinite circle $\partial \Delta$ considered as a boundary of the disk $\mathbb{P}V^+ = \mathbb{H}$ is called **the absolute** of the projective plane.

REMARK: Any isometry of the disk is naturally extended to the absolute. Indeed, $SO^+(1,2)$ acts on the real projective space $\mathbb{R}P^2$, and absolute is the boundary of $\mathbb{P}V^+$ in $\mathbb{R}P^2$.

Convergence of geodesics

REMARK: From now on, all geodesics are considered with their natural parametrization.

REMARK: From the description of geodesics in Poincare disc, it is clear that for any geodesic γ : $]\infty, \infty[\longrightarrow \Delta$ the limit points $\gamma_+ := \lim_{t \mapsto \infty} \gamma(t)$ and $\gamma_- := \lim_{t \mapsto -\infty} \gamma(t)$ are well defined in the absolute $\partial \Delta$, and, moreover, the points $\gamma_+, \gamma_- \in \partial \Delta$ determine the geodesic uniquely.

REMARK: The Poincaré metric on \mathbb{H} is $d_P = \frac{dx^2 + dy^2}{y^2}$. Therefore, $u \stackrel{\lim}{\longrightarrow} \infty d_P((t_1, u_1 + u), (t_2, u_2 + u)) = 0.$

This gives the following

COROLLARY: Let γ, δ be geodesics such that their $+\infty$ -limits $\gamma_+, \delta_+ \in \partial \Delta$ are equal, and $t_1 \in \mathbb{R}$ any number. Then there exists $t_2 \in \mathbb{R}$ such that the tangent vectors $\dot{\gamma}(t_1), \dot{\delta}(t_2) \in S\Delta$ belong to the same leaf of the stable foliation.

Hopf theorem for manifolds of constant negative curvature

THEOREM: (E. Hopf) Let M be a complete 2-dimensional Riemannian manifold of finite volume and constant negative curvature. Then the geodesic flow Ψ_t is ergodic.

Proof. Step 1: Any such M is obtained as a quotient of the hyperbolic plane Δ/Γ , where Γ is a discrete group acting on Δ by isometries.

Step 2: To prove Hopf Theorem it would suffice to show that a function which is (*) constant on orbits of the geodesic flow and on almost all leaves of stable foliation on $S\Delta$ and (**) on orbits of the geodesic flow and on almost all leaves of unstable foliation is necessarily constant. This follows from the Hopf argument (Lecture 7).

Step 3: For (*) f should be constant on all S_{α} , where S_{α} is all $v \in T_x \Delta$ such that the geodesic tangent to v end up in a point $\alpha \in \partial \Delta$. For (**), f should be constant on all U_{β} , where U_{β} is all vectors $v \in T_x \Delta$ such that the geodesic tangent to v begins in $\beta \in \partial \Delta$. The sets S_{α} , U_{β} intersect in a geodesic connecting α to β which exists whenever $\alpha \neq \beta$.