
Smooth ergodic theory, lecture 14 M. Verbitsky
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Hilbert spaces (reminder)

DEFINITION: Hilbert space is a complete, infinite-dimensional Hermitian

space which is second countable (that is, has a countable dense set).

DEFINITION: Orthonormal basis in a Hilbert space H is a set of pairwise

orthogonal vectors {xα} which satisfy |xα| = 1, and such that H is the closure

of the subspace generated by the set {xα}.

THEOREM: Any Hilbert space has a basis, and all such bases are

countable.

Proof: A basis is found using Zorn lemma. If it’s not countable, open balls

with centers in xα and radius ε < 2−1/2 don’t intersect, which means that the

second countability axiom is not satisfied.

THEOREM: All Hilbert spaces are isometric.

Proof: Each Hilbert space has a countable orthonormal basis.
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Real Hilbert spaces (reminder)

DEFINITION: A Euclidean space is a vector space over R equipped with a
positive definite scalar product g.

DEFINITION: Real Hilbert space is a complete, infinite-dimensional Eu-
clidean space which is second countable (that is, has a countable dense set).

DEFINITION: Orthonormal basis in a Hilbert space H is a set of pairwise
orthogonal vectors {xα} which satisfy |xα| = 1, and such that H is the closure
of the subspace generated by the set {xα}.

THEOREM: Any real Hilbert space has a basis, and all such bases are
countable.

Proof: A basis is found using Zorn lemma. If it’s not countable, open balls
with centers in xα and radius ε < 2−1/2 don’t intersect, which means that the
second countability axiom is not satisfied.

THEOREM: All real Hilbert spaces are isometric.

Proof: Each Hilbert space has a countable orthonormal basis.

3



Smooth ergodic theory, lecture 14 M. Verbitsky

Koopman operators

DEFINITION: Let (M,µ) be a space with finite measure, and T : M −→M a
measurable map preserving measure. The triple (M,µ, T ) is called dynamical
system. The map T defines a isometric embedding T ∗ :  L2(M,µ)−→ L2(M,µ)
on the space of square-integrable functions, called the Koopman operator.

DEFINITION: Two dynamical systems (M,µ, T ) and (M1, µ1, T1) are spec-
tral equivalent if there exists an invertible map ϕ : L2(M,µ)−→ L2(M1, µ1)
such that the following diagram is commutative

L2(M,µ)
ϕ−→ L2(M1, µ1)

T ∗
y yT ∗1

L2(M,µ)
ϕ−→ L2(M1, µ1)

(this is the same as to say that the equivalence ϕ exchanges the Koopman
operators T ∗ and T ∗1).

DEFINITION: A property A of dynamical system is called spectral invari-
ant if for each two spectral invariant systems (M,µ, T ) and (M1, µ1, T1), the
property A holds for (M,µ, T ) ⇔ it holds for (M1, µ1, T1).

REMARK: We shall see today that ergodicity is a spectral invariant.
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Adjoint maps (reminder)

EXERCISE: Let (H, g) be a Hilbert space. Show that the map x−→ g(x, ·)
defines an isomorphism H −→H∗.

DEFINITION: Let A : H −→H be a continuous linear endomorphism of a

Hilbert space (H, g). Then λ−→ λ(A(·)) map A∗ : H∗ −→H∗. Identifying

H and H∗ as above, we interpret A∗ as an endomorphism of H. It is called

adjoint endomorphism (Hermitian adjoint in Hermitian Hilbert spaces).

REMARK: The map A∗ satisfies g(x,A(y)) = g(A∗(x), y). This relation is

often taken as a definition of the adjoint map.

DEFINITION: An operator U : H −→H is orthogonal if g(x, y) = g(U(x), U(y))

for all x, y ∈ H.

CLAIM: An operator U is orthogonal if and only if U∗(U(x)) = x for all

x.

Proof: Indeed, orthogonality is equivalent to g(x, y) = g(U∗U(x), y), which is

equivalent to U∗U = Id because the form g(z, ·) is non-zero for non-zero z.
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Orthogonal maps and direct sum decompositions (reminder)

LEMMA: Let U : H −→H be an invertible orthogonal map. Denote by HU

the kernel of 1 − U , that is, the space of U-invariant vectors, and let H1 be

the closure of the image of 1 − U . Then H = HU ⊕ H1 is an orthogonal

direct sum decomposition.

Proof: Let x ∈ HU . Then

(U∗ − 1)(x) = (U∗ − 1)U(x) = (1− U)x = 0.

This gives g(x, (U − 1)y) = g((U∗ − 1)x, y) = 0, hence x⊥H1. Conversely, any

vector x which is orthogonal to H1 satisfies 0 = g(x, (U−1)y) = g((U∗−1)x, y),

giving

0 = (U∗ − 1)(x) = (U∗ − 1)U(x) = (1− U)x.
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Von Neumann erodic theorem (reminder)

Corollary 1: Let U : H −→H be an invertible orthogonal map, and Un :=
1
n

∑n−1
i=0 U

i(x). Then limnUn(x) = P (x), for all x ∈ H where P is orthogonal

projection to HU.

Proof: By the previous lemma, it suffices to show that limnUn = 0 on H1.

However, the vectors of form x = (1 − U)(y) are dense in H1, and for such

x we have Un(x) = Un(1 − U)(y) = 1−Un
n (y), and it converges to 0 because

‖Un‖ = 1.

THEOREM: Let (M,µ) be a measure space and T : M −→M a map pre-

serving the measure. Consider the space L2(M) of functions f : M −→ R with

f2 integrable, and let T ∗ : L2(M)−→ L2(M) map f to T ∗f . Then the series

Tn(f) := 1
n

∑n−1
i=0 (T ∗)i(f) converges in L2(M) to a T ∗-invariant function.

Proof: Corollary 1 implies that Tn(f) converges to P (f).
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Ergodic measures and Cesàro sums

From now on, all measure spaces we consider are tacitly assumed to
have finite measure.

REMARK: a. e. means “almost everywhere”, that is, outside of a measure
0 set.

THEOREM: Let (M,µ) be a space with (finite) measure, and T : M −→M

a measurable map. Then T is ergodic if and only if for any bounded function
f : M −→ R, the function limn

1
n

∑n−1
i=0 (T ∗)if is constant a. e.

Proof: By von Neumann ergodic theorem, limn
1
n

∑n−1
i=0 (T ∗)if is T -invariant,

hence constant a.e. whenever T is µ-ergodic. Conversely, if T is not µ-
ergodic, there exists a bounded, measurable T -invariant function f which is
not constant a.e., and limn

1
n

∑n−1
i=0 (T ∗)if = f is not constant.

REMARK: Ergodicity would follow if limn
1
n

∑n−1
i=0 (T ∗)if = const for all f = χA,

where A ⊂M is a measurable subset, and χA its characteristic function.

COROLLARY: A dynamical system (M,µ, T ) is ergodic if and only if the
eigenspace of the corresponding Koopman operator T ∗ : L2(M,µ)−→ L2(M,µ)
with eigenvalue 1 is 1-dimensional.
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Convergence in density

DEFINITION: The (asymptotic) density of a subset J ⊂ Z>1 is the limit

limN
|J∩[1,N ]|

N . A subset J ⊂ Z>1 has density 1 if limN
|J∩[1,N ]|

N = 1.

DEFINITION: A sequence {ai} of real numbers converges to a in density

if there exists a subset J ⊂ Z>1 of density 1 such that limi∈J ai = a. The

convergence in density is denoted by Dlimi ai = a.

PROPOSITION: (Koopman-von Neumann, 1932) Let {ai} be a se-

quence of bounded non-negative numbers, ai ∈ [0, C]. Then convergence

to 0 in density is equivalent to the convergence of Cesàro sums:

Dlimi ai = 0⇔ lim
N

1

N

N∑
i=1

ai = 0

Proof: See the next slide
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Convergence in density (2)

Proof. Step 1: If Dlim ai = 0, then for J ⊂ Z>1 of density 1, one has
limi∈J ai = 0, which gives

lim
N

1

N

N∑
i=1

ai = lim
N

1

N

∑
i∈[1,N ]∩J

ai + lim
N

1

N

∑
i∈[1,N ]\J

ai

The first of the limits on RHS converges to 0 because limi∈J ai = 0, and

the second limit is bounded by limN C
|[1,N ]\|
N , converging to 0. The same

argument proves that density convergence always implies Cesàro con-
vergence for bounded sequences.

Step 2: Conversely, if limN
1
N

∑N
i=1 ai = 0, let Lk be the set of all n such

that an > 1
k. Clearly, L1 ⊂ L2 ⊂ .... The density of each Lk is 0 because

|Lk∩[1,N ]|
N 6 k 1

N

∑N
i=1 ai, and the later term converges to 0. Define a sequence

nk 6 nk+1 6 ... in such a way that |Lk∩[1,n]|
n < 1

k for all n > nk, and let
L :=

⋃
k(Lk ∩ [nk,∞[). Denote by J the set Z>1\L. Then limi∈J ai = 0,

because on each interval [nk, nk+1], for all i /∈ L one has i /∈ Lk, giving
ai 6 1/k.

Step 3: It remains to show that L has density 0. Let m ∈ [nk−1, nk]. Then
|L∩[0,m]|

m 6 |Lk∩[0,m]|
m 6 1

k, hence limm
|L∩[0,m]|

m = 0.
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Mixing, weak mixing, ergodicity

DEFINITION: Let (M,µ, T ) be a dynamic system, with µ a probability mea-
sure. We say that

(i) T is ergodic if limn
1
n

∑n−1
i=0

∫
M(T ∗)i(χA)χBµ = µ(A)µ(B), for all measurable

sets A,B ⊂M .

(ii) T is weak mixing if Dlim
i→∞

(T ∗)i(χA)χB = µ(A)µ(B).

(iii) T is mixing, or strongly mixing if lim
i→∞

∫
(T ∗)i(χA)χB = µ(A)µ(B).

REMARK: The first condition is equivalent to the usual definition of er-

godicity by the previous remark. Indeed, from (usual) ergodicity it follows
that limn

1
n

∑n−1
i=0 (T ∗)i(χA) = µ(A), which gives limn

1
n

∑n−1
i=0 (T ∗)i(χA)χB =

µ(A)χ(B) and the integral of this function is precisely µ(A)µ(B). Con-
versely, if limn

∫
(T ∗)i(χA)χB depends only on the measure of B, the function

limn
∫

(T ∗)i(χA) is constant, hence T is ergodic in the usual sense.

REMARK: Clearly, (iii) ⇒ (ii) ⇒ (i) (the last implication follows because the
density convergence implies the Cesàro convergence).

11



Smooth ergodic theory, lecture 14 M. Verbitsky

Mixing, weak mixing, ergodicity: spectral invariance

Notice that the space generated by χA is C0-dense in the space of all measur-

able functions. Therefore, in the definition of mixing/weak mixing/ergodicity

we may replace χA, χB by arbitrary L2-integrable functions. Denote by 〈·, ·〉
the scalar product on the Hilbert space L2(M,µ).

DEFINITION: Let (M,µ, T ) be a dynamic system. We say that

(i) T is ergodic if limn
1
n

∑n−1
i=0 〈T

i(f), g〉〈1,1〉 = 〈f,1〉〈g,1〉 for all f, g ∈ L2(M,µ).

(ii) T is weak mixing if Dlim
n→∞〈T

n(f), g〉〈1,1〉 = 〈f,1〉〈g,1〉.

(iii) T is mixing, or strongly mixing, if lim
n→∞〈T

n(f), g〉〈1,1〉 = 〈f,1〉〈g,1〉.

REMARK: Notice that these three notions are spectral invariants. In-

deed, the weakest of them already implies ergodicity, that is, the eigenspace

of eigenvalue 1 of T is 1-dimensional. This implies that T determines the

constant function in L2(M,µ). However, the conditions (i)-(iii) are expressed

in terms of 1, T and the scalar product, hence spectral invariant.
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Mixing: probabilistic interpretation

DEFINITION: Probability space is the set M , elements of which are called
outcomes, equipped with a σ-algebra of subsets, called events, and a prob-
ability measure µ. In this interpretation, the measure of an event U ⊂ M is
its probability. A random variable is a measurable map f : M −→ R. Its
expected value is E(f) :=

∫
M fµ. The correlation of random variables f, g

is C(f, g) := E(fg)− E(f)E(g).

REMARK: Mixing means precisely that limi(C(T if, g)) = 0, that is, for any
two random variables f and g, the correlation of T if and g converges to 0.

REMARK: Let A ⊂M be an event. Conditional expectation of the random

variable f is EA(f) :=
∫
A fµ

µ(A) . This is an expectation of f under the condition

that the event A happened. The conditional expectation EA(χB) := µ(A∩B)
µ(A)

is probability that B happens under the condition that A happened.

Correlation between events A,B ⊂M is the measure of their independence:

EA(χB) = E(χB)⇔
µ(A ∩B)

µ(A)
= µ(B)⇔ µ(A ∩B) = µ(A)µ(B).

if correlation is 0, this means that the probability of A is entirely unaf-
fected by B.
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Mixing: coin tossing

DEFINITION: Let P be a finite set, PZ the product of Z copies of P ,
Σ ⊂ Z a finite subset, and πΣ : PZ −→ P |Σ| projection to the corresponding
components. Cylindrical sets are sets CR := π−1

Σ (R), where R ⊂ P |Σ| is any
subset.

REMARK: For Bernoulli space, a complement to an cylindrical set is
again an open set, and the cylindrical sets form a Boolean algebra.

DEFINITION: Bernoulli measure on PZ is µ such that µ(CR) := |R|
|P ||Σ|

.

REMARK: We consider PZ as the set of outcomes of infinite sets of coin
tossing. The corresponding events are observations of some of the tosses,
and its measure is the probability of an event.

THEOREM: (Lebesque approximation theorem)
For each Lebesgue measurable set S ⊂ PZ and ε > 0, there exists a cylindrical
subset CR = π−1

Σ (R) such that µ(CR4X) < ε.

Proof: The σ-algebra of Lebesgue measurable sets is by definition a comple-
tion of the Boolean algebra of cylindrical sets.
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Bernoulli shifts are mixing

DEFINITION: Bernoulli shift maps a sequence a−n, a−n+1, ..., a0, a1, ... to
the sequence b−n, b−n+1, ..., b0, b1, ..., bi = ai−1.

CLAIM: The corresponding Z-action is (strongly) mixing on the Bernoulli

space.

Proof. Step 1: Since the set of characteristic functions of cylindrical sets is
dense, it suffices to prove the mixing for A, B cylindrical, A = CR = π−1

Σ (R),
B = CR′ = π−1

Σ′ (R
′).

Step 2: Let CR = π−1
Σ (R) and CR′ = π−1

Σ′ (R
′) be two open sets, where

Σ ⊂ Z and Σ′ ⊂ Z don’t intersect. Then µ(CR ∩ CR′) = µ(CR)µ(CR′): the
corresponding correlations vanish. Indeed,

µ(CR ∩ CR′) =
|R||R′|
|P ||Σ|+|Σ′|

.

This is intiutively clear, because different coin tossings are independent.

Step 3: For sufficiently big power TN of the Bernoulli shift, the sets Σ ⊂ Z
and Φ(Σ′) don’t intersect, which gives C(TN(CR), CR′) = 0.
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