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Koopman operators (reminder)

DEFINITION: Let (M,µ) be a space with finite measure, and T : M −→M a
measurable map preserving measure. The triple (M,µ, T ) is called dynamical
system. The map T defines a isometric embedding T ∗ :  L2(M,µ)−→ L2(M,µ)
on the space of square-integrable functions, called the Koopman operator.

DEFINITION: Two dynamical systems (M,µ, T ) and (M1, µ1, T1) are spec-
tral equivalent if there exists an invertible map ϕ : L2(M,µ)−→ L2(M1, µ1)
such that the following diagram is commutative

L2(M,µ)
ϕ−→ L2(M1, µ1)

T ∗
y yT ∗1

L2(M,µ)
ϕ−→ L2(M1, µ1)

(this is the same as to say that the equivalence ϕ exchanges the Koopman
operators T ∗ and T ∗1).

DEFINITION: A property A of dynamical system is called spectral invari-
ant if for each two spectral invariant systems (M,µ, T ) and (M1, µ1, T1), the
property A holds for (M,µ, T ) ⇔ it holds for (M1, µ1, T1).

REMARK: We shall see today that ergodicity is a spectral invariant.
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Ergodic measures and Cesàro sums (reminder)

Theorem (von Neumann ergodic): Let U : H −→H be an invertible or-
thogonal map, and Un := 1

n

∑n−1
i=0 U

i(x). Then limnUn(x) = P (x), for all
x ∈ H where P is an orthogonal projection to HU = ker(1− U).

REMARK: a. e. means “almost everywhere”, that is, outside of a measure
0 set.

THEOREM: Let (M,µ) be a space with (finite) measure, and T : M −→M
a measurable map. Then T is ergodic if and only if for any bounded function
f : M −→ R, the function limn

1
n

∑n−1
i=0 (T ∗)if is constant a. e.

Proof: By von Neumann ergodic theorem, limn
1
n

∑n−1
i=0 (T ∗)if is T -invariant,

hence constant a.e. whenever T is µ-ergodic. Conversely, if T is not µ-
ergodic, there exists a bounded, measurable T -invariant function f which is
not constant a.e., and limn

1
n

∑n−1
i=0 (T ∗)if = f is not constant.

REMARK: Ergodicity would follow if limn
1
n

∑n−1
i=0 (T ∗)if = const for all f = χA,

where A ⊂M is a measurable subset, and χA its characteristic function.

COROLLARY: A dynamical system (M,µ, T ) is ergodic if and only if the
eigenspace of the corresponding Koopman operator T ∗ : L2(M,µ)−→ L2(M,µ)
with eigenvalue 1 is 1-dimensional.
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Convergence in density (reminder)

DEFINITION: The (asymptotic) density of a subset J ⊂ Z>1 is the limit

limN
|J∩[1,N ]|

N . A subset J ⊂ Z>1 has density 1 if limN
|J∩[1,N ]|

N = 1.

DEFINITION: A sequence {ai} of real numbers converges to a in density

if there exists a subset J ⊂ Z>1 of density 1 such that limi∈J ai = a. The

convergence in density is denoted by Dlimi ai = a.

PROPOSITION: (Koopman-von Neumann, 1932) Let {ai} be a se-

quence of bounded non-negative numbers, ai ∈ [0, C]. Then convergence

to 0 in density is equivalent to the convergence of Cesàro sums:

Dlimi ai = 0⇔ lim
N

1

N

N∑
i=1

ai = 0
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Mixing, weak mixing, ergodicity (reminder)

DEFINITION: Let (M,µ, T ) be a dynamic system, with µ a probability mea-
sure. We say that

(i) T is ergodic if limn
1
n

∑n−1
i=0 µ(T i(A) ∩ B) = µ(A)µ(B), for all measurable

sets A,B ⊂M .

(ii) T is weak mixing if Dlim
i→∞

µ(T i(A) ∩B) = µ(A)µ(B).

(iii) T is mixing, or strongly mixing if lim
i→∞

µ(T i(A) ∩B) = µ(A)µ(B).

REMARK: The first condition is equivalent to the usual definition of er-

godicity by the previous remark. Indeed, from (usual) ergodicity it follows
that limn

1
n

∑n−1
i=0 (T ∗)i(χA) = µ(A), which gives limn

1
n

∑n−1
i=0 (T ∗)i(χA)χB =

µ(A)χ(B) and the integral of this function is precisely µ(A)µ(B). Con-
versely, if limn

∫
(T ∗)i(χA)χB depends only on the measure of B, the function

limn
∫

(T ∗)i(χA) is constant, hence T is ergodic in the usual sense.

REMARK: Clearly, (iii) ⇒ (ii) ⇒ (i) (the last implication follows because the
density convergence implies the Cesàro convergence).
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Mixing, weak mixing, ergodicity: spectral invariance (reminder)

Notice that the space generated by χA is C0-dense in the space of all measur-

able functions. Therefore, in the definition of mixing/weak mixing/ergodicity

we may replace χA, χB by arbitrary L2-integrable functions. Denote by 〈·, ·〉
the scalar product on the Hilbert space L2(M,µ).

DEFINITION: Let (M,µ, T ) be a dynamic system. We say that

(i) T is ergodic if limn
1
n

∑n−1
i=0 〈T

i(f), g〉〈1,1〉 = 〈f,1〉〈g,1〉 for all f, g ∈ L2(M,µ).

(ii) T is weak mixing if Dlim
n→∞〈T

n(f), g〉〈1,1〉 = 〈f,1〉〈g,1〉.

(iii) T is mixing, or strongly mixing, if lim
n→∞〈T

n(f), g〉〈1,1〉 = 〈f,1〉〈g,1〉.

REMARK: Notice that these three notions are spectral invariant. In-

deed, the weakest of them already implies ergodicity, that is, the eigenspace

of eigenvalue 1 of T is 1-dimensional. This implies that T determines the

constant function in L2(M,µ). However, the conditions (i)-(iii) are expressed

in terms of 1, T and the scalar product, hence spectral invariant.
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Mixing and weak mixing on the product

DEFINITION: Let (M,µ, T ) be a dynamical system. Consider the dynamical

system (M,µ, T )2 := (M×M,µ×µ, T ×T ), where µ×µ is the product measure

on M ×M , and T × T (x, y) = (T (x), T (y)).

THEOREM: Let (M,µ, T ) be a dynamical system, and (M,µ, T )2 its product

with itself. Then (M,µ, T )2 is (weak) mixing if and only (M,µ, T ) is (weak)

mixing.

Proof. Step 1: To simplify the notation, assume µ(M) = 1. To see that

(weak) mixing on (M,µ, T )2 implies the (weak) mixing on (M,µ, T ), we take

the sets A1 := A×M and B1 := B×M . Then µ(T i(A1)∩B1) = µ(T i(A)∩B)

and µ(A1)µ(B1) = µ(A)µ(B), hence

lim
i
µ(T i(A1) ∩B1) = µ(A1)µ(B1)

implies

lim
i
µ(T i(A) ∩B) = µ(A)µ(B).
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Mixing and weak mixing on the product (2)

THEOREM: Let (M,µ, T ) be a dynamical system, and (M,µ, T )2 its product

with itself. Then (M,µ, T )2 is (weak) mixing if and only (M,µ, T ) is (weak)

mixing.

Step 2: Conversely, assume that (M,µ, T ) is mixing. Since the subalgebra

generated by cylindrical sets is dense in the algebra of measurable sets, it

would suffice to show that limi µ(T i(A1) ∩B1) = µ(A1)µ(B1) where A1, B1 ⊂
M2 are cylindrical. Write A1 = A × A′, B1 = B × B′. Then µ(TnA1 ∩ B1) =(
µ(TnA∩B)

)(
µ(TnA′∩B′)

)
. The first of the terms in brackets converges to

µ(A)µ(B), the second to µ(A′)µ(B′), giving

lim
i
µ(T i(A1) ∩B1) = µ(A)µ(B)µ(A′)µ(B′) = µ(A1)µ(B1).

REMARK: The same argument also proves that ergodicity of (M,µ, T )2

implies ergodicity of (M,µ, T ). The converse implication is invalid even for

a circle.
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Ergodic measures which are not mixing

REMARK: Let Lα : S1 −→ S1 be a rotation with irrational angle α. In angle

coordinates on S1×S1, the rotation Lα×Lα acts as Lα×Lα(x, y) = (x+α, y+α).

Therefore, the closure of the orbit of (x, y) is always contained in the closed

set {(a, b) ∈ S1 × S1 | a− b = x− y}, and Lα × Lα has no dense orbits.

This gives the claim.

CLAIM: Irrational rotation of a circle is ergodic, but not weakly mixing.

Proof: Otherwise, Lα × Lα would be weak mixing, and hence ergodic, on

S1 × S1.
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Weak mixing and non-constant eigenfunctions

I am going to prove the following theorem.

Theorem 1: Let (M,µ, T ) be a dynamical system. Then the following are

equivalent.

(i) (M,µ, T ) is weakly mixing.

(ii) The Koopman operator T : L2(M,µ)−→ L2(M,µ) has no non-constant

eigenvectors.

(iii) (M,µ, T )2 is ergodic.

The proof uses spectral theory of operators on a Hilbert space.
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Tensor product of Hilbert spaces

DEFINITION: Let H,H ′ be two Hilbert spaces. The tensor product H ⊗H ′

has a natural scalar product which is non-complete. Its completion H⊗̂H ′ is

called completed tensor product of H and H ′.

REMARK: Let {ei}, {e′i} be orthonormal bases in H,H ′. Then H⊗̂H ′ is all

series
∑
iαijei ⊗ e′j with

∑
i,j |αij|2 <∞.

REMARK: The natural map H⊗̂H∗ Φ−→ Hom(H,H) is not surjective.

Indeed, the identity operator
∑
i ei ⊗ e∗i does not belong to the completion of

H ⊗H∗, because the series 1 + 1 + 1 + 1 + ... does not converge.

CLAIM: Let (M,µ) and (M ′, µ′) be metrizable spaces with Borel measure.

Then L2(M ×M ′, µ× µ′) = L2(M,µ)⊗̂L2(M ′, µ′).

Proof: The usual tensor product C0(M) ⊗ C0(M ′) is a dense (by Stone-

Weierstrass) subring in C0(M × M), the space L2(M,µ) ⊗ L2(M ′, µ′) is its

partial completion, and L2(M,µ)⊗̂L2(M ′, µ′) is its completion. Therefore,

L2(M,µ)⊗ L2(M ′, µ′) ⊂ L2(M,µ)⊗̂L2(M ′, µ′) is a dense subset.
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Orthogonal operators on tensor square

Next lecture I will prove the following theorem.

THEOREM: Let U be an orthogonal operator on a Hilbert space H. Then
the following are equivalent:

(i) U has no eigenvectors in H.

(ii) U × U has no eigenvectors in H⊗̂H with eigenvalue 1.

This immediately implies equivalence of (ii) and (iii) in Theorem 1:

PROPOSITION: Let (M,µ, T ) be a dynamical system. Then T × T is
ergodic on M2 if and only if T has no non-constant eigenfunctions on
L2(M,µ).

Proof: Let H ⊂ L2(M,µ) be the space of all functions f with
∫
M fµ = 0.

Then L2(M2, µ2) = H⊗̂H ⊕ H ⊕ H ⊕ R. Ergodicity of T × T on M2 (and,
hence, M) means that T × T has no invariant vectors in H and H ⊗ H. By
the previous theorem, this is equivalent to T having no eigenvectors in
H.
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Weak mixing and action on the square

Theorem 1: Let (M,µ, T ) be a dynamical system. Then the following are

equivalent.

(i) (M,µ, T ) is weakly mixing.

(ii) The Koopman operator T : L2(M,µ)−→ L2(M,µ) has no non-

constant eigenvectors.

(iii) (M,µ, T )2 is ergodic.

Proof. Step 1: Equivalence of (iii) and (ii) is already proven. Implication (i)

⇒ (iii) is elementary: indeed, (M,µ, T )2 is weakly mixing, hence ergodic. It

remains only to prove that (iii) implies (i).
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Weak mixing and action on the square (2)

Ergodicity of (M,µ, T )2 imlplies that (M,µ, T ) is weak mixing:

Step 2: Let A,B ⊂ M be measurable subsets. To simplify notation, we
assume that µ(M) = 1. Consider the sequence 1

n

∑n−1
i=0 (µ(T iA ∩ B)µ(M) −

µ(A)µ(B))2. The terms are non-negative, and by Koopman-von Neumann
convergence of this sequence implies density convergence of µ(T iA ∩
B)− µ(A)µ(B), which is the same as weak mixing.

Step 3:

1

n

n−1∑
i=0

(µ(T iA ∩B)− µ(A)µ(B))2 =

[
1

n

n−1∑
i=0

µ(T iA ∩B)2 − µ(A)2µ(B)2
]

+

[
2

n

n−1∑
i=0

µ(A)2µ(B)2 − µ(T iA ∩B)µ(A)µ(B).

]

The first term on RHS is 1
n

∑n−1
i=0 µ((T × T )iA2 ∩ B2) − µ(A2)µ(B2), and it

converges because T × T is ergodic. The second term is

−µ(A)µ(B)
2

n

n−1∑
i=0

µ(T iA ∩B)− µ(A)µ(B),

and it converges because M is ergodic.
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