Teoria Ergódica Diferenciável

lecture 15: Weak mixing: spectral characterization

Instituto Nacional de Matemática Pura e Aplicada

Misha Verbitsky, November 3, 2017

Koopman operators (reminder)

DEFINITION: Let (M, μ) be a space with finite measure, and $T : M \longrightarrow M$ a measurable map preserving measure. The triple (M, μ, T) is called **dynamical system**. The map T defines a isometric embedding $T^* : L^2(M, \mu) \longrightarrow L^2(M, \mu)$ on the space of square-integrable functions, called **the Koopman operator**.

DEFINITION: Two dynamical systems (M, μ, T) and (M_1, μ_1, T_1) are **spectral equivalent** if there exists an invertible map $\varphi : L^2(M, \mu) \longrightarrow L^2(M_1, \mu_1)$ such that the following diagram is commutative

$$\begin{array}{cccc} L^{2}(M,\mu) & \xrightarrow{\varphi} & L^{2}(M_{1},\mu_{1}) \\ T^{*} & & & \downarrow^{T_{1}^{*}} \\ L^{2}(M,\mu) & \xrightarrow{\varphi} & L^{2}(M_{1},\mu_{1}) \end{array}$$

(this is the same as to say that the equivalence φ exchanges the Koopman operators T^* and T_1^*).

DEFINITION: A property A of dynamical system is called **spectral invariant** if for each two spectral invariant systems (M, μ, T) and (M_1, μ_1, T_1) , the property A holds for $(M, \mu, T) \Leftrightarrow$ it holds for (M_1, μ_1, T_1) .

REMARK: We shall see today that **ergodicity is a spectral invariant.**

Ergodic measures and Cesàro sums (reminder)

Theorem (von Neumann ergodic): Let $U : H \longrightarrow H$ be an invertible orthogonal map, and $U_n := \frac{1}{n} \sum_{i=0}^{n-1} U^i(x)$. Then $\lim_n U_n(x) = P(x)$, for all $x \in H$ where P is an orthogonal projection to $H^U = \ker(1 - U)$.

REMARK: a. e. means "almost everywhere", that is, outside of a measure 0 set.

THEOREM: Let (M, μ) be a space with (finite) measure, and $T: M \longrightarrow M$ a measurable map. Then T is ergodic if and only if for any bounded function $f: M \longrightarrow \mathbb{R}$, the function $\lim_{n} \frac{1}{n} \sum_{i=0}^{n-1} (T^*)^i f$ is constant a. e.

Proof: By von Neumann ergodic theorem, $\lim_{n} \frac{1}{n} \sum_{i=0}^{n-1} (T^*)^i f$ is *T*-invariant, hence constant a.e. whenever *T* is μ -ergodic. Conversely, if *T* is not μ -ergodic, there exists a bounded, measurable *T*-invariant function *f* which is not constant a.e., and $\lim_{n} \frac{1}{n} \sum_{i=0}^{n-1} (T^*)^i f = f$ is not constant.

REMARK: Ergodicity would follow if $\lim_{n} \frac{1}{n} \sum_{i=0}^{n-1} (T^*)^i f = \text{const}$ for all $f = \chi_A$, where $A \subset M$ is a measurable subset, and χ_A its characteristic function.

COROLLARY: A dynamical system (M, μ, T) is ergodic if and only if the eigenspace of the corresponding Koopman operator T^* : $L^2(M, \mu) \longrightarrow L^2(M, \mu)$ with eigenvalue 1 is 1-dimensional.

Convergence in density (reminder)

DEFINITION: The (asymptotic) density of a subset $J \subset \mathbb{Z}^{\geq 1}$ is the limit $\lim_{N \to \infty} \frac{|J \cap [1,N]|}{N}$. A subset $J \subset \mathbb{Z}^{\geq 1}$ has density 1 if $\lim_{N \to \infty} \frac{|J \cap [1,N]|}{N} = 1$.

DEFINITION: A sequence $\{a_i\}$ of real numbers converges to a in density if there exists a subset $J \subset \mathbb{Z}^{\geq 1}$ of density 1 such that $\lim_{i \in J} a_i = a$. The convergence in density is denoted by $\text{Dlim}_i a_i = a$.

PROPOSITION: (Koopman-von Neumann, 1932) Let $\{a_i\}$ be a sequence of bounded non-negative numbers, $a_i \in [0, C]$. Then convergence to 0 in density is equivalent to the convergence of Cesàro sums:

$$\operatorname{Dlim}_{i} a_{i} = 0 \Leftrightarrow \lim_{N} \frac{1}{N} \sum_{i=1}^{N} a_{i} = 0$$

Mixing, weak mixing, ergodicity (reminder)

DEFINITION: Let (M, μ, T) be a dynamic system, with μ a probability measure. We say that

(i) *T* is ergodic if $\lim_{n \to \infty} \frac{1}{n} \sum_{i=0}^{n-1} \mu(T^{i}(A) \cap B) = \mu(A)\mu(B)$, for all measurable sets $A, B \subset M$.

(ii) T is weak mixing if $\underset{i\to\infty}{\text{Dlim}} \mu(T^i(A)\cap B) = \mu(A)\mu(B)$.

(iii) T is mixing, or strongly mixing if $\lim_{i\to\infty} \mu(T^i(A) \cap B) = \mu(A)\mu(B)$.

REMARK: The first condition is equivalent to the usual definition of ergodicity by the previous remark. Indeed, from (usual) ergodicity it follows that $\lim_{n} \frac{1}{n} \sum_{i=0}^{n-1} (T^*)^i (\chi_A) = \mu(A)$, which gives $\lim_{n} \frac{1}{n} \sum_{i=0}^{n-1} (T^*)^i (\chi_A) \chi_B = \mu(A)\chi(B)$ and the integral of this function is precisely $\mu(A)\mu(B)$. Conversely, if $\lim_{n} \int (T^*)^i (\chi_A)\chi_B$ depends only on the measure of *B*, the function $\lim_{n} \int (T^*)^i (\chi_A)$ is constant, hence *T* is ergodic in the usual sense.

REMARK: Clearly, (iii) \Rightarrow (i) \Rightarrow (i) (the last implication follows because the density convergence implies the Cesàro convergence).

Mixing, weak mixing, ergodicity: spectral invariance (reminder)

Notice that the space generated by χ_A is C^0 -dense in the space of all measurable functions. Therefore, in the definition of mixing/weak mixing/ergodicity we may replace χ_A , χ_B by arbitrary L^2 -integrable functions. Denote by $\langle \cdot, \cdot \rangle$ the scalar product on the Hilbert space $L^2(M, \mu)$.

DEFINITION: Let (M, μ, T) be a dynamic system. We say that

- (i) T is ergodic if $\lim_{n \to \infty} \frac{1}{n} \sum_{i=0}^{n-1} \langle T^i(f), g \rangle \langle 1, 1 \rangle = \langle f, 1 \rangle \langle g, 1 \rangle$ for all $f, g \in L^2(M, \mu)$.
- (ii) T is weak mixing if $\underset{n\to\infty}{\text{Dlim}}\langle T^n(f),g\rangle\langle 1,1\rangle = \langle f,1\rangle\langle g,1\rangle$.

(iii) T is mixing, or strongly mixing, if $\lim_{n\to\infty} \langle T^n(f), g \rangle \langle 1, 1 \rangle = \langle f, 1 \rangle \langle g, 1 \rangle$.

REMARK: Notice that these three notions are spectral invariant. Indeed, the weakest of them already implies ergodicity, that is, the eigenspace of eigenvalue 1 of T is 1-dimensional. This implies that T determines the constant function in $L^2(M, \mu)$. However, the conditions (i)-(iii) are expressed in terms of 1, T and the scalar product, hence spectral invariant.

Mixing and weak mixing on the product

DEFINITION: Let (M, μ, T) be a dynamical system. Consider the dynamical system $(M, \mu, T)^2 := (M \times M, \mu \times \mu, T \times T)$, where $\mu \times \mu$ is the product measure on $M \times M$, and $T \times T(x, y) = (T(x), T(y))$.

THEOREM: Let (M, μ, T) be a dynamical system, and $(M, \mu, T)^2$ its product with itself. Then $(M, \mu, T)^2$ is (weak) mixing if and only (M, μ, T) is (weak) mixing.

Proof. Step 1: To simplify the notation, assume $\mu(M) = 1$. To see that (weak) mixing on $(M, \mu, T)^2$ implies the (weak) mixing on (M, μ, T) , we take the sets $A_1 := A \times M$ and $B_1 := B \times M$. Then $\mu(T^i(A_1) \cap B_1) = \mu(T^i(A) \cap B)$ and $\mu(A_1)\mu(B_1) = \mu(A)\mu(B)$, hence

$$\lim_{i} \mu(T^{i}(A_{1}) \cap B_{1}) = \mu(A_{1})\mu(B_{1})$$

implies

$$\lim_{i} \mu(T^{i}(A) \cap B) = \mu(A)\mu(B).$$

Mixing and weak mixing on the product (2)

THEOREM: Let (M, μ, T) be a dynamical system, and $(M, \mu, T)^2$ its product with itself. Then $(M, \mu, T)^2$ is (weak) mixing if and only (M, μ, T) is (weak) mixing.

Step 2: Conversely, assume that (M, μ, T) is mixing. Since the subalgebra generated by cylindrical sets is dense in the algebra of measurable sets, it would suffice to show that $\lim_{i} \mu(T^{i}(A_{1}) \cap B_{1}) = \mu(A_{1})\mu(B_{1})$ where $A_{1}, B_{1} \subset M^{2}$ are cylindrical. Write $A_{1} = A \times A'$, $B_{1} = B \times B'$. Then $\mu(T^{n}A_{1} \cap B_{1}) = \left(\mu(T^{n}A \cap B)\right)\left(\mu(T^{n}A' \cap B')\right)$. The first of the terms in brackets converges to $\mu(A)\mu(B)$, the second to $\mu(A')\mu(B')$, giving

$$\lim_{i} \mu(T^{i}(A_{1}) \cap B_{1}) = \mu(A)\mu(B)\mu(A')\mu(B') = \mu(A_{1})\mu(B_{1}).$$

REMARK: The same argument also proves that **ergodicity of** $(M, \mu, T)^2$ **implies ergodicity of** (M, μ, T) . The converse implication is invalid even for a circle.

Ergodic measures which are not mixing

REMARK: Let L_{α} : $S^1 \longrightarrow S^1$ be a rotation with irrational angle α . In angle coordinates on $S^1 \times S^1$, the rotation $L_{\alpha} \times L_{\alpha}$ acts as $L_{\alpha} \times L_{\alpha}(x,y) = (x+\alpha, y+\alpha)$. Therefore, the closure of the orbit of (x, y) is always contained in the closed set $\{(a, b) \in S^1 \times S^1 \mid a - b = x - y\}$, and $L_{\alpha} \times L_{\alpha}$ has no dense orbits.

This gives the claim.

CLAIM: Irrational rotation of a circle is ergodic, but not weakly mixing.

Proof: Otherwise, $L_{\alpha} \times L_{\alpha}$ would be weak mixing, and hence ergodic, on $S^1 \times S^1$.

Weak mixing and non-constant eigenfunctions

I am going to prove the following theorem.

Theorem 1: Let (M, μ, T) be a dynamical system. Then the following are equivalent.

(i) (M, μ, T) is weakly mixing.

(ii) The Koopman operator $T : L^2(M, \mu) \longrightarrow L^2(M, \mu)$ has no non-constant eigenvectors.

(iii) $(M, \mu, T)^2$ is ergodic.

The proof uses spectral theory of operators on a Hilbert space.

Tensor product of Hilbert spaces

DEFINITION: Let H, H' be two Hilbert spaces. The tensor product $H \otimes H'$ has a natural scalar product which is non-complete. Its completion $H \otimes H'$ is called **completed tensor product** of H and H'.

REMARK: Let $\{e_i\}, \{e'_i\}$ be orthonormal bases in H, H'. Then $H \widehat{\otimes} H'$ is all series $\sum_i \alpha_{ij} e_i \otimes e'_j$ with $\sum_{i,j} |\alpha_{ij}|^2 < \infty$.

REMARK: The natural map $H \otimes H^* \xrightarrow{\Phi} Hom(H, H)$ is not surjective. Indeed, the identity operator $\sum_i e_i \otimes e_i^*$ does not belong to the completion of $H \otimes H^*$, because the series 1 + 1 + 1 + 1 + ... does not converge.

CLAIM: Let (M, μ) and (M', μ') be metrizable spaces with Borel measure. **Then** $L^2(M \times M', \mu \times \mu') = L^2(M, \mu) \widehat{\otimes} L^2(M', \mu')$.

Proof: The usual tensor product $C^0(M) \otimes C^0(M')$ is a dense (by Stone-Weierstrass) subring in $C^0(M \times M)$, the space $L^2(M,\mu) \otimes L^2(M',\mu')$ is its partial completion, and $L^2(M,\mu) \hat{\otimes} L^2(M',\mu')$ is its completion. Therefore, $L^2(M,\mu) \otimes L^2(M',\mu') \subset L^2(M,\mu) \hat{\otimes} L^2(M',\mu')$ is a dense subset.

Orthogonal operators on tensor square

Next lecture I will prove the following theorem.

THEOREM: Let U be an orthogonal operator on a Hilbert space H. Then the following are equivalent:

- (i) U has no eigenvectors in H.
- (ii) $U \times U$ has no eigenvectors in $H \widehat{\otimes} H$ with eigenvalue 1.

This immediately implies equivalence of (ii) and (iii) in Theorem 1:

PROPOSITION: Let (M, μ, T) be a dynamical system. Then $T \times T$ is ergodic on M^2 if and only if T has no non-constant eigenfunctions on $L^2(M, \mu)$.

Proof: Let $H \subset L^2(M,\mu)$ be the space of all functions f with $\int_M f\mu = 0$. Then $L^2(M^2,\mu^2) = H \widehat{\otimes} H \oplus H \oplus H \oplus \mathbb{R}$. Ergodicity of $T \times T$ on M^2 (and, hence, M) means that $T \times T$ has no invariant vectors in H and $H \otimes H$. By the previous theorem, this is equivalent to T having no eigenvectors in H.

Weak mixing and action on the square

Theorem 1: Let (M, μ, T) be a dynamical system. Then the following are equivalent.

(i) (M, μ, T) is weakly mixing.

(ii) The Koopman operator T: $L^2(M,\mu) \longrightarrow L^2(M,\mu)$ has no nonconstant eigenvectors.

(iii) $(M, \mu, T)^2$ is ergodic.

Proof. Step 1: Equivalence of (iii) and (ii) is already proven. Implication (i) \Rightarrow (iii) is elementary: indeed, $(M, \mu, T)^2$ is weakly mixing, hence ergodic. It remains only to prove that (iii) implies (i).

Weak mixing and action on the square (2)

Ergodicity of $(M, \mu, T)^2$ implies that (M, μ, T) is weak mixing:

Step 2: Let $A, B \subset M$ be measurable subsets. To simplify notation, we assume that $\mu(M) = 1$. Consider the sequence $\frac{1}{n} \sum_{i=0}^{n-1} (\mu(T^i A \cap B)\mu(M) - \mu(A)\mu(B))^2$. The terms are non-negative, and by Koopman-von Neumann **convergence of this sequence implies density convergence of** $\mu(T^i A \cap B) - \mu(A)\mu(B)$, which is the same as weak mixing.

Step 3:

$$\frac{1}{n}\sum_{i=0}^{n-1}(\mu(T^{i}A\cap B) - \mu(A)\mu(B))^{2} = \left[\frac{1}{n}\sum_{i=0}^{n-1}\mu(T^{i}A\cap B)^{2} - \mu(A)^{2}\mu(B)^{2}\right] + \left[\frac{2}{n}\sum_{i=0}^{n-1}\mu(A)^{2}\mu(B)^{2} - \mu(T^{i}A\cap B)\mu(A)\mu(B)\right]$$

The first term on RHS is $\frac{1}{n}\sum_{i=0}^{n-1}\mu((T \times T)^i A^2 \cap B^2) - \mu(A^2)\mu(B^2)$, and it converges because $T \times T$ is ergodic. The second term is

$$-\mu(A)\mu(B)\frac{2}{n}\sum_{i=0}^{n-1}\mu(T^{i}A\cap B)-\mu(A)\mu(B),$$

and it converges because M is ergodic. \blacksquare