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Choquet theorem (reminder)

THEOREM: (Choquet theorem) Let K C V be a compact, convex subset
in a locally convex topological vector space, R the closure of the set EF(K) of
its extreme points, and P the space of all probabilistic Borel measures on R.
Consider the map ® : P — K putting p to [,cpxzp. Then @ is surjective.

Proof: By weak-x compactness of the space of measures, P is compact.
The image of ® is convex and contains all points of R which correspond to
atomic measures. On the other hand, an image of a compact set under a
continuous map is compact, hence ®(P) is compact and complete. Finally,
K is a completion of a convex hull of R, hence K = $(P). =

REMARK: The measure p associated with a point k£ € K is not necessarily
unique. If & : P — K is bijective, the set K is called a simplex.



Smooth ergodic theory, lecture 19 M. Verbitsky

Ergodic decomposition of a measure (reminder)

THEOREM: Let ' be a group (or a semigroup) acting on a topological
space M and preserving the Borel o-algebra, P the space of all I'-invariant
probabilistic measures on M, and R the space of ergodic probabilistic mea-
sures. Then, for each u € P, there exists a probability measure p, on R,

such that y = [..prxpu. Moreover, if I' is countable, the measure p, is
uniquely determined by L.

REMARK: Such a form p, is called ergodic decomposition of a form .

Existence of ergodic decomposition follows from Choquet theorem.
Uniqueness follows from the disintegration, see the next slides.
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Probability kernels and disintegragion of measures

DEFINITION: Let X, Y be spaces with o-algebras, P the space of probability
measures on X, and y A 1y @ map from Y to P. We say that ¢ is probability
kernel if the map y— [y fuy 9ives a measurable function on Y for any
bounded, measurable function f on X.

EXAMPLE: Let (A,u) and (B,v) be probability spaces, and A x B — B
the projection. By Fubini theorem, for any measurable, bounded function f
on A x B, the restriction of f to #—1(b) is integrable almost everywhere, and

JaxB f = JbeBV Jaxqp) f1- Then b—>M|X><{b} IS a probability kernel.

DEFINITION: Let u,u’ be measures, with p absolutely continuous with
respect to u/. Radon-Nikodym tell us that u = fu/, for some non-negative
measurable function f. Then f is called Radon-Nikodym derivative and
denoted by f = %
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Disintegragion of measures

THEOREM: (disintegration of measures) Let (X, ), (Y,v) be spaces with
probability measures, and « : X — Y measurable map such that m«(u) = v.
Denote the space of probability measures on X by P. Assume that X is a
metrizable topological space with Borel o-algebra. Then m.(fur) is absolutely
continuous with respect to v. Moreover, there exists a probability kernel
Y — P mapping y € Y to uy, such that

7r*(f,u)

vV

=], fr

Proof. Step 1: Absolute continuity of m«(fu) is clear, because a preimage
of measure zero subset in Y has measure zero in X, hence it has measure zero
in the measure fu. It remains to check that p,(f) = %(y) defines a
probability measure.

Step 2: This functional is a measure by Riesz representation theorem.
Indeed, it is non-negative and continuous on CO(M). Since w«u = v, one has
puy(l) =1, and this measure is probabilistic. m

REMARK: Disintegration of measures is unique by construction.
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Disintegration and orthogonal projection

CLAIM: Let (X, ), (Y,v) be spaces with probability measure, andr: X — Y
measurable map such that m«(u) = v. Consider the pullback map
L2(Y,v) — L?(X, ), which is by construction an isometry, and let N be
the orthogonal projection from L2(X,u) to the image of L2(Y,v). Then
N(f)(y) = [x fuy, where y — u, is the disintegration probability kernel
constructed above.

Proof: Let g € L?(Y). Then [y fr*gu = [y m(fu)g. This gives
<7r(f)u

>=vmww:qum.

= N(f), giving [x fuy = ") = N(f)(y).
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Disintegration and conditional expectation

DEFINITION: Probability space is the set M, elements of which are called
outcomes, equipped with a o-algebra of subsets, called events, and a prob-
ability measure p. In this interpretation, the measure of an event U C M is
its probability. A random variable is a measurable map f: M —R. Its
expected value is E(f) := [/ fu.

DEFINITION: Let A C M be an event with u(A) > 0. Conditional expec-

tation of the random variable f is E4(f) = /fj&? This is an expectation of f
under the condition that the event A happened. The conditional expectation

Ex(xR) = M(;(%B) is probability that B happens under the condition that A
happened.

REMARK: Consider now the map (X,u) — (Y,v), and let

W*(l;f:u) (y) e /7T_1(y) f,uy,

define the probability kernel u,. The conditional expectation Eﬁ_l(y)(f)
(expectation of f on the set 7 1(y)) is equal to [y, fuy.

-
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Disintegration and ergodic decomposition

THEOREM: Let X be a metrizable topological space, A its Borel o-algebra,
T : X — X a measurable map, and p a T-invariant measure. Consider the
o-algebra A1 of T-invariant Borel sets, and let 7 : (X, A) — (X, A1) be the
identity map. Consider the corresponding disintegration y — py of u. Then
[y are ergodic for a. e. y.

REMARK: By definition of disintegration, [x fu = [,cx Jx fry. Therefore,
this theorem gives another construction of ergodic decomposition. Unique-
ness of ergodic decomposition is immediately implied by uniqueness of
disintegration.

Proof. Step 1: Notice that all measures py are T-invariant. Indeed, m«fu =
m«Tfu.  Also, all measurable functions on (X, A?) are T-invariant, hence
L2(X,AT) is the space of all L2-integrable T-invariant functions. This im-
plies that [y fuy = N(f)(y) where N : L2(X) — L?(X, AT) is orthogonal
projection.

Step 2: To prove that uy is ergodic, we need to show that for any bounded
L2-measurable function f, the sequence Cy(f) := %Z?:_Ol T'f converges to
constant a.e. in uy for y a.e.

Step 3: The sequence Cn(f) converges to MN(f) a.e. in u. However, M(f) is
constant a.e. with respect to uy, because [gMN(f)uy = MN(g)MN(f)(y) and this
indegral depends only on [, guy. ®
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Unique ergodicity

DEFINITION: From now on in this lecture we consider dynamical systems
(M, un, T), where M is a compact space, ¢ a probability Borel measure, and
T . M — M continuous. We say that u is uniquely ergodic if u is a unique
T-invariant probability measure on M.

REMARK: Clearly, uniquely ergodic measures are ergodic. Indeed, any
T-invariant non-negative measurable function is constant a.e. in pu.

THEOREM: Let (M, u,T) be as above, and p uniquely ergodic. Then the
closure of any orbit of T' contains the support of ..

Proof: Let z € M and z; = T*(z). Consider the atomic measure d;,, and let
C; = %Zf};& 0z;. AS shown in Lecture 5, any limit point C' of the sequence
{C;} is a T-invariant measure; the limit points exist by weak-x compactness.
However, C is supported on the closure {z;} of {z;}, because all §; vanish
on continuous functions which vanish on {z;}, and for any point z ¢ {z;},
there exists a continuous function vanishing on {z;} and positive in z. =

EXERCISE: Find a map T : M — M such that p is uniquely ergodic, but
its support is not the whole M.

REMARK: Density of all orbits does not imply unique ergodicity.
9



Smooth ergodic theory, lecture 19 M. Verbitsky

Unique ergodicity and uniform convergence

THEOREM: Let (M,u,T) be a dynamlcal system, with M a compact met-
ric space. Denote by Cn(f) the sum Z” 1T’L(f). Then the following are
equivalent.

(i) (M, u,T) is uniquely ergodic.

(ii) For any continuous function f, the sequence C,(f) converges ev-
erywhere to a constant.

(iii) For any continuous function f, the sequence Cy,(f) converges uni-
formly to a constant.

(iv) For any Lipschitz function f, the sequence Cp(f) converges uni-
formly to a constant.

Proof: Equivalence of (iii) and (iv) is clear, because Lipschitz functions are
dense in uniform topology by Stone-Weierstrass. The implications (iii) = (ii)
= (i) are also clear. It remains to show that (i) implies (iii). Suppose that
Cn(f) does not convegre uniformly to [,; fu. Then there exists a sequence
x;, such that Cjn(f)(x]n) > [y fr+ e for some ¢ > 0. Consider the sequence

of measures p, = +— 2‘7”0 TZ(&,;] ). Then [y fon = Cj,(H(=j,) = [y frn+e
Then the same is true for any limit point p of {pn} Ivfe > Jufu + e
However, any such p is T-invariant, as shown in Lecture 5. Then p and p are
non-equal 7-invariant probability measures. We obtained a contradiction.
|
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Unique ergodicity for isometries

THEOREM: Let (M, u,T) be a dynamical system, with M a compact metric
space, and T' an ergodic isometry. Then it is uniquely ergodic.

Proof. Step 1: It would suffice to show that Cp(f) := %Z?:_& T(f) uniformly
converges for any Lipschitz f. Then by ergodicity of 7' it converges to a
constant.

Step 2: If F is C-Lipschitz, then C,(f) is also C-Lipschitz. However, Cy(f)
converges to f in L2(M), hence it converges pointwise on a dense subset
of M.

Step 3: In Lecture 4 it was shown that a sequence of C-Lipschitz functions
converging pointwise in a dense subset of M converges uniformly. =

COROLLARY: Irrational circle rotations are uniquely ergodic.

DEFINITION: A sequence {z;} in a measured space (M,u) is equidis-
tributed if the sequence 1 Z?’:—& 0z, converges to pu.

n
CQROLLARY: Let R be an irrational circle rotation. Then the sequence
{R'(z)} is equidistributed. =
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