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Measure-theoretic entropy

DEFINITION: Partition of a probability space (M,µ) is a countable decom-
position M =

∏
Vi onto a disjoint union of measurable set. Refinement of a

partition V = {Vi} is a partition W, obtained by partition of some of Vi into
subpartitions. In this case we write V ≺ W. Minimal common refinement
of partitions V = {Vi}, W = {Wj} is a partition V ∨W = {Vi ∩Wj}.

DEFINITION: Entropy of a partition V = {Vi} is Hµ(V) := −
∑
i µ(Vi) log(µ(Vi)).

EXERCISE: The entropy of infinite partition can be infinite. Find a parti-
tion with infinite entropy.
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Entropy of a communication channel

Consider a communication channel which sends words, chosen randomly of
k letters which appear with probabilities p1, ..., pk, with

∑
i pk = 1. The en-

tropy of this channel is H(p1, ..., pk) measures “informational density” of
communication (C. Shannon).

It should satisfy the following natural conditions.
1. Let l > k. The information density is clearly higher for p1 = ... =

pk = 1/k than for q1, ..., ql = 1/l. Therefore, H(1/k, ...,1/k) < H(1/l, ...,1/l).
2. H should be continuous as a function of pi and symmetric under

their permutations.
3. Suppose that we have replaced the first letter in the alphabeth

of k letters by l letters, appearing with probabilities q1, ..., ql. We have ob-
tained a communication channel with k + l − 1 letters, with probabilities
p1q1, ..., p1ql, p2, ..., pk. Then H(p1q1, ..., p1ql, p2, ..., pk) = H(p1, ..., pk)+p1H(q1, ..., ql).

Clearly, H(p1, ..., pk) = −
∑
pi log pi satisfies these axioms. Indeed,

−
k∑
i=2

pi log pi −
l∑

j=1

p1qj log(p1qj) = −
k∑
i=2

pi log pi − p1 log p1 − p1

l∑
j=1

qj log qj.

It is possible to show that H(p1, ..., pk) = −
∑
pi log pi is the only function

which satisfies these axioms.
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C. Shannon, “Mathematical theory of computation”, p. 10
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Entropy of dynamical system

In this lecture, we consider only dynamical systems (M,µ, T ) with µ proba-

bilistic and T measure-preserving.

Given a partition V,M =
∐
Vi we denote by T−1(V) the partition M =∐

T−1(Vi).

DEFINITION: Let (M,µ, T ) be a dynamical system, and V,M =
∐
Vi a

partition of M . Denote by Vn the partition Vn := V ∨ T−1(V) ∨ T−2(V) ∨ ... ∨
T−n+1. Entropy (M,µ, T ) of with respect to the partition V is hµ(T,V) :=

limn
1
nHµ(Vn) Entropy of (M,µ, T ) is supremum of hµ(T,V) taken over all

partitions V with finite entropy.

REMARK: Let V � W be a refinement of the partition W. Clearly, Hµ(V) >

Hµ(W). This implies hµ(T,V) > hµ(T,W).
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Entropy of dynamical system and iterations

REMARK: Clearly,
∨n−1
j=0 T

−j(Vk) = Vn+k. This gives

hµ(Vk, T ) = limn
1

n
Hµ(Vn+k) = hµ(V, T ).

The last equation holds because limn
n

n+k = 1.

COROLLARY: This implies hµ(V, T ) = 1
nhµ(Vn, Tn).

Proof: Indeed,
∨kn−1
j=0 V

n = Vkn2
, giving hµ(Vn, Tn) = limn

1
nHµ(Vkn) = nhµ(V, T )

(the last equation is implied by the previous remark).

COROLLARY: For any (M,µ, T ), one has hµ(Tn) = nhµ(T ).

Proof: Since Vn is a refinement of V, one has Hµ(Vn) > Hµ(V). This gives
hµ(Tn) = supV Hµ(Tn,V) = supVnHµ(Tn,Vn) = n supV Hµ(T,V) = nhµ(T ).

COROLLARY: Let µ = 1
n

∑n
i=1 δxi be a sum of atomic measures. Since

T preserves µ, T acts on the set {x1, ..., xn} by permutations. Therefore
Tn! = Id, giving

hµ(V, T ) = hµ(Vn!, T ) =
1

n!
hµ(Vn!, Tn!) = 0.
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Independent partitions

DEFINITION: Let V, W be finite partitions. We say that they are indepen-
dent if for all Vi ∈ V and Wj ∈ W, one has µ(Vi ∩Wj) = µ(Vi)µ(Wj).

REMARK: In probabilistic terms, this means that the events associated
with Vi and Wj are uncorrelated.

REMARK: Let V, W be independent partitions, with p1, ..., pk measures of
Vi and q1, ..., ql measures of W. Then

Hµ(V∨W) =
∑
i,j

piqj log(piqj) =
∑
j

∑
i

piqj log qj+
∑
i

∑
j

qjpi log pi = Hµ(V)+Hµ(W).

COROLLARY: Let (M,µ, T ) be a dynamical system, and V a partition of M .
Assume that T−i(V) is independent from Vi for all i. Then Hµ(Vn) = nHµ(V),
giving hµ(T,V) = Hµ(V).

REMARK: It is possible to show (and it clearly follows from Shannon’s
description of entropy) that H(V ∨ W) 6 H(V) + H(W), and the equality
is reached if and only if V and W are independent. This result is called
subadditivity of entropy. This implies, in particular, that Hµ(Vn) 6 nHµ(V),
hence the limit lim 1

nHµ(Vn) is always finite.
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Entropy of dynamical system: Bernoulli space

DEFINITION: Let P be a finite set, PZ the product of Z copies of P ,

Σ ⊂ Z a finite subset, and πΣ : PZ −→ P |Σ| projection to the corresponding

components. Cylindrical sets are sets CR := π−1
Σ (R), where R ⊂ P |Σ| is any

subset.

REMARK: For Bernoulli space, a complement to an cylindrical set is

again a cylindrical set, and the cylindrical sets form a Boolean algebra.

DEFINITION: Bernoulli measure on PZ is µ such that µ(CR) := |R|
|P ||Σ|

.

EXAMPLE: Let V = {Vi} be a finite partition of Bernoulli space M = PZ

into cylindrical sets, a T the Bernoulli shift. Let Σ ⊂ Z be a finite subset

such that all Vi are obtained as π−1
Σ (Ri) for some Ri ⊂ P |Σ|. For N sufficienty

big, the sets Σ and T−i(Σ) don’t intersect. In this case, the partitions VkN

and T−N(V) are independent, giving hµ(TN ,V) = Hµ(V). Since hµ(T ) =

1/Nhµ(TN) > Hµ(V), this implies that the entropy of T is positive.
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Approximating partitions

LEMMA 1: Let (M,µ) be a space with measure, and A an algebra of mea-

surable subsets of M which generates any measurable subset uo to measure

0. Then for any partition V with finite entropy and any ε0. there exists a

finite partition W ⊂ A such that Hµ(W ∨ V)−Hµ(W) < ε.

Proof: Using Lebesgue approximation theorem, we can approximate the par-

tition V by W ⊂ A with arbitrary precision: for each Vi ∈ V there exists Wi ∈ W
(which can be empty) such that µ(Vi4Wi) < εi. Then

Hµ(W ∨ V)−Hµ(W) =
∑
i

piHµ(p−1
i µ(Wi ∩ V1), ..., p−1

i µ(Wi ∩ Vn)).

where pi = µ(Wi). However, W is chosen in such a way that µ(Wi ∩ Vi) is

arbitrarily close to pi, and µ(Wi ∩ Vj) is arbitrarily small for j 6= i, hence the

entropy Hµ(p−1
i µ(Wi ∩ V1), ..., p−1

i µ(Wi ∩ Vn)) is arbitrarily small.
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Kolmogorov-Sinai theorem

THEOREM: (Kolmogorov-Sinai)
Let (M,µ, T ) be a dynamical system, and V1 ≺ V2 ≺ ... a sequence of partitions
of M finite entropy, such that the subsets

⋃∞
i=1 Vi generate the σ-algebra of

measurable sets, up to measure zero. Then hµ(T ) = limn hµ(T,Vn).

Proof: Notice that hµ(T,Vn) is monotonous as a function of n, because
V1 ≺ V2 ≺ .... Moreover, hµ(T,VNn ) = hµ(T,Vn) as shown above. Since
any partition W admits an approximation by a partition from the σ-algebra
generated by Vn, we obtain that for n sufficiently big, one has hµ(T,W) 6
hµ(T,VNn ) + ε = hµ(T,Vn) + ε Passing to the limit as ε−→ 0, obtain that
hµ(T,W) 6 limn hµ(T,Vn).

DEFINITION: We say that a partition V is a generator, or generating
partition if the union of all Vn =

∨n−1
i=0 T

−i(V) generates the σ-algebra of
measurable sets, up to measure zero.

COROLLARY: Let V be a generating partition on (M,µ, T ). Then hµ(T ) =
hµ(T,V).

Proof: By Kolmogorov-Sinai, hµ(T ) = limn hµ(T,Vn). However, hµ(T,Vn) =
hµ(T,V) as shown above.
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Entropy of a dynamical system: Bernoulli space (2)

REMARK: Let (M = PZ, µ, T ) be the Bernoulli system, with P = {x1, ..., xp}
and Πi the projection to i-th component. Consider a partition V with M =∐p
i=1 Π−1

0 (xi). Clearly, the Borel σ-algebra is generated by Π−1
i ({x}). Then

V is a generating partition. However, hµ(T,V) =
∑p
i=1

1
[ log(p) = log(p). We

have proved that hµ(T ) = log(|P |).
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Entropy and measure decomposition

PROPOSITION: Let M be a space with σ-algebra, T a measurable map, t ∈
[0,1] and µ, ν be T -invariant measures. Consider the measure ρ := tµ+(1−t)ν.
Then hρ(T,V) = thµ(T,V) + (1− t)hρ(T,V).

Proof. Step 1: For any p1, ..., pn, q1, ..., qn ∈ [0,1] with
∑
qi =

∑
pi = 1, we

have

−
∑
i

(tpi+ (1− t)qi) log(tpi+ (1− t)qi) > −t
∑
i

pi log pi− (1− t)
∑
i

qi log qi, (∗)

because the function x 7→ −x logx is concave. On the other hand, − log(tpi+
(1− t)qi) 6 − log(tpi), because x 7→ − logx is monotonously decreasing. This
gives

−
∑
i

(tpi+(1−t)qi) log(tpi+(1−t)qi) 6 −
∑
i

tpi log(tpi)−
∑
i

tqi log((1−t)qi) =

− t
∑
i

pi log pi − (1− t)
∑
i

qi log qi −
∑
i

pit log t−
∑
i

pi(1− t) log(1− t). (∗∗)

The last two terms of (**) give

−
∑
i

pit log t−
∑
i

pi(1− t) log(1− t) = −t log t− (1− t) log(1− t),

because
∑
qi =

∑
pi = 1.
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Entropy and measure decomposition (2)

Proof. Step 1: For any p1, ..., pn, q1, ..., qn ∈ [0,1] with
∑
qi =

∑
pi = 1, we

have

−
∑
i

(tpi + (1− t)qi) log(tpi + (1− t)qi) > −t
∑
i

pi log pi − (1− t)
∑
i

qi log qi, (∗)

−
∑
i

(tpi + (1− t)qi) log(tpi + (1− t)qi) 6 −t
∑
i

pi log pi − (1− t)
∑
i

qi log qi−

−t log t− (1− t) log(1− t) (∗∗)

Step 2: Comparing the inequalities (*) and (**), we obtain

tHµ(V)+(1−t)Hν(V) 6 Hρ(V) 6 tHµ(V)+(1−t)Hν(V)−t log t−(1−t) log(1−t)

Passing to the limit of 1
nH(Vn) and using limn

1
n(−t log t−(1−t) log(1−t)) = 0.

we obtain that hρ(T,V) = thµ(T,V) + (1− t)hν(T,V).
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Jacobs theorem

REMARK: We have just shown that entropy of a partition is affine un-

der finite linear combination of probability measures. However, this

statement is false for a continuous decomposition of measures. Indeed, the

entropy of a partition is not continuous in the weak topology on mea-

sures. For example, entropy vanishes on all measures with finite support,

but any Radon measure is a limit of measures with finite support.

However, the entropy of a dynamical system is affine under the ergodic

decomposition.

The proof of the following theorem will be omitted.

THEOREM: (K. Jacobs)

Let (M,µ, T ) be a dynamical system, with M a complete metric space with

countable base. Let E be the set of all ergodic measures, and consider the

ergodic decomposition µ =
∫
E νκ, where ν ∈ E and κ is the corresponding

measure on E (its existence and uniqueness we proved in Lecture 19). Then

hµ(T ) =
∫
E hν(T )κ.
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Topological entropy

DEFINITION: Let M be a compact topological space, and {Ui ⊂ M} an
open cover,

⋃
Ui = M . A cover {Vi ⊂M} is called a subcover if it is a subset

which is still a cover. Given a cover α, denote by N(α) the smallest cardinality
of a subcover of α. The entropy of a cover is H(α) = logN(α).

DEFINITION: Let f : M −→M be a continuous map, α a cover, and
αn := α ∨ f−1(α) ∨ ... ∨ f−n+1(α). Define entropy of a map with respect to
the cover by H(f, α) := limn

1
nH(αn).

EXERCISE: Prove that the function n−→H(αn) is subadditive, that is,
H(αm+n) 6 H(αm) +H(αn).

REMARK: For a subadditive monotonously non-decreasing sequence {ai},
the sequence 1

nan is monotonously non-increasing, hence the limit limn
1
nan

exists. Indeed, for such sequence, an−an−1 > an+1−an, hence bi := an+1−an
is non-negative and monotonous, and its Cesáro sum 1

nan = 1
n

∑n
i=1 bi is con-

vergent.

REMARK: The measure entropy is also subadditive, which explains
convergence.

DEFINITION: Define the topological entropy h(f) as supαH(f, α).
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Metric entropy

REMARK: In old literature, “metric entropy” refers to the measure entropy

defined above, and both notions of “topological entropy” (previous slide) and

metric entropy (this slide) are called “topological entropy”.

DEFINITION: Let X ⊂ M be a subset of a metric space. We denote by

X(ε) the set {y ∈ M | d(y,X) < ε}. This set is called ε-neighbourhood of

X. An ε-net is a subset X ⊂M such that X(ε) = M . Denote by N(M, ε) the

cardinality of the smallest ε-net.

DEFINITION: Let T : M −→M be a continuous map of compact metric

spaces. Consider Mn as a metric space with the metric d((x1, ..., xn), (y1, ..., yn)) =

max(d(x1, y1), d(x2, y2), ...d(xn, yn)), and let Sn := {(x, T (x), T2(x), ...., Tn−1(x)) ⊂
Mn}. Consider the number h(T, ε) = limn

1
n logN(Sn, ε). We define metric

entropy of T as h(T ) := limε→0 h(T, ε).
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Metric entropy, topological entropy and measure entropy

We omit the proof of the following two theorems.

THEOREM: Metric entropy is equal to the topological entropy.

THEOREM: For any continuous map T : M −→M of compact metric

spaces, consider the number supµ hµ(T ), where hµ(T ) is measure entropy, and

supremum is taken over all T -invariant probabilistic Borel measures. Then

supµ hµ(T ) = h(T ): topological entropy is the supremum of measure

entropy.
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