Teoria Ergódica Diferenciável

lecture 21: Entropy

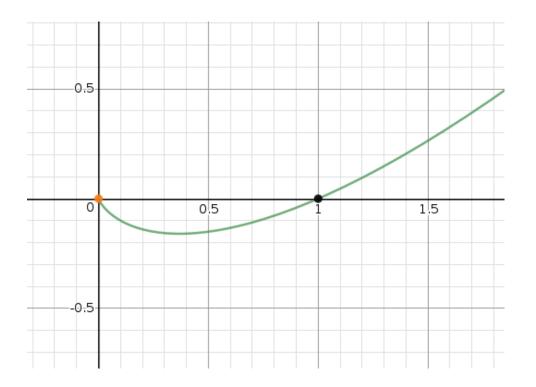
Instituto Nacional de Matemática Pura e Aplicada

Misha Verbitsky, November 29, 2017

Measure-theoretic entropy

DEFINITION: Partition of a probability space (M, μ) is a countable decomposition $M = \prod V_i$ onto a disjoint union of measurable set. Refinement of a partition $\mathcal{V} = \{V_i\}$ is a partition \mathcal{W} , obtained by partition of some of V_i into subpartitions. In this case we write $\mathcal{V} \prec \mathcal{W}$. Minimal common refinement of partitions $\mathcal{V} = \{V_i\}, \mathcal{W} = \{W_j\}$ is a partition $\mathcal{V} \lor \mathcal{W} = \{V_i \cap W_j\}$.

DEFINITION: Entropy of a partition $\mathcal{V} = \{V_i\}$ is $H_{\mu}(\mathcal{V}) := -\sum_i \mu(V_i) \log(\mu(V_i))$.



EXERCISE: The entropy of infinite partition can be infinite. Find a partition with infinite entropy.

Entropy of a communication channel

Consider a communication channel which sends words, chosen randomly of k letters which appear with probabilities $p_1, ..., p_k$, with $\sum_i p_k = 1$. The entropy of this channel is $H(p_1, ..., p_k)$ measures "informational density" of communication (C. Shannon).

It should satisfy the following natural conditions.

1. Let l > k. The information density is clearly higher for $p_1 = ... = p_k = 1/k$ than for $q_1, ..., q_l = 1/l$. Therefore, H(1/k, ..., 1/k) < H(1/l, ..., 1/l).

2. *H* should be **continuous as a function of** p_i and symmetric under their permutations.

3. Suppose that we have replaced the first letter in the alphabeth of k letters by l letters, appearing with probabilities $q_1, ..., q_l$. We have obtained a communication channel with k + l - 1 letters, with probabilities $p_1q_1, ..., p_1q_l, p_2, ..., p_k$. Then $H(p_1q_1, ..., p_1q_l, p_2, ..., p_k) = H(p_1, ..., p_k) + p_1H(q_1, ..., q_l)$.

Clearly, $H(p_1, ..., p_k) = -\sum p_i \log p_i$ satisfies these axioms. Indeed,

$$-\sum_{i=2}^{k} p_i \log p_i - \sum_{j=1}^{l} p_1 q_j \log(p_1 q_j) = -\sum_{i=2}^{k} p_i \log p_i - p_1 \log p_1 - p_1 \sum_{j=1}^{l} q_j \log q_j.$$

It is possible to show that $H(p_1, ..., p_k) = -\sum p_i \log p_i$ is the only function which satisfies these axioms.

C. Shannon, "Mathematical theory of computation", p. 10

6. CHOICE, UNCERTAINTY AND ENTROPY

We have represented a discrete information source as a Markoff process. Can we define a quantity which will measure, in some sense, how much information is "produced" by such a process, or better, at what rate information is produced?

Suppose we have a set of possible events whose probabilities of occurrence are $p_1, p_2, ..., p_n$. These probabilities are known but that is all we know concerning which event will occur. Can we find a measure of how much "choice" is involved in the selection of the event or of how uncertain we are of the outcome?

If there is such a measure, say $H(p_1, p_2, ..., p_n)$, it is reasonable to require of it the following properties:

- 1. *H* should be continuous in the p_i .
- 2. If all the p_i are equal, $p_i = \frac{1}{n}$, then *H* should be a monotonic increasing function of *n*. With equally likely events there is more choice, or uncertainty, when there are more possible events.
- 3. If a choice be broken down into two successive choices, the original H should be the weighted sum of the individual values of H. The meaning of this is illustrated in Fig. 6. At the left we have three

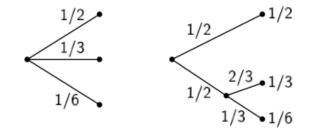


Fig. 6 – Decomposition of a choice from three possibilities.

possibilities $p_1 = \frac{1}{2}$, $p_2 = \frac{1}{3}$, $p_3 = \frac{1}{6}$. On the right we first choose between two possibilities each with probability $\frac{1}{2}$, and if the second occurs make another choice with probabilities $\frac{2}{3}$, $\frac{1}{3}$. The final results have the same probabilities as before. We require, in this special case, that

$$H(\frac{1}{2},\frac{1}{3},\frac{1}{6}) = H(\frac{1}{2},\frac{1}{2}) + \frac{1}{2}H(\frac{2}{3},\frac{1}{3}).$$

The coefficient $\frac{1}{2}$ is because this second choice only occurs half the time.

Entropy of dynamical system

In this lecture, we consider only dynamical systems (M, μ, T) with μ probabilistic and T measure-preserving.

Given a partition $\mathcal{V}, M = \coprod V_i$ we denote by $T^{-1}(\mathcal{V})$ the partition $M = \coprod T^{-1}(V_i)$.

DEFINITION: Let (M, μ, T) be a dynamical system, and $\mathcal{V}, M = \coprod V_i$ a partition of M. Denote by \mathcal{V}^n the partition $\mathcal{V}^n := \mathcal{V} \vee T^{-1}(\mathcal{V}) \vee T^{-2}(\mathcal{V}) \vee ... \vee T^{-n+1}$. Entropy (M, μ, T) of with respect to the partition \mathcal{V} is $h_{\mu}(T, \mathcal{V}) := \overline{\lim_{n \to \infty} \frac{1}{n} H_{\mu}(\mathcal{V}^n)}$ Entropy of (M, μ, T) is supremum of $h_{\mu}(T, \mathcal{V})$ taken over all partitions \mathcal{V} with finite entropy.

REMARK: Let $\mathcal{V} \succ \mathcal{W}$ be a refinement of the partition \mathcal{W} . Clearly, $H_{\mu}(\mathcal{V}) \ge H_{\mu}(\mathcal{W})$. This implies $h_{\mu}(T, \mathcal{V}) \ge h_{\mu}(T, \mathcal{W})$.

Entropy of dynamical system and iterations

REMARK: Clearly, $\bigvee_{j=0}^{n-1} T^{-j}(\mathcal{V}^k) = \mathcal{V}^{n+k}$. This gives

$$h_{\mu}(\mathcal{V}^k,T) = \overline{\lim}_n \frac{1}{n} H_{\mu}(\mathcal{V}^{n+k}) = h_{\mu}(\mathcal{V},T).$$

The last equation holds because $\lim_{n \to k} \frac{n}{n+k} = 1$.

COROLLARY: This implies $h_{\mu}(\mathcal{V},T) = \frac{1}{n}h_{\mu}(\mathcal{V}^n,T^n)$.

Proof: Indeed, $\bigvee_{j=0}^{kn-1} \mathcal{V}^n = \mathcal{V}^{kn^2}$, giving $h_{\mu}(\mathcal{V}^n, T^n) = \overline{\lim}_n \frac{1}{n} H_{\mu}(\mathcal{V}^{kn}) = nh_{\mu}(\mathcal{V}, T)$ (the last equation is implied by the previous remark).

COROLLARY: For any (M, μ, T) , one has $h_{\mu}(T^n) = nh_{\mu}(T)$.

Proof: Since \mathcal{V}^n is a refinement of \mathcal{V} , one has $H_\mu(\mathcal{V}^n) \ge H_\mu(\mathcal{V})$. This gives $h_\mu(T^n) = \sup_{\mathcal{V}} H_\mu(T^n, \mathcal{V}) = \sup_{\mathcal{V}^n} H_\mu(T^n, \mathcal{V}^n) = n \sup_{\mathcal{V}} H_\mu(T, \mathcal{V}) = n h_\mu(T)$.

COROLLARY: Let $\mu = \frac{1}{n} \sum_{i=1}^{n} \delta_{x_i}$ be a sum of atomic measures. Since T preserves μ , T acts on the set $\{x_1, ..., x_n\}$ by permutations. Therefore $T^{n!} = \text{Id}$, giving

$$h_{\mu}(\mathcal{V},T) = h_{\mu}(\mathcal{V}^{n!},T) = \frac{1}{n!}h_{\mu}(\mathcal{V}^{n!},T^{n!}) = 0.$$

Independent partitions

DEFINITION: Let \mathcal{V} , \mathcal{W} be finite partitions. We say that they are **independent** if for all $V_i \in \mathcal{V}$ and $W_j \in \mathcal{W}$, one has $\mu(V_i \cap W_j) = \mu(V_i)\mu(W_j)$.

REMARK: In probabilistic terms, this means that the events associated with V_i and W_j are uncorrelated.

REMARK: Let \mathcal{V} , \mathcal{W} be independent partitions, with $p_1, ..., p_k$ measures of V_i and $q_1, ..., q_l$ measures of \mathcal{W} . Then

$$H_{\mu}(\mathcal{V}\vee\mathcal{W}) = \sum_{i,j} p_i q_j \log(p_i q_j) = \sum_j \sum_i p_i q_j \log q_j + \sum_i \sum_j q_j p_i \log p_i = H_{\mu}(\mathcal{V}) + H_{\mu}(\mathcal{W}).$$

COROLLARY: Let (M, μ, T) be a dynamical system, and \mathcal{V} a partition of M. Assume that $T^{-i}(\mathcal{V})$ is independent from \mathcal{V}^i for all i. Then $H_{\mu}(\mathcal{V}^n) = nH_{\mu}(\mathcal{V})$, giving $h_{\mu}(T, \mathcal{V}) = H_{\mu}(\mathcal{V})$.

REMARK: It is possible to show (and it clearly follows from Shannon's description of entropy) that $H(\mathcal{V} \lor \mathcal{W}) \leq H(\mathcal{V}) + H(\mathcal{W})$, and the equality is reached if and only if \mathcal{V} and \mathcal{W} are independent. This result is called subadditivity of entropy. This implies, in particular, that $H_{\mu}(\mathcal{V}^n) \leq nH_{\mu}(\mathcal{V})$, hence the limit $\lim \frac{1}{n}H_{\mu}(\mathcal{V}^n)$ is always finite.

Entropy of dynamical system: Bernoulli space

DEFINITION: Let P be a finite set, $P^{\mathbb{Z}}$ the product of \mathbb{Z} copies of P, $\Sigma \subset \mathbb{Z}$ a finite subset, and $\pi_{\Sigma} : P^{\mathbb{Z}} \longrightarrow P^{|\Sigma|}$ projection to the corresponding components. Cylindrical sets are sets $C_R := \pi_{\Sigma}^{-1}(R)$, where $R \subset P^{|\Sigma|}$ is any subset.

REMARK: For Bernoulli space, a complement to an cylindrical set is again a cylindrical set, and the cylindrical sets form a Boolean algebra.

DEFINITION: Bernoulli measure on $P^{\mathbb{Z}}$ is μ such that $\mu(C_R) := \frac{|R|}{|P|^{|\Sigma|}}$.

EXAMPLE: Let $\mathcal{V} = \{V_i\}$ be a finite partition of Bernoulli space $M = P^{\mathbb{Z}}$ into cylindrical sets, a T the Bernoulli shift. Let $\Sigma \subset \mathbb{Z}$ be a finite subset such that all V_i are obtained as $\pi_{\Sigma}^{-1}(R_i)$ for some $R_i \subset P^{|\Sigma|}$. For N sufficienty big, the sets Σ and $T^{-i}(\Sigma)$ don't intersect. In this case, **the partitions** \mathcal{V}^{kN} **and** $T^{-N}(\mathcal{V})$ **are independent, giving** $h_{\mu}(T^N, \mathcal{V}) = H_{\mu}(\mathcal{V})$. Since $h_{\mu}(T) =$ $1/Nh_{\mu}(T^N) \ge H_{\mu}(\mathcal{V})$, **this implies that the entropy of** T **is positive.**

Approximating partitions

LEMMA 1: Let (M, μ) be a space with measure, and A an algebra of measurable subsets of M which generates any measurable subset uo to measure 0. Then for any partition \mathcal{V} with finite entropy and any $\varepsilon 0$. there exists a finite partition $\mathcal{W} \subset A$ such that $H_{\mu}(\mathcal{W} \lor \mathcal{V}) - H_{\mu}(\mathcal{W}) < \varepsilon$.

Proof: Using Lebesgue approximation theorem, we can approximate the partition \mathcal{V} by $\mathcal{W} \subset A$ with arbitrary precision: for each $V_i \in \mathcal{V}$ there exists $W_i \in \mathcal{W}$ (which can be empty) such that $\mu(V_i \triangle W_i) < \varepsilon_i$. Then

$$H_{\mu}(\mathcal{W} \vee \mathcal{V}) - H_{\mu}(\mathcal{W}) = \sum_{i} p_{i} H_{\mu}(p_{i}^{-1}\mu(W_{i} \cap V_{1}), ..., p_{i}^{-1}\mu(W_{i} \cap V_{n}))$$

where $p_i = \mu(W_i)$. However, \mathcal{W} is chosen in such a way that $\mu(W_i \cap V_i)$ is arbitrarily close to p_i , and $\mu(W_i \cap V_j)$ is arbitrarily small for $j \neq i$, hence the entropy $H_{\mu}(p_i^{-1}\mu(W_i \cap V_1), ..., p_i^{-1}\mu(W_i \cap V_n))$ is arbitrarily small.

Kolmogorov-Sinai theorem

THEOREM: (Kolmogorov-Sinai)

Let (M, μ, T) be a dynamical system, and $\mathcal{V}_1 \prec \mathcal{V}_2 \prec ...$ a sequence of partitions of M finite entropy, such that the subsets $\bigcup_{i=1}^{\infty} \mathcal{V}_i$ generate the σ -algebra of measurable sets, up to measure zero. Then $h_{\mu}(T) = \lim_{n \to \infty} h_{\mu}(T, \mathcal{V}_n)$.

Proof: Notice that $h_{\mu}(T, \mathcal{V}_n)$ is monotonous as a function of n, because $\mathcal{V}_1 \prec \mathcal{V}_2 \prec \dots$ Moreover, $h_{\mu}(T, \mathcal{V}_n^N) = h_{\mu}(T, \mathcal{V}_n)$ as shown above. Since any partition \mathcal{W} admits an approximation by a partition from the σ -algebra generated by \mathcal{V}_n , we obtain that for n sufficiently big, one has $h_{\mu}(T, \mathcal{W}) \leq h_{\mu}(T, \mathcal{V}_n^N) + \varepsilon = h_{\mu}(T, \mathcal{V}_n) + \varepsilon$ Passing to the limit as $\varepsilon \longrightarrow 0$, obtain that $h_{\mu}(T, \mathcal{W}) \leq \lim_{n \to \infty} h_{\mu}(T, \mathcal{V}_n)$.

DEFINITION: We say that a partition \mathcal{V} is a generator, or generating partition if the union of all $\mathcal{V}^n = \bigvee_{i=0}^{n-1} T^{-i}(\mathcal{V})$ generates the σ -algebra of measurable sets, up to measure zero.

COROLLARY: Let \mathcal{V} be a generating partition on (M, μ, T) . Then $h_{\mu}(T) = h_{\mu}(T, \mathcal{V})$.

Proof: By Kolmogorov-Sinai, $h_{\mu}(T) = \lim_{n \to \infty} h_{\mu}(T, \mathcal{V}^n)$. However, $h_{\mu}(T, \mathcal{V}^n) = h_{\mu}(T, \mathcal{V})$ as shown above.

Entropy of a dynamical system: Bernoulli space (2)

REMARK: Let $(M = P^{\mathbb{Z}}, \mu, T)$ be the Bernoulli system, with $P = \{x_1, ..., x_p\}$ and Π_i the projection to *i*-th component. Consider a partition \mathcal{V} with $M = \prod_{i=1}^p \Pi_0^{-1}(x_i)$. Clearly, the Borel σ -algebra is generated by $\Pi_i^{-1}(\{x\})$. Then \mathcal{V} is a generating partition. However, $h_{\mu}(T, \mathcal{V}) = \sum_{i=1}^p \frac{1}{i} \log(p) = \log(p)$. We have proved that $h_{\mu}(T) = \log(|P|)$.

M. Verbitsky

Entropy and measure decomposition

PROPOSITION: Let *M* be a space with σ -algebra, *T* a measurable map, $t \in [0, 1]$ and μ, ν be *T*-invariant measures. Consider the measure $\rho := t\mu + (1-t)\nu$. **Then** $h_{\rho}(T, \mathcal{V}) = th_{\mu}(T, \mathcal{V}) + (1-t)h_{\rho}(T, \mathcal{V})$.

Proof. Step 1: For any $p_1, ..., p_n, q_1, ..., q_n \in [0, 1]$ with $\sum q_i = \sum p_i = 1$, we have

$$-\sum_{i} (tp_i + (1-t)q_i) \log(tp_i + (1-t)q_i) \ge -t\sum_{i} p_i \log p_i - (1-t)\sum_{i} q_i \log q_i, \quad (*)$$

because the function $x \mapsto -x \log x$ is concave. On the other hand, $-\log(tp_i + (1-t)q_i) \leq -\log(tp_i)$, because $x \mapsto -\log x$ is monotonously decreasing. This gives

$$-\sum_{i} (tp_{i} + (1-t)q_{i}) \log(tp_{i} + (1-t)q_{i}) \leq -\sum_{i} tp_{i} \log(tp_{i}) - \sum_{i} tq_{i} \log((1-t)q_{i}) = -t\sum_{i} p_{i} \log p_{i} - (1-t)\sum_{i} q_{i} \log q_{i} - \sum_{i} p_{i} t \log t - \sum_{i} p_{i} (1-t) \log(1-t). \quad (**)$$

The last two terms of (**) give

$$-\sum_{i} p_{i} t \log t - \sum_{i} p_{i} (1-t) \log(1-t) = -t \log t - (1-t) \log(1-t),$$

because $\sum q_i = \sum p_i = 1$.

Entropy and measure decomposition (2)

Proof. Step 1: For any $p_1, ..., p_n, q_1, ..., q_n \in [0, 1]$ with $\sum q_i = \sum p_i = 1$, we have

$$-\sum_{i} (tp_{i} + (1-t)q_{i}) \log(tp_{i} + (1-t)q_{i}) \ge -t\sum_{i} p_{i} \log p_{i} - (1-t)\sum_{i} q_{i} \log q_{i}, \quad (*)$$

$$-\sum_{i} (tp_{i} + (1-t)q_{i}) \log(tp_{i} + (1-t)q_{i}) \le -t\sum_{i} p_{i} \log p_{i} - (1-t)\sum_{i} q_{i} \log q_{i} - t\log t - (1-t)\log(1-t) \quad (**)$$

Step 2: Comparing the inequalities (*) and (**), we obtain

 $tH_{\mu}(\mathcal{V}) + (1-t)H_{\nu}(\mathcal{V}) \leq H_{\rho}(\mathcal{V}) \leq tH_{\mu}(\mathcal{V}) + (1-t)H_{\nu}(\mathcal{V}) - t\log t - (1-t)\log(1-t)$ Passing to the limit of $\frac{1}{n}H(\mathcal{V}^n)$ and using $\lim_{n}\frac{1}{n}(-t\log t - (1-t)\log(1-t)) = 0$. we obtain that $h_{\rho}(T,\mathcal{V}) = th_{\mu}(T,\mathcal{V}) + (1-t)h_{\nu}(T,\mathcal{V})$.

M. Verbitsky

Jacobs theorem

REMARK: We have just shown that entropy of a partition is affine under finite linear combination of probability measures. However, this statement is false for a continuous decomposition of measures. Indeed, the entropy of a partition is not continuous in the weak topology on measures. For example, entropy vanishes on all measures with finite support, but any Radon measure is a limit of measures with finite support.

However, the entropy of a dynamical system is affine under the ergodic decomposition.

The proof of the following theorem will be omitted.

THEOREM: (K. Jacobs)

Let (M, μ, T) be a dynamical system, with M a complete metric space with countable base. Let E be the set of all ergodic measures, and consider the ergodic decomposition $\mu = \int_E \nu \kappa$, where $\nu \in E$ and κ is the corresponding measure on E (its existence and uniqueness we proved in Lecture 19). Then $h_{\mu}(T) = \int_E h_{\nu}(T)\kappa$.

Topological entropy

DEFINITION: Let M be a compact topological space, and $\{U_i \subset M\}$ an open cover, $\bigcup U_i = M$. A cover $\{V_i \subset M\}$ is called a **subcover** if it is a subset which is still a cover. Given a cover α , denote by $N(\alpha)$ the smallest cardinality of a subcover of α . The entropy of a cover is $H(\alpha) = \log N(\alpha)$.

DEFINITION: Let $f : M \to M$ be a continuous map, α a cover, and $\alpha^n := \alpha \lor f^{-1}(\alpha) \lor \ldots \lor f^{-n+1}(\alpha)$. Define **entropy** of a map with respect to the cover by $H(f, \alpha) := \lim_n \frac{1}{n} H(\alpha^n)$.

EXERCISE: Prove that the function $n \longrightarrow H(\alpha^n)$ is subadditive, that is, $H(\alpha^{m+n}) \leq H(\alpha^m) + H(\alpha^n)$.

REMARK: For a subadditive monotonously non-decreasing sequence $\{a_i\}$, the sequence $\frac{1}{n}a_n$ is monotonously non-increasing, hence the limit $\lim_n \frac{1}{n}a_n$ exists. Indeed, for such sequence, $a_n - a_{n-1} > a_{n+1} - a_n$, hence $b_i := a_{n+1} - a_n$ is non-negative and monotonous, and its Cesáro sum $\frac{1}{n}a_n = \frac{1}{n}\sum_{i=1}^n b_i$ is convergent.

REMARK: The measure entropy is also subadditive, which explains convergence.

DEFINITION: Define the topological entropy h(f) as $\sup_{\alpha} H(f, \alpha)$.

Metric entropy

REMARK: In old literature, "metric entropy" refers to the measure entropy defined above, and both notions of "topological entropy" (previous slide) and metric entropy (this slide) are called "topological entropy".

DEFINITION: Let $X \subset M$ be a subset of a metric space. We denote by $X(\varepsilon)$ the set $\{y \in M \mid d(y,X) < \varepsilon\}$. This set is called ε -neighbourhood of X. An ε -net is a subset $X \subset M$ such that $X(\varepsilon) = M$. Denote by $N(M, \varepsilon)$ the cardinality of the smallest ε -net.

DEFINITION: Let $T : M \to M$ be a continuous map of compact metric spaces. Consider M^n as a metric space with the metric $d((x_1, ..., x_n), (y_1, ..., y_n)) = \max(d(x_1, y_1), d(x_2, y_2), ...d(x_n, y_n))$, and let $S_n := \{(x, T(x), T^2(x), ..., T^{n-1}(x)) \in M^n\}$. Consider the number $h(T, \varepsilon) = \overline{\lim_{n \to 0} n \frac{1}{n} \log N(S_n, \varepsilon)}$. We define **metric entropy** of T as $h(T) := \lim_{\varepsilon \to 0} h(T, \varepsilon)$.

Metric entropy, topological entropy and measure entropy

We omit the proof of the following two theorems.

THEOREM: Metric entropy is equal to the topological entropy.

THEOREM: For any continuous map $T : M \longrightarrow M$ of compact metric spaces, consider the number $\sup_{\mu} h_{\mu}(T)$, where $h_{\mu}(T)$ is measure entropy, and supremum is taken over all *T*-invariant probabilistic Borel measures. Then $\sup_{\mu} h_{\mu}(T) = h(T)$: topological entropy is the supremum of measure entropy.