

Hyperkähler manifolds (2023), the final exam

Rules: Every student gets 15 exercises (randomly chosen from this problem set), the final grade is determined by the score. Exercises are worth 10 points, unless indicated otherwise. The mark is C for score 40-59, B for 60-79, A for 80-99, A+ for the higher score. Please write down the solutions and bring them in person for discussion, no later than September 2023.

1 Holonomy groups, connections, Hodge theory

Exercise 1.1. Let M be a hyperkähler manifold with global holonomy $\mathrm{Sp}(n_1) \times \mathrm{Sp}(n_2) \times \dots \times \mathrm{Sp}(n_k)$, with $2 \sum_{i=1}^k n_i = \dim_{\mathbb{C}} M$. Prove that M is simply connected.

Exercise 1.2 (20 points). Find an example of a compact n -manifold M not admitting a Riemannian metric of signature $(2, n - 2)$.

Exercise 1.3. Let η be a parallel form on a Riemannian manifold. Prove that η is harmonic.

Exercise 1.4 (20 points). Let η be a parallel 1-form on a Riemannian manifold, and ω a harmonic form. Prove that $\eta \wedge \omega$ is harmonic.

Exercise 1.5. Let (M, I) be an almost complex manifold, and ω a symplectic (1,1)-form such that $g := \omega(\cdot, I \cdot)$ is a positive definite scalar product on TM . Prove that ω is harmonic with respect to g .

Exercise 1.6. Construct a compact flat Kähler manifold with non-trivial canonical bundle.

Exercise 1.7 (30 points). Let M be a compact flat Kähler manifold. Prove that a finite covering of M is biholomorphic to a torus.

Exercise 1.8. Let G be a finite group which acts on a compact torus T by holomorphic diffeomorphisms. Assume that G preserves a holomorphic symplectic form. Prove that T admits a G -invariant hyperkähler metric.

Exercise 1.9 (30 points). Let G be an infinite group effectively acting by holomorphic automorphisms on a simply connected compact holomorphically symplectic Kähler manifold M . Prove that M does not admit a G -invariant Kähler metric.

2 Hypercomplex manifolds

Definition 2.1. An almost hypercomplex structure on a manifold M is a triple of almost complex structures (I, J, K) satisfying the quaternionic relations. It is called **hypercomplex** if I, J, K are integrable. An **almost hypercomplex Hermitian structure** on M is an almost complex structure (I, J, K) and a Riemannian metric h which is invariant under the action of I, J, K . It is called **hyperkähler** if I, J, K are complex, and h is Kähler with respect to I, J, K .

Exercise 2.1. Let M be a compact hypercomplex manifold, $\dim_{\mathbb{R}} M = 4n$ and η a $SU(2)$ -invariant 2-form. Suppose that η has maximal rank in some point $m \in M$. Prove that $\int_M \eta^{2n} \neq 0$.

Exercise 2.2. Let M be an almost hypercomplex manifold, $\dim_{\mathbb{R}} M = 4n$ and V the bundle of $SU(2)$ -invariant 2-forms. Prove that $\mathrm{rk} V = \mathrm{rk} \mathrm{Sym}_{\mathbb{C}}^2 \Lambda^{1,0}(M, I)$.

Exercise 2.3 (20 points). Let (M, I, K, \bar{K}) be a compact hypercomplex manifold, and $\eta \in \Lambda^{2,0}(M, I)$ a (2,0)-form which satisfies $\partial\bar{\eta} = 0$, $J\eta = \bar{\eta}$. Consider the standard action of $SU(2) = U(\mathbb{H}, 1)$ on $\Lambda^*(M)$. Prove that $d\eta$ belongs to a 2-dimensional irreducible $SU(2)$ -representation.

Exercise 2.4 (20 points). Let (M, I, J, K) be a compact hypercomplex manifold, $\dim_{\mathbb{H}} M > 1$ and $V \subset \Lambda^{2,0}(M, I)$ a space of 2-forms which satisfy $\partial\eta = 0$, $J\eta = \bar{\eta}$. Prove that V is finite-dimensional, or find a counterexample.

Exercise 2.5 (30 points).

Let M be a compact hypercomplex manifold, $\dim_{\mathbb{R}} M = 4n$ and V the space of closed $SU(2)$ -invariant 2-forms. Prove that V is finite-dimensional.

Exercise 2.6 (20 points). Let $\omega_1, \omega_2, \omega_3$ be a triple of 2-forms on a 4-manifold M such that any non-zero linear combination of ω_i is non-degenerate. Prove that there exists an almost hypercomplex Hermitian structure with fundamental forms $\omega_I, \omega_J, \omega_K$ such that the 3-dimensional sub-bundles of $\Lambda^2(M)$ spanned by $\omega_I, \omega_J, \omega_K$ and $\omega_1, \omega_2, \omega_3$ coincide.

Exercise 2.7 (20 points). Let (M, I, J, K) be a hypercomplex manifold, $d_I := IdI^{-1}$, $d_J := JdJ^{-1}$, $d_K := KdK^{-1}$, and $D := dd_Id_Jd_K : \Lambda^*(M) \rightarrow \Lambda^{*+4}(M)$. Prove that D is independent from the choice of a basis I, J, K in quaternions, and its image is $SU(2)$ -invariant.

Exercise 2.8 (20 points). Find an example of a compact hypercomplex manifold (M, I, J, K) such that (M, L) is biholomorphic to (M, I) for any induced complex structure L .

Exercise 2.9 (20 points). Let (M, I, J, K) be a compact hypercomplex manifold of real dimension 4, and ∇ the **Obata connection**, that is, the torsion-free connection on TM preserving I, J, K . Denote by η the curvature of the Obata connection on the canonical bundle $\Lambda^{2,0}(M, I)$; we consider η as a complex-valued 2-form on M . Prove that $\eta = 0$.

3 Hyperkähler manifolds

Exercise 3.1. Let (M, I, J, K) be an almost hypercomplex Hermitian manifold, and $\omega_I, \omega_J, \omega_K$ its fundamental forms. Suppose that these forms are closed. Prove that (M, I, J, K) is hyperkähler.

Exercise 3.2 (20 points). Let (M, I, J, K) be a hypercomplex Hermitian manifold, and $\omega_I, \omega_J, \omega_K$ its fundamental forms. Suppose that ω_I is closed. Prove that ω_J, ω_K are closed, or find a counterexample.

Exercise 3.3. Let (M, I, J, K) be an almost hypercomplex Hermitian manifold, and $\omega_I, \omega_J, \omega_K$ its fundamental forms. Suppose that ω_I, ω_J are closed. Prove that ω_K is closed, or find a counterexample.

- a. (20 points) Find a solution when $\dim_{\mathbb{C}} M = 2$.
- b. (30 points) Find a solution for any dimension.

Exercise 3.4 (20 points). Let $Z \subset (M, \Omega)$ be a submanifold in a holomorphically symplectic manifold. Assume that Z is Lagrangian with respect to the symplectic forms $Re \Omega$ and $Im \Omega$. Prove that Z is complex analytic.

Definition 3.1. A **holomorphic Lagrangian fibration** on a holomorphically symplectic manifold (M, Ω) is a holomorphic submersion $\pi : M \rightarrow X$ such that the fibers of π are holomorphic Lagrangian with respect to Ω .

Exercise 3.5 (20 points). Let $\pi : M \rightarrow X$ be a holomorphic Lagrangian fibration, and $\sigma : X \rightarrow M$ a smooth section. Prove that $\sigma^*(\Omega)$ has Hodge type $(2, 0) + (1, 1)$.

Exercise 3.6 (20 points). Let $L \subset M$ be a complex Lagrangian submanifold in a compact hyperkähler manifold. Prove that L is projective. Use the Kodaira embedding theorem.

Exercise 3.7 (20 points). Let M be a compact hyperkähler manifold of maximal holonomy, and $M \rightarrow B$ a surjective holomorphic map to a Kähler manifold B , $\dim B < \dim M$. Prove that B is projective. Use the Kodaira embedding theorem.

Exercise 3.8 (30 points). Let G be a finite group freely acting on a hyperkähler manifold M by holomorphic automorphisms. Prove that M/G is hyperkähler or projective. Use Kodaira embedding theorem.

Exercise 3.9 (30 points). Let M be a hyperkähler manifold, $\dim_{\mathbb{C}} M = 2$. Prove that the set of smooth complex curves of genus 0 on M is countable.

4 Trianalytic subvarieties

Exercise 4.1. Find a compact hypercomplex manifold (M, I, J, K) such that for any induced complex structure $L = aI + bJ + cK$, the manifold (M, L) has non-trivial divisors.

Exercise 4.2. Let (M, I, J, K) be a hyperkähler manifold, and ϕ - a holomorphic automorphism of (M, I) which acts trivially on $H^2(M)$. Prove that its graph is trianalytic.

Exercise 4.3 (20 points). Let (M, I, J, K) be a hyperkähler manifold, and $X \subset (M, I)$ a complex subvariety of dimension 2. Prove that $\int_X \omega_I^2 \geq \frac{1}{2} \int_X (\Omega \wedge \bar{\Omega})$. Prove that equality is realized if and only if X trianalytic.

Exercise 4.4 (20 points). Let $X \subset T^{4n}$ be a trianalytic subvariety in a compact torus. Prove that X is a union of subtori.

Exercise 4.5 (20 points). Let X be a hyperkähler manifold (not necessarily compact) with $b_2(X) = 1$. Prove that there exists an induced complex structure L on X such that (X, L) contains no compact complex subvarieties.

Exercise 4.6. Let X be a trianalytic submanifold in a product of two hyperkähler manifolds X_1 and X_2 . Assume that X is a hyperkähler manifold of maximal holonomy. Prove that X belongs to a fiber of the projection $X_1 \times X_2 \rightarrow X_1$ or to a fiber of the projection $X_1 \times X_2 \rightarrow X_2$.

Exercise 4.7. Let (X, I) be a complex manifold; then T^*X is equipped with the standard holomorphic symplectic form Ω . Assume that T^*X admits a hyperkähler structure (I, J, K, g) such that $\Omega = \omega_J + \sqrt{-1}\omega_K$. Prove that T^*X does not contain compact trianalytic subvarieties.

Exercise 4.8. Consider a complete hyperkähler manifold (M, I, J, K, g) , $\dim M = 4n$, equipped with an effective action of a compact n -dimensional torus T preserving the hyperkähler structure. Assume that all elements in the Lie algebra of T act on M by vector fields which are Hamiltonian with respect to $\omega_I, \omega_J, \omega_K$. Then (M, I, J, K, g) is called a **hypertoric manifold**.

- Prove that a hypertoric manifold is never compact.
- Construct an example of a hypertoric manifold.

Exercise 4.9 (30 points). Let (M, I, J, K, g) be a simply connected hyperkähler manifold equipped with a non-trivial action $\rho(t)$ of S^1 preserving g and I . Assume that $\rho(t)^*\Omega_I = e^{\sqrt{-1}\pi t}\Omega_I$, where $\Omega_I = \omega_J + \sqrt{-1}\omega_K$ is the holomorphic symplectic form on (M, I) . Prove that the forms ω_J and ω_K are exact.

5 Fujiki formula, BBF form and automorphisms

Definition 5.1. An algebraic function $A : \mathbb{R}^n \rightarrow \mathbb{R}$ is a continuous function which is given as one of the branches of a multi-valued function μ with the graph $\Gamma_\mu \subset \mathbb{R}^n \times \mathbb{R}$ which is an irreducible algebraic variety.

Exercise 5.1 (30 points). Let $A : \mathbb{R}^n \rightarrow \mathbb{R}$ be an algebraic function, and $S \subset \text{Gr}(k, n)$ an open subset in the Grassmannian, with $k > 1$. Assume that A is polynomial on each $l \in S$. Prove that A is polynomial.

Exercise 5.2 (20 points). Let M be a product of two compact hyperkähler manifolds. Prove that M cannot be homeomorphic to a hyperkähler manifold of maximal holonomy.

Exercise 5.3 (20 points). Let ϕ be a complex authomorphism of a compact hyperkähler manifold (M, I) of maximal holonomy. Assume that the action of ϕ on $H_I^{1,1}(M)$ has a fixed point v such that $q(v, v) > 0$. Prove that v or $-v$ is a Kähler class on (M, I) .

Exercise 5.4. Let ϕ be a complex authomorphism of a compact hyperkähler manifold (M, I) of maximal holonomy.

a. (20 points) Assume that ϕ preserves a Kähler class $u \in H_I^{1,1}(M)$. Prove that ϕ has finite order.

b. (30 points) Let $\lambda := \lim_i \|\phi^i\|^{1/i}$, where $\|\phi^i\|$ denotes the operator norm of $\phi|_{H_I^{1,1}(M)}$. Assume that $\lambda > 1$. Prove that $\lim_{i \rightarrow \infty} \frac{\phi^i(u)}{\lambda^i}$ converges to a point v on the boundary of the Kähler cone. Prove that v is determined uniquely up to a scalar multiplier by the automorphism ϕ . Prove that $q(v, v) = 0$.

Exercise 5.5. Let (M, I) be a compact hyperkähler manifold of maximal holonomy, and Ω its holomorphic symplectic form.

a. Let $Z \subset (M, I)$ be a complex submanifold. Prove that $\int_Z \Omega \wedge \bar{\Omega} \wedge \omega^{\dim Z - 2} \geq 0$, with equality $\Leftrightarrow \Omega|_Z = 0$

b. Denote by $[\Omega]$ the cohomology class of the holomorphically symplectic form on (M, I) . Prove that a complex submanifold $Z \subset (M, I)$, $\dim Z = 1/2 \dim M$ is holomorphic Lagrangian if and only if $[Z] \wedge [\Omega] = 0$, where $[Z] \in H^*(M)$ denotes the fundamental class of Z .

c. (30 points) Consider a holomorphic embedding $(M, I) \hookrightarrow \mathbb{C}P^n$. Let $H \subset \mathbb{C}P^n$ be a complex submanifold which has transversal intersection with (M, I) . Prove that $H \cap (M, I)$ is never holomorphic Lagrangian.

Exercise 5.6 (30 points). Let ϕ be a complex authomorphism of a compact hyperkähler manifold (M, I) of maximal holonomy. Assume that (M, I) is projective. Prove that there exists $d > 0$ such that ϕ^d preserves the holomorphic symplectic form.

Exercise 5.7 (20 points). Let ϕ be a complex authomorphism of a compact hyperkähler manifold (M, I) of maximal holonomy. Assume that ϕ preserves a complex curve $S \subset (M, I)$. Prove that the eigenvalues α_i of the restriction $\phi|_{H^{1,1}(M, I)}$ satisfy $|\alpha_i| = 1$.

Exercise 5.8 (30 points). Let ϕ be a complex authomorphism of a compact hyperkähler manifold (M, I) of maximal holonomy. Assume that (M, I) is projective and $\text{rk } H^{1,1}(M, I) \cap H^2(M, \mathbb{Z}) = 1$. Prove that $\phi|_{H^2(M)}$ has finite order.