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Distributions

DEFINITION: Distribution on a manifold is a sub-bundle B ⊂ TM

REMARK: Let Π : TM −→ TM/B be the projection, and x, y ∈ B some

vector fields. Then [fx, y] = f [x, y] − Dy(f)x. This implies that Π([x, y]) is

C∞(M)-linear as a function of x and y.

DEFINITION: The map [B,B]−→ TM/B we have constructed is called

Frobenius bracket (or Frobenius form); it is a skew-symmetric C∞(M)-

linear form on B with values in TM/B.

DEFINITION: A distribution is called holonomic, or involutive, if its Frobe-

nius form vanishes.
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Smooth submersions

DEFINITION: Let π : M −→M ′ be a smooth map of manifolds. This map

is called submersion if at each point of M the differential Dπ is surjective,

and immersion if it is injective.

CLAIM: Let π : M −→M ′ be a submersion. Then each m ∈ M has a

neighbourhood U ∼= V ×W , where V,W are smooth and π|U is a projection

of V ×W = U ⊂M to W ⊂M ′ along V .

Proof: Follows from the inverse function theorem.

THEOREM: (“Ehresmann’s fibration theorem”)

Let π : M −→M ′ be a smooth submersion of compact manifolds. Prove

that π is a locally trivial fibration.

Proof: Next slide.

DEFINITION: Vertical tangent space TπM ⊂ TM of a submersion π :

M −→M ′ is the kernel of Dπ.
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Ehresmann connections

DEFINITION: Let π : M −→ Z be a smooth submersion, with TπM the

bundle of vertical tangent vectors (vectors tangent to the fibers of π).

An Ehresmann connection on π is a sub-bundle ThorM ⊂ TM such that

TM = ThorM ⊕ TπM . The parallel transport along the path γ : [0, a]−→ Z

associated with the Ehresmann connection is a diffeomorphism

Vt : π−1(γ(0))−→ π−1(γ(t))

smoothly depending on t ∈ [0, a] and satisfying dVt
dt ∈ ThorM .

CLAIM: Let π : M −→ Z be a smooth fibration with compact fibers. Then

the parallel transport, associated with the Ehresmann connection, al-

ways exists.

Proof: Follows from existence and uniqueness of solutions of ODEs.
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Foliations

Frobenius Theorem: Let B ⊂ TM be a sub-bundle. Then B is involutive

if and only if each point x ∈ M has a neighbourhood U 3 x and a smooth

submersion U
π−→ V such that B is its vertical tangent space: B = TπM.

REMARK: The implication “B = TπM” ⇒ “Frobenius form vanishes” is

clear because of local coordinate form of the submersions.

DEFINITION: The fibers of π are called leaves, or integral submanifolds

of the distribution B. Globally on M , a leaf of B is a maximal connected

manifold Z ↪→ M which is immersed to M and tangent to B at each point.

A distribution for which Frobenius theorem holds is called integrable. If B is

integrable, the set of its leaves is called a foliation. The leaves are manifolds

which are immersed to M , but not necessarily closed.

REMARK: To prove the Frobenius theorem for B ⊂ TM , it suffices to

show that each point is contained in an integral submanifold. In this

case, the smooth submersion U
π−→ V is the projection to the leaf space of

B.
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Frobenius theorem (1)

Proof of the Frobenius theorem. Step 1: Suppose that G is a Lie group

acting on a manifold M . Assume that the vector fields from the Lie algebra of

G generate a sub-bundle B ⊂ TM . Then B is integrable, that is, Frobenius

theorem holds of B ⊂ TM. Indeed, the orbits of the G-action are tangent

to B ⊂ TM .

Step 2: Let u, v be commuting vector fields on a manifold M , and etu, etv be

corresponding diffeomorphism flows. Then etu, etv commute. This easily

follows by taking a coordinate system such that u is the coordinate vector

field.

Step 3: The commutator of vector fields in B belongs to B, however, this

does not immediately produce any finite-dimensional Lie algebra: it is not ob-

vious that any subalgebra generated by such vector fields is finite-dimensional.

To produce a Lie group with orbits tangent to B, we need to find a collec-

tion ξ1, ..., ξk ∈ B of vector fields generating B and make sure that the

ξ1, ..., ξk generate a finite-dimensional Lie algebra.
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Frobenius theorem (2)

Step 4: The statement of Frobenius Theorem is local, hence we may replace

M be a small neighbourhood of a given point. We are going to show that

B locally has a basis of commuting vector fields. By Step 2, these vector

fields can be locally integrated to a commutative group action, and Frobenius

Theorem follows from Step 1.

Step 5: Let σ : M −→M1 be a smooth submersion, dσ : TxM −→ Tσ(x)M1

its differential, and v ∈ TM a vector field which satisfies

dσ(v)|x = dσ(v)|y (∗)

for any x, y ∈ σ−1(z) and any z ∈ M1. In this case, the vector field dσ(v) is

well-defined on M1. Given two vector fields u and v which satisfy (*),

we can easily check that the commutator [u, v] also satisfies (*), and,

moreover, dσ([u, v]) = [dσ(u), dσ(v)].
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Frobenius theorem (3)

Step 6: Now we can finish the proof of Frobenius theorem. We need to

produce, locally in M , a basis of commuting vector fields ξi ∈ B. We start

with producing (locally in M) an auxiliary submersion σ, with the fibers

which are complementary to B. To define such a submersion, we put

coordinates locally on M , identifying M with an open subset in Rn, and take

a linear map σ : M −→M1 = RdimB such that dσ : B|x −→ Tσ(x)M1 is an

isomorphism at some x ∈M .

Step 7: Then dσ : B|x −̃→ Tσ(x)M1 is an isomorphism in a neighbour-

hood of x; replacing M by a smaller open set, we may assume that dσ :

B|x −̃→ Tσ(x)M1 is an isomorphism everywhere on M . Let ζ1, ..., ζk be the

coordinate vector fields on M1.

Since dσ : B|x −→ Tσ(x)M1 is an isomorphism, there exist unique vector fields

ξ1, ..., ξk ∈ B ⊂ TM such that dσ(ξi) = ζi. By Step 5, dσ([ξi, ξj]) = [ζi, ζj] = 0.

Since B is involutive, the commutator [ξi, ξj] is a section of B. Now, the

map dσ : B|x −→ Tσ(x)M1 is an isomorphism, and therefore the vanishing of

dσ([ξ1, ξj]) implies [ξ1, ξj] = 0. We have constructed a basis of commuting

vector fields in B and finished the proof of Frobenius theorem.
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