

Hyperkähler manifolds,

lecture 16: Complex subvarieties

IMPA, sala 236

Misha Verbitsky, May 8, 2023, 13:30

<http://verbit.ru/IMPA/HK-2023/>

Complex subvarieties

The aim of today's lecture is

THEOREM: Let (M, I) be a complex manifold, $Z \subset (M, I)$ a real analytic subvariety, and $Z_0 \subset Z$ the set of smooth points of Z . **Suppose that $I(TZ_0) = TZ_0$. Then Z is complex analytic.**

Plan: Define real analytic varieties and manifolds, prove Newlander-Nirenberg for real analytic complex structures, use it to prove this result.

Real structures on complex manifolds

DEFINITION: A smooth map $\Psi : M \rightarrow N$ on an almost complex manifold (M, I) is called **antiholomorphic** if $d\Psi(I) = -I$. A function f is called **antiholomorphic** if \bar{f} is holomorphic.

EXERCISE: Prove that **an antiholomorphic function on M defines an antiholomorphic map from M to \mathbb{C} .**

EXERCISE: Prove that a map $\Psi : M \rightarrow N$ of almost complex manifolds is antiholomorphic **if and only if** $\Psi^*(\Lambda^{0,1}(N)) \subset \Lambda^{1,0}(M)$.

EXERCISE: Let ι be a smooth map from a complex manifold M to itself. Prove that ι is antiholomorphic if and only if $\iota^*(f)$ is antiholomorphic for any holomorphic function f on $U \subset M$.

DEFINITION: **A real structure** on a complex manifold M is an antiholomorphic involution $\tau : M \rightarrow M$.

EXAMPLE: Complex conjugation defines a real structure on \mathbb{C}^n .

Fixed points of real structures on manifolds

PROPOSITION: Let M be a complex manifold and $\iota : M \rightarrow M$ a real structure. Denote by M^ι the fixed point set of ι . Then, **for each** $x \in M^\iota$ **there exists a ι -invariant coordinate neighbourhood with holomorphic coordinates** z_1, \dots, z_n , **such that** $\iota^*(z_i) = \bar{z}_i$.

Proof. Step 1: For each basis of 1-forms $\nu_1, \dots, \nu_n \in \Lambda_x^{1,0}(M)$, there exists a set of holomorphic coordinate functions u_1, \dots, u_n such that $du_i|_x = \nu_i$. To obtain such a coordinate system, **we chose any coordinate system** v_1, \dots, v_n **and apply a linear transform mapping** $dv_i|_x$ **to** ν_i .

Step 2: The differential $d\iota$ acts on $T_x M$ as a real structure. Using the structure theorem about real structures, we obtain that any real basis ζ_1, \dots, ζ_n of $T_x^* M^\iota$ is a complex basis in the complex vector space $T_x^* M$. Then $\nu_i := \zeta_i + \sqrt{-1} I(\zeta_i)$ is a basis in $\Lambda_x^{1,0}(M)$. Choose the coordinate system u_1, \dots, u_n such that $du_i|_x = \nu_i$ (Step 1). **Replacing u_i by $z_i := u_i + \iota^*(\bar{u}_i)$, we obtain a holomorphic coordinate system z_i on M** (compare with Theorem 1 in Lecture 4) **which satisfies** $\iota^*(z_i) = \bar{z}_i$. ■

DEFINITION: Let $\{U_i\}$ be an complex atlas on M . Assume that any U_i intersecting M^ι satisfies the conclusion of this proposition. Then $\{U_i\}$ is called **compatible with the real structure**.

Real analytic manifolds and real structures

PROPOSITION: Let $M^\iota \subset M$ be a fixed point set of an antiholomorphic involution ι on a complex manifold M , $\{U_i\}$ a complex analytic atlas, and $\Psi_{ij} : U_{ij} \rightarrow U_{ij}$ the gluing functions. Assume that the atlas U_i is compatible with the real structure, in the sense of the previous proposition. **Then all Ψ_{ij} are real analytic on M^ι , and define a real analytic atlas on the manifold M^ι .**

Proof: All gluing functions from one coordinate system compatible with the real structure to another **commute with ι , acting on coordinate functions as the complex conjugation**. This gives $\Psi_{ij}(\bar{z}_i) = \overline{\Psi_{ij}(z_i)}$. Therefore, Ψ_{ij} preserve M^ι , and are expressed by real-valued functions on M^ι . ■

Real analytic manifolds and real structures 2

PROPOSITION: Any real analytic manifold can be obtained from this construction.

Proof. Step 1: Let $\{U_i\}$ be a locally finite atlas of a real analytic manifold M , and $\Psi_{ij} : U_{ij} \rightarrow U_{ij}$ the gluing maps. We realize U_i as an open ball with compact closure in $\text{Re}(\mathbb{C}^n) = \mathbb{R}^n$. By local finiteness, there are only finitely many such Ψ_{ij} for any given U_i . Denote by B_ε an open ball of radius ε in the n -dimensional real space $\text{im}(\mathbb{C}^n)$.

Step 2: Let $\varepsilon > 0$ be a sufficiently small real number such that all Ψ_{ij} can be extended to gluing functions $\tilde{\Psi}_{ij}$ on the open sets $\tilde{U}_i := U_i \times B_\varepsilon \subset \mathbb{C}^n$. **Then** $(\tilde{U}_i, \tilde{\Psi}_{ij})$ **is an atlas for a complex manifold $M_{\mathbb{C}}$** . Since all Ψ_{ij} are real, they are preserved by the natural involution acting on B_ε as -1 and on U_i as identity. This involution defines a real structure on $M_{\mathbb{C}}$. Clearly, M is the set of its fixed points. ■

Complexification

DEFINITION: Let $M_{\mathbb{R}}$ be a real analytic manifold, and $M_{\mathbb{C}}$ a complex analytic manifold equipped with an antiholomorphic involution, such that $M_{\mathbb{R}}$ is the set of its fixed points. Then $M_{\mathbb{C}}$ is called **complexification** of $M_{\mathbb{R}}$.

DEFINITION: A tensor on a real analytic manifold is called **real analytic** if it is expressed locally by a sum of coordinate monomials with real analytic coefficients.

CLAIM: Let $M_{\mathbb{R}}$ be a real analytic manifold, $(M_{\mathbb{C}}, \iota)$ its complexification, and Φ a tensor on $M_{\mathbb{R}}$. **Then Φ is real analytic if and only if Φ can be extended to a holomorphic tensor $\Phi_{\mathbb{C}}$ in some neighbourhood of $M_{\mathbb{R}}$ inside $M_{\mathbb{C}}$.** Moreover, Φ is real on $M_{\mathbb{R}}$ if $\iota^* \Phi_{\mathbb{C}} = \bar{\Phi}_{\mathbb{C}}$.

Proof: The “if” part is clear, because every complex analytic tensor on $M_{\mathbb{C}}$ is by definition real analytic on $M_{\mathbb{R}}$.

Conversely, suppose that Φ is expressed in coordinates by a sum of tensorial monomials with real analytic coefficients f_i . Let $\{U_i\}$ be a cover of $M_{\mathbb{R}}$, and $\tilde{U}_i := U_i \times B_{\varepsilon}$ the corresponding cover of a neighbourhood of $M_{\mathbb{R}}$ in $M_{\mathbb{C}}$ constructed above. Chosing ε sufficiently small, we can assume that the Taylor series giving coefficients of Φ converges on each \tilde{U}_i . **We define $\Phi_{\mathbb{C}}$ as the sum of these series.** ■

Germ of a complex manifold

DEFINITION: Let $K \subset M$ be a closed subset of a complex manifold, homeomorphic to $K_1 \subset M_1$, where M_1 is also a complex manifold. Fixing the homeomorphism $K \cong K_1$, we may identify these sets and consider K as a subset M_1 . We say that M and M_1 **have the same germ in K** if there exist biholomorphic open subsets $U_1 \subset M_1$ and $U \subset M$ containing K , with the biholomorphism $\varphi : U \rightarrow U_1$ identity on K .

DEFINITION: Germ of a manifold M in $K \subset M$ is an equivalence class of open subsets $U \subset M$ containing K , with this equivalence relation.

DEFINITION: Consider category \mathcal{C}_ι , with objects complex manifolds (M, ι) equipped with a real structure, and morphisms holomorphic maps commuting with ι .

THEOREM: (Grauert) Category of real analytic manifolds is equivalent to the category of germs of $M \in \mathcal{C}_\iota$ in $M^\iota \subset M$.

EXERCISE: Prove this theorem.

Hans Grauert

Hans Grauert in Bonn, 2000

(8.02.1930 - 4.09.2011)

Extension of tensors to a complexification

Lemma 1: Let X be an open ball in \mathbb{C}^n equipped with the standard anticomplex involution, $X_{\mathbb{R}} = X \cap \mathbb{R}^n$ its fixed point set, and α a holomorphic tensor on X vanishing in $X_{\mathbb{R}}$. **Then** $\alpha = 0$.

Proof: Any holomorphic function which vanishes on \mathbb{R}^n has all its derivatives vanishing. Therefore its Taylor serie vanish. Such a function vanishes on \mathbb{C}^n by analytic continuation principle. This argument can be applied to all coefficients of α . ■

DEFINITION: An almost complex structure I on a real analytic manifold is **real analytic** if I is a real analytic tensor.

COROLLARY: Let (M, I) be a real analytic almost complex manifold, $M_{\mathbb{C}}$ its complexification, and $I_{\mathbb{C}} : TM_{\mathbb{C}} \rightarrow TM_{\mathbb{C}}$ the holomorphic extension of I to $M_{\mathbb{C}}$. **Then** $I_{\mathbb{C}}^2 = -\text{Id}$.

Proof: The tensor $I_{\mathbb{C}}^2 + \text{Id}$ is holomorphic and vanishes on $M_{\mathbb{R}}$, hence the previous lemma can be applied. ■

Underlying real analytic manifold

REMARK: A complex analytic map $\Phi : \mathbb{C}^n \rightarrow \mathbb{C}^n$ is real analytic as a map $\mathbb{R}^{2n} \rightarrow \mathbb{R}^{2n}$. Indeed, the coefficients of Φ are real and imaginary parts of holomorphic functions, and real and imaginary parts of holomorphic functions can be expressed as Taylor series of the real variables.

DEFINITION: Let M be a complex manifold. The **underlying real analytic manifold** $M_{\mathbb{R}}$ is the same manifold, with the same gluing functions, considered as real analytic maps.

REMARK: The sheaf of real analytic functions on $M_{\mathbb{R}}$ can be defined as **the sheaf of converging power series generated by holomorphic and antiholomorphic functions**. Indeed, such functions are real analytic in any of the real analytic map; conversely, **any real analytic function on $M_{\mathbb{R}}$ is a converging power serie on $\text{Re } z_i, \text{Im } z_i$, where z_i are holomorphic coordinates on M .**

Complexification of the underlying real analytic manifold

DEFINITION: Let M be a complex manifold. The **complex conjugate manifold** is the same manifold with almost complex structure $-I$ and anti-holomorphic functions on M holomorphic on \overline{M} .

CLAIM: Let M be an integrable almost complex manifold. Denote by $M_{\mathbb{R}}$ its underlying real analytic manifold. **Then a complexification of $M_{\mathbb{R}}$ can be given as $M_{\mathbb{C}} := M \times \overline{M}$,** with the anticomplex involution $\tau(x, y) = (y, x)$.

Proof: Clearly, the fixed point set of τ is the diagonal, identified with $M_{\mathbb{R}} = M$ as usual. Both holomorphic and antiholomorphic functions on $M_{\mathbb{R}}$ are obtained as restrictions of holomorphic functions from $M_{\mathbb{C}}$, hence the sheaf of real analytic functions on $M_{\mathbb{R}}$ is a subsheaf of $\mathcal{O}_{M_{\mathbb{C}}}$ of holomorphic functions on $M_{\mathbb{C}}$ restricted to $M_{\mathbb{R}}$. ■

Holomorphic and antiholomorphic foliations

DEFINITION: Let $B \subset TM$ be a sub-bundle. The **foliation associated with B** is a family of submanifolds $X_t \subset U$, defined for each sufficiently small subset of M , called **the leaves of the foliation**, such that B is the bundle of vectors tangent to X_t . In this case, X_t are called **the leaves** of the foliation.

REMARK: Frobenius theorem says that **B is involutive if and only if it is tangent to a foliation.**

REMARK: Let (M, I) be a real analytic almost complex manifold, and $M_{\mathbb{C}}$ its complexification. Replacing $M_{\mathbb{C}}$ by a smaller neighbourhood of M , we may assume that the tensor I is extended to an endomorphism $I : TM_{\mathbb{C}} \rightarrow TM_{\mathbb{C}}$, $I^2 = -\text{Id}$. **Since $TM_{\mathbb{C}}$ is a complex vector bundle, I acts there with the eigenvalues $\sqrt{-1}$ and $-\sqrt{-1}$, giving a decomposition $TM_{\mathbb{C}} = T^{1,0}M_{\mathbb{C}} \oplus T^{0,1}M_{\mathbb{C}}$**

DEFINITION: **Holomorphic foliation** is a foliation tangent to $T^{1,0}M_{\mathbb{C}}$, **antiholomorphic foliation** is a foliation tangent to $T^{0,1}M_{\mathbb{C}}$.

Antiholomorphic foliation on $M_{\mathbb{C}} = M \times \overline{M}$.

REMARK: Let (M, I) be a integrable almost complex manifold, $M_{\mathbb{C}} = M \times \overline{M}$ its complexification, and $\pi, \bar{\pi}$ projections of $M_{\mathbb{C}}$ to M and \overline{M} . **Then the fibers of $\bar{\pi}$ is a holomorphic foliation, and the fibers of π is a holomorphic foliation.**

REMARK: Let $TM_{\mathbb{C}} = T' \oplus T''$ be a decomposition of $TM_{\mathbb{C}}$ onto part tangent to fibers of $\bar{\pi}$ and tangent to fibers of π . **On $M_{\mathbb{R}}$ the decomposition $TM_{\mathbb{C}} = T' \oplus T''$ coincides with the decomposition $TM \otimes \mathbb{C} = T^{1,0}M \oplus T^{0,1}M$.**

COROLLARY: Let (M, I) be a integrable almost complex manifold. **Then I is a real analytic almost complex structure.**

Proof: Extend I to an operator on $M_{\mathbb{C}}$ acting as $\sqrt{-1}$ on T' and $-\sqrt{-1}$ on T'' . This operator is complex analytic because the decomposition $TM = T' \oplus T''$ is holomorphic. ■

Corollary 1: Let (M, I) be a real analytic almost complex manifold. Then holomorphic functions on $M_{\mathbb{C}}$ which are constant on the leaves of antiholomorphic foliation **restrict to holomorphic functions on $(M, I) \subset M_{\mathbb{C}}$.**

Proof: Such functions are constant in the $(0, 1)$ -direction on $TM \otimes \mathbb{C}$. ■

Integrability of real analytic almost complex structure

THEOREM: (Newlander-Nirenberg for real analytic manifolds) Let (M, I) be a real analytic almost complex manifold, $\dim_{\mathbb{R}} M = 2$. **Then M is integrable.**

Proof. Step 1: Consider the complexification $M_{\mathbb{C}}$ of M , and let $TM_{\mathbb{C}} = T^{1,0}M_{\mathbb{C}} \oplus T^{0,1}M_{\mathbb{C}}$ be the decomposition defined above. By Frobenius theorem, there exists a foliation tangent to $T^{0,1}M_{\mathbb{C}}$ and one tangent to $T^{1,0}M_{\mathbb{C}}$. Since the leaves of these foliations are transversal, **locally $M_{\mathbb{C}}$ is a product of M' and M'' which are identified with the space of leaves of $T^{0,1}M_{\mathbb{C}}$ and $T^{1,0}M_{\mathbb{C}}$.**

Step 2: Locally, functions on M' can be lifted to $M' \times M'' = M_{\mathbb{C}}$, giving functions which are constant on the leaves of the foliation tangent to $T^{0,1}M_{\mathbb{C}}$. By Corollary 1, such functions are holomorphic on (M, I) . Choose a collection of $n = \frac{1}{2} \dim_{\mathbb{R}} M$ holomorphic functions f_1, \dots, f_n on $M_{\mathbb{C}}$ which are constant on the leaves of $T^{0,1}M_{\mathbb{C}}$ and have linearly independent differentials in $x \in M \subset M_{\mathbb{C}}$. By inverse function theorem, **f_1, \dots, f_n is a holomorphic coordinate system in a neighbourhood of $x \in (M, I)$** , and the transition functions between such coordinate systems are by construction holomorphic. ■

Complex subvarieties

CLAIM: Let $Z \subset M$ be a real analytic subvariety in a complex manifold (M, I) , and $Z_{\mathbb{C}} \subset M_{\mathbb{C}} = (M, I) \times (M, -I)$ its complexification, defined locally in a neighbourhood of a given point $z \in Z$. Assume that $Z_{\mathbb{C}}$ is locally a product, $Z_{\mathbb{C}} = Z' \times Z''$, with $Z' \subset (M, I)$ and $Z'' \subset (M, -I)$. **Then Z is complex analytic.**

Proof: The projection $Z \rightarrow Z'$ is locally bijective, and identifies Z with a complex variety. These local isomorphisms define complex analytic charts on Z , commuting with the projection $M_{\mathbb{C}} \rightarrow (M, I)$, and hence holomorphic. ■

THEOREM: Let (M, I) be a complex manifold, $Z \subset (M, I)$ a real analytic subvariety, and $Z_0 \subset Z$ the set of smooth points of Z . **Suppose that $I(TZ_0) = TZ_0$. Then Z is complex analytic.**

Proof: By the previous claim, it would suffice to check that $Z_{\mathbb{C}}$ is locally a product, $Z_{\mathbb{C}} = Z' \times Z''$, with $Z' \subset (M, I)$ and $Z'' \subset (M, -I)$. A closure of a product is a product, and $(Z_0)_{\mathbb{C}} = Z'_0 \times Z''_0$ because it is complex analytic. ■