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Complex subvarieties

The aim of today’s lecture is

THEOREM: Let (M,I) be a complex manifold, Z Cc (M,I) a real ana-
lytic subvariety, and Zg C Z the set of smooth points of Z. Suppose that

I(TZy) =TZy. Then Z is complex analytic.

Plan: Define real analytic varieties and manifolds, prove Newlander-Nirenberg
for real analytic complex structures, use it to prove this result.
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Real structures on complex manifolds

DEFINITION: A smooth map W : M — N on an almost complex mani-
fold (M, I) is called antiholomorphic if dW(I) = —1. A function f is called
antiholomorphic if f is holomorphic.

EXERCISE: Prove that an antiholomorphic function on M defines an
antiholomorphic map from M to C.

EXERCISE: Prove that a map WV : M — N of almost complex manifolds is
antiholomorphic if and only if W*(A%L(N)) c ALO(M).

EXERCISE: Let « be a smooth map from a complex manifold M to itself.
Prove that . is antiholomorphic if and only if .*(f) is antiholomorphic for
any holomorphic function f on U C M.

DEFINITION: A real structure on a complex manifold M is an antiholo-
morphic involution : M — M.

EXAMPLE: Complex conjugation defines a real structure on C",
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Fixed points of real structures on manifolds

PROPOSITION: Let M be a complex manifold and ¢+ : M — M a real
structure. Denote by M!' the fixed point set of .. Then, for each =z € M"*
there exists a ~-invariant coordinate neighbourhood with holomorphic
coordinates zq, ..., 2z, such that *(z;) = z,.

Proof. Step 1: For each basis of 1-forms vq,...,vn € /\%’O(M), there exists
a set of holomorphic coordinate functions uq,...,un such that du;|, = v;. To
obtain such a coordinate system, we chose any coordinate system v, ..., vy
and apply a linear transform mapping dv;|, to v;.

Step 2: The differential d¢ acts on 1T,M as a real structure. Using the
structure theorem about real structures, we obtain that any real basis (1, ..,(n
of TZM" is a complex basis in the complex vector space T;M. Then y; =
¢;++v—11(¢)} is a basis in /\%’O(M). Choose the coordinate system w1, ..., un
such that du,|: = v; (Step 1). Replacing u; by z; := u; + *(w;), we obtain
a holomorphic coordinate system z; on M (compare with Theorem 1 in
Lecture 4) which satisfies .*(z;) = z;,. =

DEFINITION: Let {U;} be an complex atlas on M. Assume that any U;
intersecting M" satisfies the conclusion of this proposition. Then {U;} is
called compatible with the real structure.
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Real analytic manifolds and real structures

PROPOSITION: Let M* C M be a fixed point set of an antiholomorphic
involution ¢« on a complex manifold M, {U;} a complex analytic atlas, and
W, U;; — U;; the gluing functions. Assume that the atlas U; is compatible
with the real structure, in the sense of the previous proposition. Then all W,
are real analytic on M*, and define a real analytic atlas on the manifold

M*.

Proof: All gluing functions from one coordinate system compatible with the
real structure to another commute with ., acting on coordinate functions
as the complex conjugation. This gives W;;(z;) = W;;(z;). Therefore, W,;
preserve M! and are expressed by real-valued functions on M. m
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Real analytic manifolds and real structures 2

PROPOSITION: Any real analytic manifold can be obtained from this
construction.

Proof. Step 1: Let {U;} be a locally finite atlas of a real analytic manifold
M, and W;; : U;; — U;; the gluing maps. We realize U; as an open ball with
compact closure in Re(C") = R". By local finiteness, there are only finitely
many such \l!z-j for any given U;. Denote by B: an open ball of radius € in the
n-dimensional real space im(C").

Step 2: Let € > 0 be a sufficiently small real number such that all W, can be
extended to gluing functions W;; on the open sets U; .= U; x B: C C". Then
(U;,V;;) is an atlas for a complex manifold Mc. Since all W, are real,
they are preserved by the natural involution acting on B: as —1 and on U, as
identity. This involution defines a real structure on M. Clearly, M is the set
of its fixed points. =
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Complexification

DEFINITION: Let My be a real analytic manifold, and M¢c a complex analytic
manifold equipped with an antiholomorphic involution, such that Mp is the
set of its fixed points. Then Mg is called complexification of Mp.

DEFINITION: A tensor on a real analytic manifold is called real analytic
if it is expressed locally by a sum of coordinate monomials with real analytic
coefficients.

CLAIM: Let Mp be a real analytic manifold, (Mg,t) its complexification,
and ® a tensor on Mp. Then & is real analytic if and only if ® can
be extended to a holomorpic tensor ¢ in some neighbourhood of Myp
inside M. Moreover, ® is real on My if *dc = P

Proof: The “if” part is clear, because every complex analytic tensor on Mg
is by definition real analytic on Myp.

Conversely, suppose that & is expressed in coordinates by a sum of tensorial
monomials with real analytic coefficients f;. Let {U;} be a cover of M, and
U, = U; x B: the corresponding cover of a neighbourhood of Mgy in Mg
constructed above. Chosing ¢ sufficiently small, we can assume that the
Taylor series giving coefficients of ® converges on each U;. We define Ole
as the sum of these series. =
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Germ of a complex manifold

DEFINITION: Let K C M be a closed subset of a complex manifold, home-
omorphic to K1 C My, where My is also a complex manifold. Fixing the
homeomorphism K = K7, we may identify these sets and consider K as a
subset M. We say that M and M; have the same germ in K if there
exist biholomorphic open subsets U1 C M1 and U C M containing K, with the
biholomorphism ¢ : U — Uy identity on K.

DEFINITION: Germ of a manifold M in K C M is an equivalence class of
open subsets U C M containing K, with this equivalence relation.

DEFINITION: Consider category C,, with objects complex manifolds (M, )
equipped with a real structure, and morphisms holomorphic maps commuting
with .

THEOREM: (Grauert) Category of real analytic manifolds is equivalent
to the category of germs of M €(C, in M* C M.

EXERCISE: Prove this theorem.
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Hans Grauert

Hans Grauert in Bonn, 2000
(8.02.1930 - 4.09.2011)
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Extension of tensors to a complexification

Lemma 1: Let X be an open ball in C" equipped with the standard anticom-
plex involution, Xp = X NR" its fixed point set, and « a holomorphic tensor
on X vanishing in Xg. Then a = 0.

Proof: Any holomorphic function which vanishes on R"™ has all its deriva-
tives vanishing. Therefore its Taylor serie vanish. Such a function vanishes
on C"™ by analytic continuation principle. This argument can be applied to all
coefficients of a. =

DEFINITION: An almost complex structure I on a real analytic manifold is
real analytic if I is a real analytic tensor.

COROLLARY: Let (M,I) be a real analytic almost complex manifold, Mg
its complexification, and I¢ : T'Mc — T M¢ the holomorphic extension of I
to Mc. Then I2 = —1Id.

Proof: The tensor Ié—l—Id IS holomorphic and vanishes on Mp, hence the
previous lemma can be applied. =
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Underlying real analytic manifold

REMARK: A complex analytic map ¢ : C" — C" is real analytic as a
map R2" —s R2", Indeed, the coefficients of & are real and imaginary parts of
holomorphic functions, and real and imaginary parts of holomorphic functions
can be expressed as Taylor series of the real variables.

DEFINITION: Let M be a complex manifold. The underlying real analytic
manifold Mp is the same manifold, with the same gluing functions, considered
as real analytic maps.

REMARK: The sheaf of real analytic functions on Mp can be defined as
the sheaf of converging power series generated by holomorphic and
antiholomorphic functions. Indeed, such functions are real analytic in any
of the real analytic map; conversely, any real analytic function on Myp
IS @ converging power serie on Rez;,Imz;,, where z;, are holomorphic
coordinates on M.
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Complexification of the underlying real analytic manifold

DEFINITION: Let M be a complex manifold. The complex conjugate
manifold is the same manifold with almost complex structure —I and anti-
holomorphic functions on M holomorphic on M.

CLAIM: Let M be an integrable almost complex manifold. Denote by Mp
its underlying real analytic manifold. Then a complexification of Mp can
be given as Mg := M x M, with the anticomplex involution 7(z,vy) = (y, x).

Proof: Clearly, the fixed point set of 7 is the diagonal, identified with Mp = M
as usual. Both holomorphic and antiholomorphic functions on Mp are obtained
as restrictions of holomorphic functions from Mg, hence the sheaf of real
analytic functions on Mg is a subsheaf of Oy, of holomorphic functions on
M restricted to Mir. =
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Holomorphic and antiholomorphic foliations

DEFINITION: Let B C T'M be a sub-bundle. The foliation associated
with B is a family of submanifolds X; C U, defined for each sufficiently small
subset of M, called the leaves of the foliation, such that B is the bundle of
vectors tangent to X;. In this case, X; are called the leaves of the foliation.

REMARK: Frobenius theorem says that B is involutive if and only if it is
tangent to a foliation.

REMARK: Let (M,I) be a real analytic almost complex manifold, and Mg
its complexification. Replacing M¢ by a smaller neighbourhood of M, we may
assume that the tensor I is extended to an endomorphism [ : T'M¢c — T M,

2 = —1d. Since TM¢ is a complex vector bundle, I acts there with the
eigenvalues /—1 and —v/—1, giving a decomposition TM¢c = T1O0M: @
T Me

DEFINITION: Holomorphic foliation is a foliation tangent to T1.9M¢, an-
tiholomorphic foliation is a foliation tangent to 7% M.
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Antiholomorphic foliation on Mg = M x M.

REMARK: Let (M, ) be a integrable almost complex manifold, Mc = M x M
its complexification, and m, 7 projections of M¢ to M and M. Then the fibers
of w is a holomorphic foliation, and the fibers of 7 is a holomorphic
foliation.

REMARK: Let TMc =T'®T" be a decomposition of TM¢ onto part tangent
to fibers of @ and tangent to fibers of =. On Mp the decomposition
TMc = T'®T" coincides with the decomposition TMQC = T1O0MaeTo%1 M.

COROLLARY: Let (M, I) be a integrable almost complex manifold. Then
I 1s a real analytic almost complex structure.

Proof: Extend I to an operator on Mg acting as v/—1 on T’ and —/—1 on T"”.
This operator is complex analytic because the decomposition TM =T’ & T"
IS holomorphic. =

Corollary 1: Let (M,I) be a real analytic almost complex manifold. Then
holomorphic functions on Mg which are constant on the leaves of antiholo-
moirphic foliation restrict to holomorphic functions on (M,I) C Mc.

Proof: Such functions are constant in the (0, 1)-direction on TM ® C. =
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Integrability of real analytic almost complex structure

THEOREM: (Newlander-Nirenberg for real analytic manifolds) Let (M, 1)
be a real analytic almost complex manifold, dimp M = 2. Then M is inte-
grable.

Proof. Step 1: Consider the complexification Mg of M, and let T'M¢ =
T1OMT% 1 M be the decomposition defined above. By Frobenius theorem,
there exists a foliation tangent to 791 My and one tangent to T19M¢. Since
the leaves of these foliations are transversal, locally M¢ is a product of M’
and M" which are identified with the space of leaves of 791\ and
T10Mc.

Step 2: Locally, functions on M’ can be lifted to M’ x M" = Mg, giving func-
tions which are constant on the leaves of the foliation tangent to 791 M. By
Corollary 1, such functions are holomorphic on (M, I). Choose a collection of
n = %dimRM holomorphic functions fy,...fn on M¢ which are constant on the
leaves of T M- and have linearly independent differentials in x € M C M.
By inverse function theorem, f4,..., fn IS @ holomorphic coordinate system
iIn a neigbourhood of x € (M, ), and the transition functions between such

coordinate systems are by construction holomorphic. m
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Complex subvarieties

CLAIM: Let Z C M Dbe a real analytic subvariety in a complex manifold
(M,I), and Z¢ C Me = (M, I)x (M, —1TI) its complexification, defined locally in
a neighbourhood of a given point z € Z. Assume that Z¢ is locally a product,
Zc = Z'x Z", with Zz/ ¢ (M,I) and Z"” Cc (M,—I). Then Z is complex
analytic.

Proof: The projection Z — Z' is locally bijective, and identifies Z with a
complex variety. These local isomorphisms define complex analytic charts on
Z, commuting with the projection M¢ — (M, ), and hence holomorphic. =

THEOREM: Let (M,I) be a complex manifold, Z c (M,I) a real ana-
lytic subvariety, and Zg C Z the set of smooth points of Z. Suppose that
I(TZy) =TZy. Then Z is complex analytic.

Proof: By the previous claim, it would suffice to check that Z¢ is locally a
product, Z¢c = Z' x Z", with Z' ¢ (M,I) and Z"” c (M,—I). A closure of a
product is a product, and (Zg)c = Z x Zj because it is complex analytic. =
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