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Complex subvarieties

The aim of today’s lecture is

THEOREM: Let (M, I) be a complex manifold, Z ⊂ (M, I) a real ana-

lytic subvariety, and Z0 ⊂ Z the set of smooth points of Z. Suppose that

I(TZ0) = TZ0. Then Z is complex analytic.

Plan: Define real analytic varieties and manifolds, prove Newlander-Nirenberg

for real analytic complex structures, use it to prove this result.
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Real structures on complex manifolds

DEFINITION: A smooth map Ψ : M −→N on an almost complex mani-

fold (M, I) is called antiholomorphic if dΨ(I) = −I. A function f is called

antiholomorphic if f is holomorphic.

EXERCISE: Prove that an antiholomorphic function on M defines an

antiholomorphic map from M to C.

EXERCISE: Prove that a map Ψ : M −→N of almost complex manifolds is

antiholomorphic if and only if Ψ∗(Λ0,1(N)) ⊂ Λ1,0(M).

EXERCISE: Let ι be a smooth map from a complex manifold M to itself.

Prove that ι is antiholomorphic if and only if ι∗(f) is antiholomorphic for

any holomorphic function f on U ⊂M.

DEFINITION: A real structure on a complex manifold M is an antiholo-

morphic involution τ : M −→M .

EXAMPLE: Complex conjugation defines a real structure on Cn.
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Fixed points of real structures on manifolds

PROPOSITION: Let M be a complex manifold and ι : M −→M a real
structure. Denote by M ι the fixed point set of ι. Then, for each x ∈ M ι

there exists a ι-invariant coordinate neighbourhood with holomorphic
coordinates z1, ..., zn, such that ι∗(zi) = zi.

Proof. Step 1: For each basis of 1-forms ν1, ..., νn ∈ Λ1,0
x (M), there exists

a set of holomorphic coordinate functions u1, ..., un such that dui|x = νi. To
obtain such a coordinate system, we chose any coordinate system v1, ..., vn
and apply a linear transform mapping dvi|x to νi.

Step 2: The differential dι acts on TxM as a real structure. Using the
structure theorem about real structures, we obtain that any real basis ζ1, .., ζn
of T ∗xM

ι is a complex basis in the complex vector space T ∗xM . Then νi :=
ζi +

√
−1 I(ζi)} is a basis in Λ1,0

x (M). Choose the coordinate system u1, ..., un
such that dui|x = νi (Step 1). Replacing ui by zi := ui + ι∗(ui), we obtain
a holomorphic coordinate system zi on M (compare with Theorem 1 in
Lecture 4) which satisfies ι∗(zi) = zi.

DEFINITION: Let {Ui} be an complex atlas on M . Assume that any Ui
intersecting M ι satisfies the conclusion of this proposition. Then {Ui} is
called compatible with the real structure.
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Real analytic manifolds and real structures

PROPOSITION: Let M ι ⊂ M be a fixed point set of an antiholomorphic

involution ι on a complex manifold M , {Ui} a complex analytic atlas, and

Ψij : Uij −→ Uij the gluing functions. Assume that the atlas Ui is compatible

with the real structure, in the sense of the previous proposition. Then all Ψij

are real analytic on M ι, and define a real analytic atlas on the manifold

M ι.

Proof: All gluing functions from one coordinate system compatible with the

real structure to another commute with ι, acting on coordinate functions

as the complex conjugation. This gives Ψij(zi) = Ψij(zi). Therefore, Ψij

preserve M ι, and are expressed by real-valued functions on M ι.
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Real analytic manifolds and real structures 2

PROPOSITION: Any real analytic manifold can be obtained from this

construction.

Proof. Step 1: Let {Ui} be a locally finite atlas of a real analytic manifold

M , and Ψij : Uij −→ Uij the gluing maps. We realize Ui as an open ball with

compact closure in Re(Cn) = Rn. By local finiteness, there are only finitely

many such Ψij for any given Ui. Denote by Bε an open ball of radius ε in the

n-dimensional real space im(Cn).

Step 2: Let ε > 0 be a sufficiently small real number such that all Ψij can be

extended to gluing functions Ψ̃ij on the open sets Ũi := Ui ×Bε ⊂ Cn. Then

(Ũi,Ψij) is an atlas for a complex manifold MC. Since all Ψij are real,

they are preserved by the natural involution acting on Bε as −1 and on Ui as

identity. This involution defines a real structure on MC. Clearly, M is the set

of its fixed points.
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Complexification

DEFINITION: Let MR be a real analytic manifold, and MC a complex analytic
manifold equipped with an antiholomorphic involution, such that MR is the
set of its fixed points. Then MC is called complexification of MR.

DEFINITION: A tensor on a real analytic manifold is called real analytic
if it is expressed locally by a sum of coordinate monomials with real analytic
coefficients.

CLAIM: Let MR be a real analytic manifold, (MC, ι) its complexification,
and Φ a tensor on MR. Then Φ is real analytic if and only if Φ can
be extended to a holomorpic tensor ΦC in some neighbourhood of MR
inside MC. Moreover, Φ is real on MR if ι∗ΦC = ΦC.

Proof: The “if” part is clear, because every complex analytic tensor on MC
is by definition real analytic on MR.

Conversely, suppose that Φ is expressed in coordinates by a sum of tensorial
monomials with real analytic coefficients fi. Let {Ui} be a cover of M , and
Ũi := Ui × Bε the corresponding cover of a neighbourhood of MR in MC
constructed above. Chosing ε sufficiently small, we can assume that the
Taylor series giving coefficients of Φ converges on each Ũi. We define ΦC
as the sum of these series.
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Germ of a complex manifold

DEFINITION: Let K ⊂M be a closed subset of a complex manifold, home-

omorphic to K1 ⊂ M1, where M1 is also a complex manifold. Fixing the

homeomorphism K ∼= K1, we may identify these sets and consider K as a

subset M1. We say that M and M1 have the same germ in K if there

exist biholomorphic open subsets U1 ⊂M1 and U ⊂M containing K, with the

biholomorphism ϕ : U −→ U1 identity on K.

DEFINITION: Germ of a manifold M in K ⊂M is an equivalence class of

open subsets U ⊂M containing K, with this equivalence relation.

DEFINITION: Consider category Cι, with objects complex manifolds (M, ι)

equipped with a real structure, and morphisms holomorphic maps commuting

with ι.

THEOREM: (Grauert) Category of real analytic manifolds is equivalent

to the category of germs of M ∈ Cι in M ι ⊂M.

EXERCISE: Prove this theorem.
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Hans Grauert

Hans Grauert in Bonn, 2000

(8.02.1930 - 4.09.2011)

9



Hyperkahler manifolds, lecture 16 M. Verbitsky

Extension of tensors to a complexification

Lemma 1: Let X be an open ball in Cn equipped with the standard anticom-

plex involution, XR = X ∩ Rn its fixed point set, and α a holomorphic tensor

on X vanishing in XR. Then α = 0.

Proof: Any holomorphic function which vanishes on Rn has all its deriva-

tives vanishing. Therefore its Taylor serie vanish. Such a function vanishes

on Cn by analytic continuation principle. This argument can be applied to all

coefficients of α.

DEFINITION: An almost complex structure I on a real analytic manifold is

real analytic if I is a real analytic tensor.

COROLLARY: Let (M, I) be a real analytic almost complex manifold, MC
its complexification, and IC : TMC −→ TMC the holomorphic extension of I

to MC. Then I2
C = − Id.

Proof: The tensor I2
C + Id is holomorphic and vanishes on MR, hence the

previous lemma can be applied.
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Underlying real analytic manifold

REMARK: A complex analytic map Φ : Cn −→ Cn is real analytic as a

map R2n −→ R2n. Indeed, the coefficients of Φ are real and imaginary parts of

holomorphic functions, and real and imaginary parts of holomorphic functions

can be expressed as Taylor series of the real variables.

DEFINITION: Let M be a complex manifold. The underlying real analytic

manifold MR is the same manifold, with the same gluing functions, considered

as real analytic maps.

REMARK: The sheaf of real analytic functions on MR can be defined as

the sheaf of converging power series generated by holomorphic and

antiholomorphic functions. Indeed, such functions are real analytic in any

of the real analytic map; conversely, any real analytic function on MR
is a converging power serie on Re zi, Im zi, where zi are holomorphic

coordinates on M.
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Complexification of the underlying real analytic manifold

DEFINITION: Let M be a complex manifold. The complex conjugate

manifold is the same manifold with almost complex structure −I and anti-

holomorphic functions on M holomorphic on M .

CLAIM: Let M be an integrable almost complex manifold. Denote by MR
its underlying real analytic manifold. Then a complexification of MR can

be given as MC := M ×M, with the anticomplex involution τ(x, y) = (y, x).

Proof: Clearly, the fixed point set of τ is the diagonal, identified with MR = M

as usual. Both holomorphic and antiholomorphic functions on MR are obtained

as restrictions of holomorphic functions from MC, hence the sheaf of real

analytic functions on MR is a subsheaf of OMC of holomorphic functions on

MC restricted to MR.
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Holomorphic and antiholomorphic foliations

DEFINITION: Let B ⊂ TM be a sub-bundle. The foliation associated

with B is a family of submanifolds Xt ⊂ U , defined for each sufficiently small

subset of M , called the leaves of the foliation, such that B is the bundle of

vectors tangent to Xt. In this case, Xt are called the leaves of the foliation.

REMARK: Frobenius theorem says that B is involutive if and only if it is

tangent to a foliation.

REMARK: Let (M, I) be a real analytic almost complex manifold, and MC
its complexification. Replacing MC by a smaller neighbourhood of M , we may

assume that the tensor I is extended to an endomorphism I : TMC −→ TMC,

I2 = − Id. Since TMC is a complex vector bundle, I acts there with the

eigenvalues
√
−1 and −

√
−1 , giving a decomposition TMC = T1,0MC ⊕

T0,1MC

DEFINITION: Holomorphic foliation is a foliation tangent to T1,0MC, an-

tiholomorphic foliation is a foliation tangent to T0,1MC.
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Antiholomorphic foliation on MC = M ×M.

REMARK: Let (M, I) be a integrable almost complex manifold, MC = M×M
its complexification, and π, π projections of MC to M and M . Then the fibers
of π is a holomorphic foliation, and the fibers of π is a holomorphic
foliation.

REMARK: Let TMC = T ′⊕T ′′ be a decomposition of TMC onto part tangent
to fibers of π and tangent to fibers of π. On MR the decomposition
TMC = T ′⊕T ′′ coincides with the decomposition TM⊗C = T1,0M⊕T0,1M.

COROLLARY: Let (M, I) be a integrable almost complex manifold. Then
I is a real analytic almost complex structure.

Proof: Extend I to an operator on MC acting as
√
−1 on T ′ and −

√
−1 on T ′′.

This operator is complex analytic because the decomposition TM = T ′ ⊕ T ′′
is holomorphic.

Corollary 1: Let (M, I) be a real analytic almost complex manifold. Then
holomorphic functions on MC which are constant on the leaves of antiholo-
moirphic foliation restrict to holomorphic functions on (M, I) ⊂MC.

Proof: Such functions are constant in the (0,1)-direction on TM ⊗ C.
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Integrability of real analytic almost complex structure

THEOREM: (Newlander-Nirenberg for real analytic manifolds) Let (M, I)

be a real analytic almost complex manifold, dimRM = 2. Then M is inte-

grable.

Proof. Step 1: Consider the complexification MC of M , and let TMC =

T1,0MC⊕T0,1MC be the decomposition defined above. By Frobenius theorem,

there exists a foliation tangent to T0,1MC and one tangent to T1,0MC. Since

the leaves of these foliations are transversal, locally MC is a product of M ′

and M ′′ which are identified with the space of leaves of T0,1MC and

T1,0MC.

Step 2: Locally, functions on M ′ can be lifted to M ′×M ′′ = MC, giving func-

tions which are constant on the leaves of the foliation tangent to T0,1MC. By

Corollary 1, such functions are holomorphic on (M, I). Choose a collection of

n = 1
2 dimRM holomorphic functions f1, ...fn on MC which are constant on the

leaves of T0,1MC and have linearly independent differentials in x ∈ M ⊂ MC.

By inverse function theorem, f1, ..., fn is a holomorphic coordinate system

in a neigbourhood of x ∈ (M, I), and the transition functions between such

coordinate systems are by construction holomorphic.
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Complex subvarieties

CLAIM: Let Z ⊂ M be a real analytic subvariety in a complex manifold

(M, I), and ZC ⊂MC = (M, I)×(M,−I) its complexification, defined locally in

a neighbourhood of a given point z ∈ Z. Assume that ZC is locally a product,

ZC = Z′ × Z′′, with Z′ ⊂ (M, I) and Z′′ ⊂ (M,−I). Then Z is complex

analytic.

Proof: The projection Z −→ Z′ is locally bijective, and identifies Z with a

complex variety. These local isomorphisms define complex analytic charts on

Z, commuting with the projection MC −→ (M, I), and hence holomorphic.

THEOREM: Let (M, I) be a complex manifold, Z ⊂ (M, I) a real ana-

lytic subvariety, and Z0 ⊂ Z the set of smooth points of Z. Suppose that

I(TZ0) = TZ0. Then Z is complex analytic.

Proof: By the previous claim, it would suffice to check that ZC is locally a

product, ZC = Z′ × Z′′, with Z′ ⊂ (M, I) and Z′′ ⊂ (M,−I). A closure of a

product is a product, and (Z0)C = Z′0 × Z
′′
0 because it is complex analytic.
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