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Teichmuller space

DEFINITION: The space of almost complex structures is an infinite-
dimensional Fréchet manifold X, of all tensors 2 = — Id7r,s, equipped with
the natural Fréchet topology.

Definition: Let M be a compact complex manifold, and Diffg(M) a con-
nected component of its diffeomorphism group (the group of isotopies).
Denote by Comp the space of complex structures on M, and let Teich =
Comp / Diffg(M). We call it the Teichmuller space.

REMARK: The space of Diffg(M)-orbits in a small neightbourhood of a
point in Comp is always a finite-dimensional complex space (Kodaira-
Spencer-Kuranishi-Douady). However, the quotient Comp / Diffg(M) is often
non-Hausdorff.

DEFINITION: We call I := Diff(M)/ Diffog(M) the mapping class group.

REMARK: The topology of the space Teich /" is often bizzarre. However,
its points are in bijective correspondence with equivalence classes of

complex structures.
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Deformations of holomorphically symplectic manifolds.

THEOREM: (Kodaira-Spencer) A small deformation of a compact
Kahler manifold is again Kahler.

COROLLARY: A small deformation of a holomorphically symplectic Kahler
manifold M is again holomorphically symplectic and Kahler.

Proof: A small deformation M’ of M would satisfy H29(M'") = H2O(M),
by semi-continuity of Hodge numbers; however, a small deformation of a
non-degenerate (2,0)-form remains non-degenerate. =

DEFINITION: A compact complex manifold admitting holomorphically sym-
plectic and Kahler structure is called a manifold of hyperkahler type

REMARK: From now on, Teich denotes the Teichmuller space of com-
plex structures of hyperkahler type. It is an open subset in the Teichmuller
space of complex structures.
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The period map and Bogomolov’s local Torelli theorem

Definition: Let Per : Teich — PH2(M,C) map J to a point (ReQ,ImQ) €
Gr(2, H2(M,R)) The map Per : Teich — Gr(2, H2(M,R)) is called the pe-
riod map.

THEOREM: (Bogomolov’s local Torelli theorem)

Let M be a maximal holonomy hyperkahler manifold, and Teich its Te-
ichmiller space. The the period map Per : Teich — Gr(2, H2(M,R)) is
locally a diffeomorphism.

REMARK: Bogomolov's theorem implies that Teich is smooth. It is non-
Hausdorff even in the simplest examples.

Today I will assume Bogomolov’s theorem. I will deduce from Bogomolov’s
theorem a result about topology of hyperkahler manifolds of maximal
holonomy.
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Polynomial invariants of Lie groups

PROPOSITION 1: Let V be a real vector space equipped with an action
of a Lie group GG, and Q a G-invariant polynomial function. Let S C Gr(2,V)
be an open subset in the Grassmannian of 2-planes. Assume that for any
W e S, there exists a subgroup py C G isomorphic to sl acting by rotations
on W and trivially on V/W. Then (@ is proportional to ¢", where ¢ is a
quadratic form on V.

Proof. Step 1: Let W € S be a 2-plane in V. Any rotation-invariant
polynomial function on R? is a power of quadratic form (prove this as
an exercise), hence Q| = Aqjy |y, for some quadratic form gy .

Step 2: We want to take the n-th root of . When n is odd, the n-th root
of @ is well defined. When n is even, the restriction Ql|yy does not change
sign, hence @ does not change sign on the set Ug C V of all vectors passing
through planes W € S. The function g := /%0 is well defined on the
whole of V when n is odd, and on an open subset Ug C V when it is
even.
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Polynomial invariants of Lie groups (2)

PROPOSITION 1: Let V be a real vector space equipped with an action
of a Lie group GG, and @ a G-invariant polynomial function. Let S C Gr(2,V)
be an open subset in the Grassmannian of 2-planes. Assume that for any
W e S, there exists a subgroup py C GG isomorphic to sl acting by rotations
on W and trivially on V/W. Then (@ is proportional to ¢", where ¢ is a
quadratic form on V.

Step 2: The function q .= /£Q is well defined on the whole of V when
n 1S odd, and on an open subset Ug C V when it is even.

Step 3: The function q : Ug — R is a polynomial of secogd degree on all

hyperplanes W € S. Consider the second derivative H = dg—dyq as a section

of Sym2T*Ug. Take ¢ € T,Ug = V such that (¢,v) € S. Since ¢ is a quadratic
function on ({,v), the value of the function v — H(({,() is independent from
v. The set of ¢ for which this is true is open, and H({,¢) is a quadratic
polynomial on ¢. This implies that v — H({,({) is constant on Ug, for
any ¢ € V.

Step 4: A function which satisfies %q — const IS a quadratic polynomial.
We extend it to a quadratic polynomial on V. Then @ = A\q" on Ug. Since
Q) is polynomial, and Ug C V is open, this expression is true everywhere. m
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The image of the period map is open

T he following theorem is the most general version of local Torelli which might
be used to define the BBF form.

We might prove it at some later date (or not).

PROPOSITION: Let M be a compact holomorphically symplectic manifold
(not necessarily Kahler) such that H%2(M) = H29(M) = C, and assume
that all 9-exact holomorphic 3-forms on M vanish. Then the period map
has an open image in Gr(2, H2(M,R)).

REMARK: These assumptions are clearly true when M is a compact hy-
perkahler manifold of maximal holonomy. Indeed, on a compact Kahler
manifold all exact holomorphic forms vanish.
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The BBF form

THEOREM: Let M be a compact holomorphically symplectic manifold,
dime M = 2n, admitting the Hodge decomposition on H2(M). Assume that
all 9-exact holomorphic 3-forms on M vanish, and H%2(M) = H29(M) = C.
Then the space H?(M) is equipped with a bilinear symmetric form g
such that for any n € H%(M), one has [, n°" = q(n,n)".

Proof. Step 1: Consider the Hodge decomposition on H2(M) induced by
the complex structure I € U. This gives “the Hodge rotation map”, that
is, an U(1)-action p;(t), acting as 2™V =1 (p=)t on HP4(M). Clearly, the
polynomial Q(n) := [,;n°" is pr-invariant. By definition, p; acts trivially on
HULL(M) and rotates W = (ReQ,Im Q).

Step 2: Let G be the Lie group generated by the Hodge rotation maps pjy for
all complex structures I satisfying the assumptions of the theorem. Since the
image of the period map is open, the action of G satisfies assumptions of
Proposition 1, giving Q(n) = X¢(n,7)". =

DEFINITION: Usually one normalizes g in such a way that it is integer and

primitive; then Q(n) = \qg(n,n)"™, where A\ > 0 is called the Fujiki constant.

The form q is called the Bogomolov-Beauville-Fujiki form (the BBF form).
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Further directions

We can finish the course by proving the local Torelli theorem (and state the
global Torelli), or the following result

THEOREM: Let M be a hyperkahler manifold of maximal holonomy, and
g C End(H*(M)) the Lie algebra generated by all Lefschetz sl(2)-triples, for all
Kahler structures of hyperkahler type. Then g = s0(4,b> —2). Moreover, the
subalgebra A* of H*(M,Q) generated multiplicatively by H2(M) satisfies
A2k = SymF(H*(M,Q)) for any k < & dim¢ M.

Your choicel
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Kodaira-Spencer stability theorem.

THEOREM: (Kodaira-Spencer) Consider a smooth family I; of complex
structures on a compact manifold M, t €] —a,a[. Assume that (M, Iy) admits
Kahler structure. Then there exists a neighbourhood W > 0 such that
for each ¢t € W, the manifold (M, I;) is Kahler.

Proof. Step 1: We denote (M, I;) by X; and the corresponding family of
complex manifolds over B :=] — a,a[ by X. Consider the relative Frolicher
spectral sequence

where Q%X is fiberwise holomorphic forms on the fibers. Here RiTim, (Cy) is
the derived pushforward of a constant sheaf (that is, a graded local system
over B with the fibers of grading k£ in y € B identified with k-th cohomology
of Xy).

It is a relative (over B) version of the usual Frolicher spectral sequence
HY(QIM) = H*TI(M,C). This spectral sequence gives an inequality

S dimHY(Q7Xg) > Y dimH (VX)) (%)
i+ji=k i+i=k
for general z € B because the cohomology of Qth are semicontinuous

In ¢.
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Kodaira stability theorem (part 2)

Proof. Step 1: This spectral sequence gives an inequality

S o dimHY(Q7Xg) > Y dimH(QUX:) (%)
i+j=k it+j=k
for general z € B because the cohomology of coherent sheaves on X;
are semicontinuous in t.

Proof. Step 2: Since X is Kahler, the Frolicher spectral sequence for X
degenerates in Ep, giving Y ;4= dim H(Q/X;) = h*(X;). By semicontinuity,
S dimHY(QX,) < Y dim HY(S7 Xo)
i+j=k i+j=k
in a sufficiently small neighbourhood U of 0 € B. Comparing this with (**),

we find that rank of H*(2/X,) is constant in U, hence the inequality (**)
is equality in U, and the spectral sequence (*) degenerates.
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Kodaira stability theorem (part 3)

Step 3: Consider the sheaf H = le(Q}BX). By Step 2, H is a vector bundle
in a neighbourhood of 0, generated by fiberwise 0-closed (1,1)-forms. up to
fiberwise 9-exact (1,1)-forms. Let Ail’l(X/B) be the sheaf of fiberwise closed

fiberwise forms on X’, and m/\il’l(X/B) i H the natural projection. Choose
a Hermitian_metric on X, smoothly extending the Kahler metric w; on X3,
and let H :—*> m/\il’l(X/B) be the Hermitian adjoint map. By construction,
=* is an orthogonal projection of cohomology to closed (1,1)-forms along the
exact 2-forms. Therefore, =* maps the Kahler class [w;] to its harmonic
representative w,.

Step 4: Let & be a smooth section of H satisfying &|, = [wz]. Then =*(&)
is a family of closed forms wy € /\il’l(Xy), depending smoothly on y € B.
Since all eigenvalues of w, are positive, the same is true for wy for y sufficiently
close to z. However, a closed, positive (1,1)-form is Kadhler. m
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