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Teichmüller space

DEFINITION: The space of almost complex structures is an infinite-

dimensional Fréchet manifold XM of all tensors I2 = − IdTM , equipped with

the natural Fréchet topology.

Definition: Let M be a compact complex manifold, and Diff0(M) a con-

nected component of its diffeomorphism group (the group of isotopies).

Denote by Comp the space of complex structures on M , and let Teich :=

Comp /Diff0(M). We call it the Teichmüller space.

REMARK: The space of Diff0(M)-orbits in a small neightbourhood of a

point in Comp is always a finite-dimensional complex space (Kodaira-

Spencer-Kuranishi-Douady). However, the quotient Comp /Diff0(M) is often

non-Hausdorff.

DEFINITION: We call Γ := Diff(M)/Diff0(M) the mapping class group.

REMARK: The topology of the space Teich /Γ is often bizzarre. However,

its points are in bijective correspondence with equivalence classes of

complex structures.
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Deformations of holomorphically symplectic manifolds.

THEOREM: (Kodaira-Spencer) A small deformation of a compact

Kähler manifold is again Kähler.

COROLLARY: A small deformation of a holomorphically symplectic Kähler

manifold M is again holomorphically symplectic and Kähler.

Proof: A small deformation M ′ of M would satisfy H2,0(M ′) = H2,0(M),

by semi-continuity of Hodge numbers; however, a small deformation of a

non-degenerate (2,0)-form remains non-degenerate.

DEFINITION: A compact complex manifold admitting holomorphically sym-

plectic and Kähler structure is called a manifold of hyperkähler type

REMARK: From now on, Teich denotes the Teichmüller space of com-

plex structures of hyperkähler type. It is an open subset in the Teichmüller

space of complex structures.
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The period map and Bogomolov’s local Torelli theorem

Definition: Let Per : Teich −→ PH2(M,C) map J to a point 〈Re Ω, Im Ω〉 ∈
Gr(2, H2(M,R)) The map Per : Teich −→ Gr(2, H2(M,R)) is called the pe-

riod map.

THEOREM: (Bogomolov’s local Torelli theorem)

Let M be a maximal holonomy hyperkähler manifold, and Teich its Te-

ichmüller space. The the period map Per : Teich −→ Gr(2, H2(M,R)) is

locally a diffeomorphism.

REMARK: Bogomolov’s theorem implies that Teich is smooth. It is non-

Hausdorff even in the simplest examples.

Today I will assume Bogomolov’s theorem. I will deduce from Bogomolov’s

theorem a result about topology of hyperkähler manifolds of maximal

holonomy.
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Polynomial invariants of Lie groups

PROPOSITION 1: Let V be a real vector space equipped with an action

of a Lie group G, and Q a G-invariant polynomial function. Let S ⊂ Gr(2, V )

be an open subset in the Grassmannian of 2-planes. Assume that for any

W ∈ S, there exists a subgroup ρW ⊂ G isomorphic to S1 acting by rotations

on W and trivially on V/W . Then Q is proportional to qn, where q is a

quadratic form on V .

Proof. Step 1: Let W ∈ S be a 2-plane in V . Any rotation-invariant

polynomial function on R2 is a power of quadratic form (prove this as

an exercise), hence Q|W = λqnW |W , for some quadratic form qW .

Step 2: We want to take the n-th root of Q. When n is odd, the n-th root

of Q is well defined. When n is even, the restriction Q|W does not change

sign, hence Q does not change sign on the set US ⊂ V of all vectors passing

through planes W ∈ S. The function q := n
√
±Q is well defined on the

whole of V when n is odd, and on an open subset US ⊂ V when it is

even.
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Polynomial invariants of Lie groups (2)

PROPOSITION 1: Let V be a real vector space equipped with an action
of a Lie group G, and Q a G-invariant polynomial function. Let S ⊂ Gr(2, V )
be an open subset in the Grassmannian of 2-planes. Assume that for any
W ∈ S, there exists a subgroup ρW ⊂ G isomorphic to S1 acting by rotations
on W and trivially on V/W . Then Q is proportional to qn, where q is a
quadratic form on V .

Step 2: The function q := n
√
±Q is well defined on the whole of V when

n is odd, and on an open subset US ⊂ V when it is even.

Step 3: The function q : US −→ R is a polynomial of second degree on all
hyperplanes W ∈ S. Consider the second derivative H := d2

dxdyq as a section

of Sym2 T ∗US. Take ζ ∈ TvUS = V such that 〈ζ, v〉 ∈ S. Since q is a quadratic
function on 〈ζ, v〉, the value of the function v 7→ H(ζ, ζ) is independent from
v. The set of ζ for which this is true is open, and H(ζ, ζ) is a quadratic
polynomial on ζ. This implies that v −→H(ζ, ζ) is constant on US, for
any ζ ∈ V .

Step 4: A function which satisfies d2

dxdyq = const is a quadratic polynomial.
We extend it to a quadratic polynomial on V . Then Q = λqn on US. Since
Q is polynomial, and US ⊂ V is open, this expression is true everywhere.
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The image of the period map is open

The following theorem is the most general version of local Torelli which might

be used to define the BBF form.

We might prove it at some later date (or not).

PROPOSITION: Let M be a compact holomorphically symplectic manifold

(not necessarily Kähler) such that H0,2(M) = H2,0(M) = C, and assume

that all ∂-exact holomorphic 3-forms on M vanish. Then the period map

has an open image in Gr(2, H2(M,R)).

REMARK: These assumptions are clearly true when M is a compact hy-

perkähler manifold of maximal holonomy. Indeed, on a compact Kähler

manifold all exact holomorphic forms vanish.
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The BBF form

THEOREM: Let M be a compact holomorphically symplectic manifold,
dimCM = 2n, admitting the Hodge decomposition on H2(M). Assume that
all ∂-exact holomorphic 3-forms on M vanish, and H0,2(M) = H2,0(M) = C.
Then the space H2(M) is equipped with a bilinear symmetric form q

such that for any η ∈ H2(M), one has
∫
M η2n = q(η, η)n.

Proof. Step 1: Consider the Hodge decomposition on H2(M) induced by
the complex structure I ∈ U . This gives “the Hodge rotation map”, that
is, an U(1)-action ρI(t), acting as e2π

√
−1 (p−q)t on Hp,q(M). Clearly, the

polynomial Q(η) :=
∫
M η2n is ρI-invariant. By definition, ρI acts trivially on

H1,1(M) and rotates W = 〈Re Ω, Im Ω〉.

Step 2: Let G be the Lie group generated by the Hodge rotation maps ρI for
all complex structures I satisfying the assumptions of the theorem. Since the
image of the period map is open, the action of G satisfies assumptions of
Proposition 1, giving Q(η) = λq(η, η)n.

DEFINITION: Usually one normalizes q in such a way that it is integer and
primitive; then Q(η) = λq(η, η)n, where λ > 0 is called the Fujiki constant.
The form q is called the Bogomolov-Beauville-Fujiki form (the BBF form).
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Further directions

We can finish the course by proving the local Torelli theorem (and state the

global Torelli), or the following result

THEOREM: Let M be a hyperkähler manifold of maximal holonomy, and

g ⊂ End(H∗(M)) the Lie algebra generated by all Lefschetz sl(2)-triples, for all

Kähler structures of hyperkähler type. Then g = so(4, b2−2). Moreover, the

subalgebra A∗ of H∗(M,Q) generated multiplicatively by H2(M) satisfies

A2k = Symk(H∗(M,Q)) for any k 6 1
2 dimCM .

Your choice!
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Kodaira-Spencer stability theorem.

THEOREM: (Kodaira-Spencer) Consider a smooth family It of complex
structures on a compact manifold M , t ∈]−a, a[. Assume that (M, I0) admits
Kähler structure. Then there exists a neighbourhood W 3 0 such that
for each t ∈W , the manifold (M, It) is Kähler.

Proof. Step 1: We denote (M, It) by Xt and the corresponding family of
complex manifolds over B :=] − a, a[ by X . Consider the relative Frölicher
spectral sequence

Riπ∗(Ωj
BX )⇒ Ri+jπ∗(CX ) (∗)

where Ωj
BX is fiberwise holomorphic forms on the fibers. Here Ri+jπ∗(CX ) is

the derived pushforward of a constant sheaf (that is, a graded local system
over B with the fibers of grading k in y ∈ B identified with k-th cohomology
of Xy).

It is a relative (over B) version of the usual Frölicher spectral sequence
Hi(ΩjM)⇒ Hi+j(M,C). This spectral sequence gives an inequality∑

i+j=k

dimHi(ΩjX0) >
∑

i+j=k

dimHi(ΩjXz) (∗∗)

for general z ∈ B because the cohomology of ΩjXt are semicontinuous
in t.
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Kodaira stability theorem (part 2)

Proof. Step 1: This spectral sequence gives an inequality∑
i+j=k

dimHi(ΩjX0) >
∑

i+j=k

dimHi(ΩjXz) (∗∗)

for general z ∈ B because the cohomology of coherent sheaves on Xt
are semicontinuous in t.

Proof. Step 2: Since X0 is Kähler, the Frölicher spectral sequence for X0

degenerates in E2, giving
∑
i+j=k dimHi(ΩjXz) = hk(Xz). By semicontinuity,∑

i+j=k

dimHi(ΩjXy) 6
∑

i+j=k

dimHi(ΩjX0)

in a sufficiently small neighbourhood U of 0 ∈ B. Comparing this with (**),

we find that rank of Hi(ΩjXy) is constant in U, hence the inequality (**)

is equality in U , and the spectral sequence (*) degenerates.
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Kodaira stability theorem (part 3)

Step 3: Consider the sheaf H := R1π∗(Ω1
BX ). By Step 2, H is a vector bundle

in a neighbourhood of 0, generated by fiberwise ∂-closed (1,1)-forms. up to

fiberwise ∂-exact (1,1)-forms. Let Λ1,1
cl (X/B) be the sheaf of fiberwise closed

fiberwise forms on X , and π∗Λ
1,1
cl (X/B)

Ξ−→ H the natural projection. Choose

a Hermitian metric on X , smoothly extending the Kähler metric ωz on Xz,

and let H Ξ∗−→ π∗Λ
1,1
cl (X/B) be the Hermitian adjoint map. By construction,

Ξ∗ is an orthogonal projection of cohomology to closed (1,1)-forms along the

exact 2-forms. Therefore, Ξ∗ maps the Kähler class [ωz] to its harmonic

representative ωz.

Step 4: Let ω̃ be a smooth section of H satisfying ω̃|z = [ωz]. Then Ξ∗(ω̃)

is a family of closed forms ωy ∈ Λ1,1
cl (Xy), depending smoothly on y ∈ B.

Since all eigenvalues of ωz are positive, the same is true for ωy for y sufficiently

close to z. However, a closed, positive (1,1)-form is Kähler.
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