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Hyperkähler manifolds, lecture 24 M. Verbitsky

The BBF form (reminder)

THEOREM: Let M be a compact holomorphically symplectic manifold,
dimCM = 2n, admitting the Hodge decomposition on H2(M). Assume that
all ∂-exact holomorphic 3-forms on M vanish, and H0,2(M) = H2,0(M) = C.
Then the space H2(M) is equipped with a bilinear symmetric form q

such that for any η ∈ H2(M), one has
∫
M η2n = q(η, η)n.

Proof. Step 1: Consider the Hodge decomposition on H2(M) induced by
the complex structure I ∈ U . This gives “the Hodge rotation map”, that
is, an U(1)-action ρI(t), acting as e2π

√
−1 (p−q)t on Hp,q(M). Clearly, the

polynomial Q(η) :=
∫
M η2n is ρI-invariant. By definition, ρI acts trivially on

H1,1(M) and rotates W = 〈Re Ω, Im Ω〉.

Step 2: Let G be the Lie group generated by the Hodge rotation maps ρI for
all complex structures I satisfying the assumptions of the theorem. Since the
image of the period map is open, the action of G satisfies assumptions of
Proposition 1, Lecture 23, giving Q(η) = λq(η, η)n.

DEFINITION: Usually one normalizes q in such a way that it is integer and
primitive; then Q(η) = λq(η, η)n, where λ > 0 is called the Fujiki constant.
The form q is called the Bogomolov-Beauville-Fujiki form (the BBF form).
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Hyperkähler manifolds, lecture 24 M. Verbitsky

Hodge decomposition on hk manifolds (reminder from Lecture 21)

EXERCISE: (Klebsch-Gordan formula)
Let Vp and Vq, p > q be a (p+1)− and (q+1)-dimensional complex irreducible
representation of SU(2). Prove that Vp ⊗ Vq =

⊕q
i=0 Vp+q−2i.

COROLLARY: Let M be a hyperkähler manifold, dimHM = n. Then for
each x ∈M , and each d 6 2n, the space Λdx(M) is a direct sum of several
Vi for 0 6 i 6 d, of the same parity as d, and the same holds for Hd(M).

Proof: Follows from Klebsch-Gordan because Λ1
xM is a direct sum of SU(2)-

representations of weight 1, Λ1
xM = V n1 .

CLAIM: Let M be a compact hyperkähler manifold of maximal holonomy.
Then H2(M) = 〈ωI , ωJ , ωK〉 ⊕ H2(M)SU(2), where H2(M)SU(2) is the space
of SU(2)-invariant vectors in H2(M).

Proof: A class η ∈ H2(M) is SU(2)-invariant if and only if η is of Hodge type
(1,1) with respect to all induced complex structures. However, dimH2,0(M, I) =
1, hence the sub-representation W generated by H2,0(M, I) is 1-dimensional.
It is a subrepresentation of weight 2, hence it is 3-dimensional, hence W =
〈ωI , ωJ , ωK〉. Its complement is an SU(2)-invariant subspace V ⊂ H1,1

I (M); by

SU(2)-invariance, this gives V ⊂ H1,1
L (M) for all induced complex structures,

hence V = H2(M)SU(2).
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Hyperkähler manifolds, lecture 24 M. Verbitsky

Primitive cohomology classes

Recall that a cohomology class η ∈ H2(M) on Kähler manifold (M,ω) is called

primitive if
∫
M η ∧ ωdimCM−1 = 0. The following result is a special case of

“Hodge-Riemann relations”.

PROPOSITION: (Hodge index theorem)

Let η ∈ H1,1(M,R) be a non-zero primitive (1,1)-class on a compact Kähler

manifold (M,ω). Then
∫
M η ∧ η ∧ ωdimCM−2 < 0.

Proof: Take a harmonic representative for η. Since Λη = 0, η⊥ω at each

point of M . Consider a 2n-dimensional real vector space V equipped with a

Hermitian structure (I, g, ω), and let η ∈ Λ1,1(V ) be a form which is orthogonal

to ω. It would suffice to show that η ∧ η ∧ωdimC V−2 is a strictly negative

volume form on V .

LEMMA: Let (V, I, g, ω) be a real vector space equipped with a Hermitian

structure, and η ∈ Λ1,1(V ) a non-zero form which is orthogonal to ω. Then
η∧η∧ωdimC V−2

VolV
< 0.

Proof: Next slide
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Hyperkähler manifolds, lecture 24 M. Verbitsky

Hodge index theorem for pseudo-Hermitian 2-forms on R2n

LEMMA: Let (V, I, g, ω) be a real vector space equipped with a Hermitian

structure, and η ∈ Λ1,1(V ) a non-zero form which is orthogonal to ω. Then
η∧η∧ωdimC V−2

VolV
< 0.

Step 1: Let h(x, y) := η(x, Iy). Since η is of type (1,1), the form h is

I-invariant, that is, pseudo-Hermitian. For any pseudo-Hermitian form

on a Hermitian space, there exists a basis where both forms are diagonal.

Therefore, there exists an orthonormal basis x1, .., xn, y1, ..., yn in V ∗ such

that I(xi) = yi, I(yi) = −xi and h =
∑n
i=1 ui(xi ⊗ xi + yi ⊗ yi).

Step 2: The form g is written in the same basis: g =
∑n
i=1 xi ⊗ xi + yi ⊗ yi

Therefore, the scalar product (h, g) is equal to 2
∑n
i=1 ui, and (ω, η) = 0 is

equivalent to
∑n
i=1 ui = 0. Clearly, η∧η∧ωdimC V−2 = 1

n(n−1)

∑
i<j

uiujω
n. Since∑n

i=1 ui = 0, we have

0 =

 n∑
i=1

ui

2

=
n∑
i=1

u2
i + 2

∑
i<j

uiuj,

giving
∑
i<j

uiuj < 0.
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Hyperkähler manifolds, lecture 24 M. Verbitsky

Fujiki formula

REMARK: For any Kähler form,
∫
M ωdimCM > 0, hence the sign of q(ω, ω) is

constant when ω runs through the Kähler cone. If the choice of the sign in
BBF form is ambiguous, we fix the sign of q in such a way that q(ω, ω) > 0
for Kähler ω.

CLAIM: The BBF form is SU(2)-invariant, where the SU(2)-action is
induced by any hyperkähler structure.
Proof: Indeed, the SU(2)-action is generated by the Hodge rotation ρL, where
L are induced complex structures.

PROPOSITION: (Fujiki formula)
Let η1, ..., η2n be a collection of classes in H2(M,R). Denote by Σ2n the
symmetric group, with a permutation σ = (σ1, ..., σ2n) taking (1, ...,2n) to
σ1, ..., σ2n Then∫

M
η1 ∧ ... ∧ η2n = A

∑
σ∈Σ2n

q(ησ1, ησ2)q(ησ3, ησ4)...q(ησ2n−1, ησ2n),

where A is a positive rational constant.
Proof: For any degree p homogeneous polynomial function f ∈ Symp V ∗,
its polarization is a symmetric form Q := dpf

dζ1dζ2...dζp
f ∈ (V ∗)⊗p, satisfying

Q(ζ, ζ, ..., ζ) = f(ζ). The Fujiki formula is obtained by applying the polariza-
tion to both sides of

∫
M η2n = λq(η, η)n.
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Primitive cohomology classes on hyperkähler manifolds

CLAIM: Let M be a hyperkähler manifold of maximal holonomy. Then the

space H
1,1
prim(M) of primitive (1,1)-classes is H2(M)SU(2).

Proof: Primitive classes are represented by forms in ker Λ, where Λ is the

Hodge operator. Therefore, a harmonic form is primitive if and only if it

is orthogonal to ω pointwise. The decomposition H2(M) = 〈ωI , ωJ , ωK〉 ⊕
H2(M)SU(2) is orthogonal, hence the decomposition H1,1

I (M) = RωI⊕H2(M)SU(2)

is also orthogonal, giving H2(M)SU(2) = H
1,1
prim(M).

Corollary 1: Let M be a hyperkähler manifold of maximal holonomy, dimCM =

2n, and η ∈ H1,1(M) primitive. Then q(η, ω) = 0 and q(η, η) is negative.

Proof. Step 1: 0 =
∫
M η∧ωdimCM−1 = λq(η, ω)q(ω, ω)n−1. Since q(ω, ω) > 0,

this gives q(η, ω) = 0.

Step 2: By Hodge index theorem,
∫
M η∧η∧ωdimC V−2 < 0. Fujiki formula gives∫

M η ∧ η ∧ ωdimC V−2 = c1q(η, ω)2q(ω, ω)n−2 + c2q(η, η)q(ω, ω)n−1, where c1, c2
are positive constants. Since q(η, ω) = 0 (Step 1),

∫
M η ∧ η ∧ ωdimC V−2 < 0

gives q(η, η)q(ω, ω)n−1 < 0, hence q(η, η) < 0.
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Hyperkähler manifolds, lecture 24 M. Verbitsky

Signature of the BBF form

PROPOSITION: Let M be a hyperkähler manifold of maximal holonomy,

and q ∈ Sym2(H2(M,Q)∗) the BBF form. Then q is a non-degenerate

form of signature (3, b2 − 3). It is positive on the subspace in H2(M,R)

generated by ωI , ωJ , ωK, and negative definite on the space H2(M,R)SU(2) of

SU(2)-invariant classes.

Proof. Step 1: As we have already seen, H2(M,R) = H2(M,R)SU(2) ⊕
〈ωI , ωJ , ωK〉. The form q on 〈ωI , ωJ , ωK〉 is positive definite, because it is

positive on ωI and SU(2)-invariant. It remains only to show that q is

negative definite on H2(M,R)SU(2).

Step 2: The space H2(M,R)SU(2) coincides with the space H
1,1
prim(M) of

primitive (1,1)-forms, and q is negative definite on H
1,1
prim(M) by Corollary

1.
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Hyperkähler manifolds, lecture 24 M. Verbitsky

Beauville-Bogomolov formula

THEOREM: (Beauville-Bogomolov formula)

Let Ω be a holomorphic symplectic form on a hyperkähler manifold of maximal

holonomy. Then the BBF form is equal to

q′(η, η′) :=λ
∫
M
η ∧ η′ ∧Ωn−1 ∧Ωn−1−

−Rλ

( ∫
M η ∧Ωn−1 ∧Ωn

)
·
( ∫

M η′ ∧Ωn ∧Ωn−1
)

∫
M Ωn ∧Ωn , (∗)

where R = 2(n−1)
n , and λ is a positive constant.

Proof. Step 1: The precise value of R is irrelevant and is left as an exercise.

Since q is compatible with the Hodge decomposition, we have q(η,Ω) =

q(η,Ω) = q(Ω,Ω) = q(Ω,Ω) = 0 for any η ∈ H1,1(M). By Fujiki formula, this

gives q(η, η)q(Ω,Ω)n−2 = const
∫
M η2 ∧ Ωn−1 ∧ Ωn−1. Therefore, the form q′

is proportional to q on the space H1,1(M). We fix the coefficients λ and

Rλ in such a way that q(x, x) = q′(x, x) when x ∈ H1,1(M) and x = Ω. It

remains to show that q = q′ for such choice of constants.
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Beauville-Bogomolov formula (2)

THEOREM: The BBF form is equal to

q′(η, η′) :=λ
∫
M
η ∧ η′ ∧Ωn−1 ∧Ωn−1−

−Rλ

( ∫
M η ∧Ωn−1 ∧Ωn

)
·
( ∫

M η′ ∧Ωn ∧Ωn−1
)

∫
M Ωn ∧Ωn , (∗)

Proof. Step 1: ...We fix the coefficients λ and Rλ in such a way that
q(x, x) = q′(x, x) when x ∈ H1,1(M) and x = Ω... It remains to show that
q = q′ for such choice of constants.

Step 2: By construction, the forms q and q′ are equal on H1,1(M). Since both
forms are compatible with the Hodge decomposition, they satisfy q(η,Ω) =
q(η,Ω) = q(Ω,Ω) = q(Ω,Ω) = 0 and q′(η,Ω) = q′(η,Ω) = q′(Ω,Ω) =
q′(Ω,Ω) = 0. Therefore, q = q′ is implied by q(Ω,Ω) = q′(Ω,Ω) and q(η, η) =
q′(η, η).

REMARK: A similar argument proves the following formula (which we won’t
be using)

q(η, η′) = λ
∫
X
ωn−2 ∧ η ∧ η′ − λ

n− 2

(n− 1)2
·
∫
X ω

n−1η ·
∫
X ω

n−1η′∫
X ω

n
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The Lie group generated by Hodge rotations

Let (M, I) be a compact Kähler manifold. Recall that the Hodge rotation

is U(1)-action ρI(t) ⊂ Aut(H∗(M,R)), acting as e2π
√
−1 (p−q)t on Hp,q(M).

Recall that O(p, q), p, q > 0 has 4 connected components. The connected

component of unity is denoted SO+(H2(M,R), q).

THEOREM: Let G ⊂ Aut(H∗(M,R)) be the subgroup generated by all Hodge

rotations ρI(t), for all complex structures I of hyperkähler type. Then G acts

on H2(M,R) as SO+(H2(M,R), q).

Proof. Step 1: The image G′ of G in GL(H2(M,R)) is a connected subgroup

preserving ±q, hence G′ := G
∣∣∣H2(M,R) belongs to SO+(H2(M,R), q).

Step 2: This group contains all Hodge rotations, which can be identified

with rotations in a 2-dimension subspace V ∈ Per ⊂ Gr(2, H2(M,R)). Since

Per is open in Gr(2, H2(M,R)), G′ is an open subgroup in the subgroup G′′

of SO+(H2(M,R), q) generated by all rotations in W ∈ Gr(2, H2(M,R)).
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The Lie group generated by Hodge rotations (2)

THEOREM: Let G ⊂ Aut(H∗(M,R)) be the subgroup generated by all Hodge

rotations ρI(t), for all complex structures I of hyperkähler type. Then G acts

on H2(M,R) as SO+(H2(M,R), q).

Step 2: The group G′ := G
∣∣∣H2(M,R) is an open subgroup in the subgroup

G′′ of SO+(H2(M,R), q) generated by all rotations in W ∈ Gr(2, H2(M,R)).

Step 3: A map which is O(H2(M,R), q)-conjugated to a rotation in W ∈
Gr(2, H2(M,R)) is again a rotation, hence G′′ is a normal subgroup in

SO+(H2(M,R), q). This group is simple for rkH2(M,R) 6= 4, because the cor-

responding complex Lie algebra is simple. When rkH2(M,R), the Lie algebra

is so(3)2, but the Lie group group SO(1,3) = SL(2,C)/ ± 1 is nevertheless

simple. We proved that G′′ = SO+(H2(M,R), q).

Step 4: This implies that G′ is an open, connected subgroup of

SO+(H2(M,R), q), but a connected Lie group is multiplicatively generated by

any neighbourhood of the unity, (prove this as an exercise) hence G′ =

SO+(H2(M,R), q).
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The Hodge-Riemann bilinear relations

DEFINITION: Let M be a compact Kähler manifold, and p+q 6 n = dimCM .

Denote by H∗(M) =
⊕n
r=0Wr the weight decomposition associated with the

Lefschetz sl(2)-action, with Wr a direct sum of sl(2)-representations of weight

r. Let V p,qk := Hp,q(M) ∩Wk. Clearly, H∗(M) =
⊕
k,p,q V

p,q
k . The Riemann-

Hodge form on V
p,q
k is

η, η′ −→
√
−1p−q(−1)p+q−k

∫
M
η ∧ η′ ∧ ωn−p−q

THEOREM: (Riemann-Hodge relations)

The Riemann-Hodge form is positive definite.

Proof: Follows from Weyl’s structure theorem on tensor representations of

U(n). See Howe, Roger E., ”Remarks on classical invariant theory”, Transac-

tions of the American Mathematical Society, American Mathematical Society,

313 (2): 539-570, 1989.

REMARK: For 2-forms this statement is the Hodge index theorem,

proven earlier today.
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The automorphisms of the cohomology algebra

THEOREM: The kernel of the natural restriction map
Aut(H∗(M,R))−→O(H2(M,R), q) is a compact group.

Proof. Step 1: Let u ∈ Aut(H∗(M,R)) be an automorphism which trivially
acts on H2(M,R). Then u commutes with all Lefschetz triples. Indeed, in
an sl(2)-triple acting on a finite-dimensional vector space V , any two elements
define the third (prove this as an exercise), hence any automorphism of
H∗(M,R) which preserves L and H also preserves Λ.

Step 2: In Lecture 22, we proved that WI = [LJ ,ΛK], where WI is the opera-
tor acting as

√
−1(p−q) Id on Hp,q(M). Since u preserves the Lefschetz sl(2),

it also commutes with WI, and hence preserves the Hodge decomposition.

Step 3: We obtain that u preserves the decomposition H∗(M) =
⊕
k,p,q V

p,q
k

and commutes with the Hodge-Riemann pairing; the group of such auto-
morphisms is compact, because the Hodge-Riemann pairing is positive
definite.

COROLLARY: The kernel of Aut(H∗(M,Z))−→O(H2(M,Z), q) is finite.

Proof: Indeed, Aut(H∗(M,Z)) is discrete, and a discrete subgroup of a com-
pact group is finite.
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