

Hyperkähler manifolds,

lecture 24: Fujiki formula and its applications

IMPA, sala 236

Misha Verbitsky, June 26, 2023, 13:30

<http://verbit.ru/IMPA/HK-2023/>

The BBF form (reminder)

THEOREM: Let M be a compact holomorphically symplectic manifold, $\dim_{\mathbb{C}} M = 2n$, admitting the Hodge decomposition on $H^2(M)$. Assume that all ∂ -exact holomorphic 3-forms on M vanish, and $H^{0,2}(M) = H^{2,0}(M) = \mathbb{C}$.

Then the space $H^2(M)$ is equipped with a bilinear symmetric form q such that for any $\eta \in H^2(M)$, one has $\int_M \eta^{2n} = q(\eta, \eta)^n$.

Proof. Step 1: Consider the Hodge decomposition on $H^2(M)$ induced by the complex structure $I \in U$. This gives “**the Hodge rotation map**”, that is, an $U(1)$ -action $\rho_I(t)$, acting as $e^{2\pi\sqrt{-1}(p-q)t}$ on $H^{p,q}(M)$. **Clearly, the polynomial $Q(\eta) := \int_M \eta^{2n}$ is ρ_I -invariant.** By definition, ρ_I acts trivially on $H^{1,1}(M)$ and rotates $W = \langle \operatorname{Re} \Omega, \operatorname{Im} \Omega \rangle$.

Step 2: Let G be the Lie group generated by the Hodge rotation maps ρ_I for all complex structures I satisfying the assumptions of the theorem. Since the image of the period map is open, **the action of G satisfies assumptions of Proposition 1, Lecture 23, giving $Q(\eta) = \lambda q(\eta, \eta)^n$.** ■

DEFINITION: Usually one normalizes q in such a way that it is integer and primitive; then $Q(\eta) = \lambda q(\eta, \eta)^n$, where $\lambda > 0$ is called **the Fujiki constant**. The form q is called **the Bogomolov-Beaville-Fujiki form** (the BBF form).

Hodge decomposition on hk manifolds (reminder from Lecture 21)

EXERCISE: (Klebsch-Gordan formula)

Let V_p and V_q , $p \geq q$ be a $(p+1)$ - and $(q+1)$ -dimensional complex irreducible representation of $SU(2)$. **Prove that** $V_p \otimes V_q = \bigoplus_{i=0}^q V_{p+q-2i}$.

COROLLARY: Let M be a hyperkähler manifold, $\dim_{\mathbb{H}} M = n$. Then for each $x \in M$, and each $d \leq 2n$, **the space $\Lambda_x^d(M)$ is a direct sum of several V_i for $0 \leq i \leq d$** , of the same parity as d , and the same holds for $H^d(M)$.

Proof: Follows from Klebsch-Gordan because $\Lambda_x^1 M$ is a direct sum of $SU(2)$ -representations of weight 1, $\Lambda_x^1 M = V_1^n$. ■

CLAIM: Let M be a compact hyperkähler manifold of maximal holonomy. **Then** $H^2(M) = \langle \omega_I, \omega_J, \omega_K \rangle \oplus H^2(M)^{SU(2)}$, where $H^2(M)^{SU(2)}$ is the space of $SU(2)$ -invariant vectors in $H^2(M)$.

Proof: A class $\eta \in H^2(M)$ is $SU(2)$ -invariant if and only if η is of Hodge type $(1, 1)$ with respect to all induced complex structures. However, $\dim H^{2,0}(M, I) = 1$, hence the sub-representation W generated by $H^{2,0}(M, I)$ is 1-dimensional. It is a subrepresentation of weight 2, hence it is 3-dimensional, hence $W = \langle \omega_I, \omega_J, \omega_K \rangle$. Its complement is an $SU(2)$ -invariant subspace $V \subset H_I^{1,1}(M)$; by $SU(2)$ -invariance, this gives $V \subset H_L^{1,1}(M)$ for all induced complex structures, hence $V = H^2(M)^{SU(2)}$. ■

Primitive cohomology classes

Recall that a cohomology class $\eta \in H^2(M)$ on Kähler manifold (M, ω) is called **primitive** if $\int_M \eta \wedge \omega^{\dim_{\mathbb{C}} M - 1} = 0$. The following result is a special case of **“Hodge-Riemann relations”**.

PROPOSITION: (Hodge index theorem)

Let $\eta \in H^{1,1}(M, \mathbb{R})$ be a non-zero primitive $(1,1)$ -class on a compact Kähler manifold (M, ω) . **Then** $\int_M \eta \wedge \eta \wedge \omega^{\dim_{\mathbb{C}} M - 2} < 0$.

Proof: Take a harmonic representative for η . Since $\Lambda \eta = 0$, $\eta \perp \omega$ at each point of M . Consider a $2n$ -dimensional real vector space V equipped with a Hermitian structure (I, g, ω) , and let $\eta \in \Lambda^{1,1}(V)$ be a form which is orthogonal to ω . **It would suffice to show that** $\eta \wedge \eta \wedge \omega^{\dim_{\mathbb{C}} V - 2}$ **is a strictly negative volume form on V .**

LEMMA: Let (V, I, g, ω) be a real vector space equipped with a Hermitian structure, and $\eta \in \Lambda^{1,1}(V)$ a non-zero form which is orthogonal to ω . **Then** $\frac{\eta \wedge \eta \wedge \omega^{\dim_{\mathbb{C}} V - 2}}{\text{Vol}_V} < 0$.

Proof: Next slide

Hodge index theorem for pseudo-Hermitian 2-forms on \mathbb{R}^{2n}

LEMMA: Let (V, I, g, ω) be a real vector space equipped with a Hermitian structure, and $\eta \in \Lambda^{1,1}(V)$ a non-zero form which is orthogonal to ω . **Then**

$$\frac{\eta \wedge \eta \wedge \omega^{\dim_{\mathbb{C}} V - 2}}{\text{Vol}_V} < 0.$$

Step 1: Let $h(x, y) := \eta(x, Iy)$. Since η is of type $(1, 1)$, **the form h is I -invariant, that is, pseudo-Hermitian.** For any pseudo-Hermitian form on a Hermitian space, there exists a basis where both forms are diagonal. Therefore, **there exists an orthonormal basis $x_1, \dots, x_n, y_1, \dots, y_n$ in V^* such that $I(x_i) = y_i$, $I(y_i) = -x_i$ and $h = \sum_{i=1}^n u_i(x_i \otimes x_i + y_i \otimes y_i)$.**

Step 2: The form g is written in the same basis: $g = \sum_{i=1}^n x_i \otimes x_i + y_i \otimes y_i$. Therefore, the scalar product (h, g) is equal to $2 \sum_{i=1}^n u_i$, and $(\omega, \eta) = 0$ is equivalent to $\sum_{i=1}^n u_i = 0$. Clearly, $\eta \wedge \eta \wedge \omega^{\dim_{\mathbb{C}} V - 2} = \frac{1}{n(n-1)} \sum_{i < j} u_i u_j \omega^n$. Since $\sum_{i=1}^n u_i = 0$, we have

$$0 = \left(\sum_{i=1}^n u_i \right)^2 = \sum_{i=1}^n u_i^2 + 2 \sum_{i < j} u_i u_j,$$

giving $\sum_{i < j} u_i u_j < 0$. ■

Fujiki formula

REMARK: For any Kähler form, $\int_M \omega^{\dim_{\mathbb{C}} M} > 0$, hence the sign of $q(\omega, \omega)$ is constant when ω runs through the Kähler cone. If the choice of the sign in BBF form is ambiguous, **we fix the sign of q in such a way that $q(\omega, \omega) > 0$ for Kähler ω .**

CLAIM: **The BBF form is $SU(2)$ -invariant**, where the $SU(2)$ -action is induced by any hyperkähler structure.

Proof: Indeed, the $SU(2)$ -action is generated by the Hodge rotation ρ_L , where L are induced complex structures. ■

PROPOSITION: (Fujiki formula)

Let η_1, \dots, η_{2n} be a collection of classes in $H^2(M, \mathbb{R})$. Denote by Σ_{2n} the symmetric group, with a permutation $\sigma = (\sigma_1, \dots, \sigma_{2n})$ taking $(1, \dots, 2n)$ to $\sigma_1, \dots, \sigma_{2n}$ **Then**

$$\int_M \eta_1 \wedge \dots \wedge \eta_{2n} = A \sum_{\sigma \in \Sigma_{2n}} q(\eta_{\sigma_1}, \eta_{\sigma_2}) q(\eta_{\sigma_3}, \eta_{\sigma_4}) \dots q(\eta_{\sigma_{2n-1}}, \eta_{\sigma_{2n}}),$$

where A is a positive rational constant.

Proof: For any degree p homogeneous polynomial function $f \in \text{Sym}^p V^*$, its **polarization** is a symmetric form $Q := \frac{d^p f}{d\zeta_1 d\zeta_2 \dots d\zeta_p} f \in (V^*)^{\otimes p}$, satisfying $Q(\zeta, \zeta, \dots, \zeta) = f(\zeta)$. The Fujiki formula is obtained by applying the polarization to both sides of $\int_M \eta^{2n} = \lambda q(\eta, \eta)^n$. ■

Primitive cohomology classes on hyperkähler manifolds

CLAIM: Let M be a hyperkähler manifold of maximal holonomy. Then **the space $H_{prim}^{1,1}(M)$ of primitive $(1,1)$ -classes is $H^2(M)^{SU(2)}$.**

Proof: Primitive classes are represented by forms in $\ker \Lambda$, where Λ is the Hodge operator. Therefore, a harmonic form is primitive if and only if it is orthogonal to ω pointwise. The decomposition $H^2(M) = \langle \omega_I, \omega_J, \omega_K \rangle \oplus H^2(M)^{SU(2)}$ is orthogonal, hence the decomposition $H_I^{1,1}(M) = \mathbb{R}\omega_I \oplus H^2(M)^{SU(2)}$ is also orthogonal, giving $H^2(M)^{SU(2)} = H_{prim}^{1,1}(M)$. ■

Corollary 1: Let M be a hyperkähler manifold of maximal holonomy, $\dim_{\mathbb{C}} M = 2n$, and $\eta \in H^{1,1}(M)$ primitive. **Then $q(\eta, \omega) = 0$ and $q(\eta, \eta)$ is negative.**

Proof. Step 1: $0 = \int_M \eta \wedge \omega^{\dim_{\mathbb{C}} M - 1} = \lambda q(\eta, \omega) q(\omega, \omega)^{n-1}$. Since $q(\omega, \omega) > 0$, this gives $q(\eta, \omega) = 0$.

Step 2: By Hodge index theorem, $\int_M \eta \wedge \eta \wedge \omega^{\dim_{\mathbb{C}} V - 2} < 0$. Fujiki formula gives $\int_M \eta \wedge \eta \wedge \omega^{\dim_{\mathbb{C}} V - 2} = c_1 q(\eta, \omega)^2 q(\omega, \omega)^{n-2} + c_2 q(\eta, \eta) q(\omega, \omega)^{n-1}$, where c_1, c_2 are positive constants. Since $q(\eta, \omega) = 0$ (Step 1), $\int_M \eta \wedge \eta \wedge \omega^{\dim_{\mathbb{C}} V - 2} < 0$ gives $q(\eta, \eta) q(\omega, \omega)^{n-1} < 0$, hence $q(\eta, \eta) < 0$. ■

Signature of the BBF form

PROPOSITION: Let M be a hyperkähler manifold of maximal holonomy, and $q \in \text{Sym}^2(H^2(M, \mathbb{Q})^*)$ the BBF form. **Then q is a non-degenerate form of signature $(3, b_2 - 3)$.** It is positive on the subspace in $H^2(M, \mathbb{R})$ generated by $\omega_I, \omega_J, \omega_K$, and negative definite on the space $H^2(M, \mathbb{R})^{SU(2)}$ of $SU(2)$ -invariant classes.

Proof. **Step 1:** As we have already seen, $H^2(M, \mathbb{R}) = H^2(M, \mathbb{R})^{SU(2)} \oplus \langle \omega_I, \omega_J, \omega_K \rangle$. The form q on $\langle \omega_I, \omega_J, \omega_K \rangle$ is positive definite, because it is positive on ω_I and $SU(2)$ -invariant. **It remains only to show that q is negative definite on $H^2(M, \mathbb{R})^{SU(2)}$.**

Step 2: The space $H^2(M, \mathbb{R})^{SU(2)}$ coincides with the space $H_{prim}^{1,1}(M)$ of primitive $(1,1)$ -forms, and q is negative definite on $H_{prim}^{1,1}(M)$ by **Corollary 1.** ■

Beaumville-Bogomolov formula

THEOREM: (Beaumville-Bogomolov formula)

Let Ω be a holomorphic symplectic form on a hyperkähler manifold of maximal holonomy. **Then the BBF form is equal to**

$$q'(\eta, \eta') := \lambda \int_M \eta \wedge \eta' \wedge \Omega^{n-1} \wedge \bar{\Omega}^{n-1} - R\lambda \frac{\left(\int_M \eta \wedge \Omega^{n-1} \wedge \bar{\Omega}^n \right) \cdot \left(\int_M \eta' \wedge \Omega^n \wedge \bar{\Omega}^{n-1} \right)}{\int_M \Omega^n \wedge \bar{\Omega}^n}, \quad (*)$$

where $R = \frac{2(n-1)}{n}$, and λ is a positive constant.

Proof. Step 1: The precise value of R is irrelevant and is left as an exercise. Since q is compatible with the Hodge decomposition, we have $q(\eta, \Omega) = q(\eta, \bar{\Omega}) = q(\Omega, \Omega) = q(\bar{\Omega}, \bar{\Omega}) = 0$ for any $\eta \in H^{1,1}(M)$. By Fujiki formula, this gives $q(\eta, \eta)q(\Omega, \bar{\Omega})^{n-2} = \text{const} \int_M \eta^2 \wedge \Omega^{n-1} \wedge \bar{\Omega}^{n-1}$. Therefore, the form q' is proportional to q on the space $H^{1,1}(M)$. **We fix the coefficients λ and $R\lambda$ in such a way that $q(x, \bar{x}) = q'(x, \bar{x})$ when $x \in H^{1,1}(M)$ and $x = \Omega$.** It remains to show that $q = q'$ for such choice of constants.

Beaumville-Bogomolov formula (2)

THEOREM: The BBF form is equal to

$$q'(\eta, \eta') := \lambda \int_M \eta \wedge \eta' \wedge \Omega^{n-1} \wedge \bar{\Omega}^{n-1} - \\ - R\lambda \frac{\left(\int_M \eta \wedge \Omega^{n-1} \wedge \bar{\Omega}^n \right) \cdot \left(\int_M \eta' \wedge \Omega^n \wedge \bar{\Omega}^{n-1} \right)}{\int_M \Omega^n \wedge \bar{\Omega}^n}, \quad (*)$$

Proof. Step 1: ...We fix the coefficients λ and $R\lambda$ in such a way that $q(x, \bar{x}) = q'(x, \bar{x})$ when $x \in H^{1,1}(M)$ and $x = \Omega$... It remains to show that $q = q'$ for such choice of constants.

Step 2: By construction, the forms q and q' are equal on $H^{1,1}(M)$. Since both forms are compatible with the Hodge decomposition, they satisfy $q(\eta, \Omega) = q(\eta, \bar{\Omega}) = q(\Omega, \Omega) = q(\bar{\Omega}, \bar{\Omega}) = 0$ and $q'(\eta, \Omega) = q'(\eta, \bar{\Omega}) = q'(\Omega, \Omega) = q'(\bar{\Omega}, \bar{\Omega}) = 0$. Therefore, $q = q'$ is implied by $q(\Omega, \bar{\Omega}) = q'(\Omega, \bar{\Omega})$ and $q(\eta, \eta) = q'(\eta, \eta)$. ■

REMARK: A similar argument proves the following formula (which we won't be using)

$$q(\eta, \eta') = \lambda \int_X \omega^{n-2} \wedge \eta \wedge \eta' - \lambda \frac{n-2}{(n-1)^2} \cdot \frac{\int_X \omega^{n-1} \eta \cdot \int_X \omega^{n-1} \eta'}{\int_X \omega^n}$$

The Lie group generated by Hodge rotations

Let (M, I) be a compact Kähler manifold. Recall that **the Hodge rotation** is $U(1)$ -action $\rho_I(t) \subset \text{Aut}(H^*(M, \mathbb{R}))$, acting as $e^{2\pi\sqrt{-1}(p-q)t}$ on $H^{p,q}(M)$. Recall that $O(p, q)$, $p, q > 0$ has 4 connected components. **The connected component of unity is denoted $SO^+(H^2(M, \mathbb{R}), q)$.**

THEOREM: Let $G \subset \text{Aut}(H^*(M, \mathbb{R}))$ be the subgroup generated by all Hodge rotations $\rho_I(t)$, for all complex structures I of hyperkähler type. **Then G acts on $H^2(M, \mathbb{R})$ as $SO^+(H^2(M, \mathbb{R}), q)$.**

Proof. Step 1: The image G' of G in $GL(H^2(M, \mathbb{R}))$ is a connected subgroup preserving $\pm q$, hence $G' := G|_{H^2(M, \mathbb{R})}$ belongs to $SO^+(H^2(M, \mathbb{R}), q)$.

Step 2: This group contains all Hodge rotations, which can be identified with rotations in a 2-dimension subspace $V \in \mathbb{P}\text{er} \subset \text{Gr}(2, H^2(M, \mathbb{R}))$. Since $\mathbb{P}\text{er}$ is open in $\text{Gr}(2, H^2(M, \mathbb{R}))$, **G' is an open subgroup in the subgroup G'' of $SO^+(H^2(M, \mathbb{R}), q)$ generated by all rotations in $W \in \text{Gr}(2, H^2(M, \mathbb{R}))$.**

The Lie group generated by Hodge rotations (2)

THEOREM: Let $G \subset \text{Aut}(H^*(M, \mathbb{R}))$ be the subgroup generated by all Hodge rotations $\rho_I(t)$, for all complex structures I of hyperkähler type. **Then G acts on $H^2(M, \mathbb{R})$ as $SO^+(H^2(M, \mathbb{R}), q)$.**

Step 2: The group $G' := G|_{H^2(M, \mathbb{R})}$ **is an open subgroup in the subgroup G'' of $SO^+(H^2(M, \mathbb{R}), q)$ generated by all rotations in $W \in \text{Gr}(2, H^2(M, \mathbb{R}))$.**

Step 3: A map which is $O(H^2(M, \mathbb{R}), q)$ -conjugated to a rotation in $W \in \text{Gr}(2, H^2(M, \mathbb{R}))$ is again a rotation, hence G'' is a normal subgroup in $SO^+(H^2(M, \mathbb{R}), q)$. This group is simple for $\text{rk } H^2(M, \mathbb{R}) \neq 4$, because the corresponding complex Lie algebra is simple. When $\text{rk } H^2(M, \mathbb{R})$, the Lie algebra is $\mathfrak{so}(3)^2$, but the Lie group $SO(1, 3) = SL(2, \mathbb{C})/\pm 1$ is nevertheless simple. **We proved that $G'' = SO^+(H^2(M, \mathbb{R}), q)$.**

Step 4: This implies that G' is an open, connected subgroup of $SO^+(H^2(M, \mathbb{R}), q)$, but a connected Lie group is multiplicatively generated by any neighbourhood of the unity, **(prove this as an exercise)** hence $G' = SO^+(H^2(M, \mathbb{R}), q)$. ■

The Hodge-Riemann bilinear relations

DEFINITION: Let M be a compact Kähler manifold, and $p+q \leq n = \dim_{\mathbb{C}} M$. Denote by $H^*(M) = \bigoplus_{r=0}^n W_r$ the weight decomposition associated with the Lefschetz $\mathfrak{sl}(2)$ -action, with W_r a direct sum of $\mathfrak{sl}(2)$ -representations of weight r . Let $V_k^{p,q} := H^{p,q}(M) \cap W_k$. **Clearly,** $H^*(M) = \bigoplus_{k,p,q} V_k^{p,q}$. **The Riemann-Hodge form** on $V_k^{p,q}$ is

$$\eta, \eta' \mapsto \sqrt{-1}^{p-q} (-1)^{p+q-k} \int_M \eta \wedge \bar{\eta}' \wedge \omega^{n-p-q}$$

THEOREM: (Riemann-Hodge relations)

The Riemann-Hodge form is positive definite.

Proof: Follows from Weyl's structure theorem on tensor representations of $U(n)$. See *Howe, Roger E.*, "Remarks on classical invariant theory", *Transactions of the American Mathematical Society, American Mathematical Society*, 313 (2): 539-570, 1989.

REMARK: For 2-forms **this statement is the Hodge index theorem**, proven earlier today.

The automorphisms of the cohomology algebra

THEOREM: The kernel of the natural restriction map $\text{Aut}(H^*(M, \mathbb{R})) \rightarrow O(H^2(M, \mathbb{R}), q)$ is a compact group.

Proof. **Step 1:** Let $u \in \text{Aut}(H^*(M, \mathbb{R}))$ be an automorphism which trivially acts on $H^2(M, \mathbb{R})$. **Then u commutes with all Lefschetz triples.** Indeed, in an $\mathfrak{sl}(2)$ -triple acting on a finite-dimensional vector space V , any two elements define the third (prove this as an exercise), hence **any automorphism of $H^*(M, \mathbb{R})$ which preserves L and H also preserves Λ .**

Step 2: In Lecture 22, we proved that $W_I = [L_J, \Lambda_K]$, where W_I is the operator acting as $\sqrt{-1}(p-q)\text{Id}$ on $H^{p,q}(M)$. Since u preserves the Lefschetz $\mathfrak{sl}(2)$, it also commutes with W_I , and hence **preserves the Hodge decomposition**.

Step 3: We obtain that u preserves the decomposition $H^*(M) = \bigoplus_{k,p,q} V_k^{p,q}$ and commutes with the Hodge-Riemann pairing; **the group of such automorphisms is compact, because the Hodge-Riemann pairing is positive definite.** ■

COROLLARY: The kernel of $\text{Aut}(H^*(M, \mathbb{Z})) \rightarrow O(H^2(M, \mathbb{Z}), q)$ is finite.

Proof: Indeed, $\text{Aut}(H^*(M, \mathbb{Z}))$ is discrete, and a discrete subgroup of a compact group is finite. ■