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Hyperkahler manifolds, lecture 24 M. Verbitsky

The BBF form (reminder)

THEOREM: Let M be a compact holomorphically symplectic manifold,
dime M = 2n, admitting the Hodge decomposition on H2(M). Assume that
all 9-exact holomorphic 3-forms on M vanish, and H%2(M) = H29(M) = C.
Then the space H?(M) is equipped with a bilinear symmetric form g
such that for any n € H%(M), one has [, n°" = q(n,n)".

Proof. Step 1: Consider the Hodge decomposition on H2(M) induced by
the complex structure I € U. This gives “the Hodge rotation map”, that
is, an U(1)-action p;(t), acting as 2™V =1 (p=)t on HP4(M). Clearly, the
polynomial Q(n) := [,;n°" is pr-invariant. By definition, p; acts trivially on
HULL(M) and rotates W = (ReQ,Im Q).

Step 2: Let G be the Lie group generated by the Hodge rotation maps pjy for
all complex structures I satisfying the assumptions of the theorem. Since the
image of the period map is open, the action of G satisfies assumptions of
Proposition 1, Lecture 23, giving Q(n) = \¢(n,n)". =

DEFINITION: Usually one normalizes g in such a way that it is integer and
primitive; then Q(n) = \qg(n,n)"™, where A\ > 0 is called the Fujiki constant.

The form q is called the Bogomolov-Beauville-Fujiki form (the BBF form).
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Hyperkahler manifolds, lecture 24 M. Verbitsky
Hodge decomposition on hk manifolds (reminder from Lecture 21)

EXERCISE: (Klebsch-Gordan formula)
Let V and Vy, p > g bea (p+1)— and (¢+ 1)-dimensional complex irreducible
representation of SU(2). Prove that V, ® V; =@/ V4, 2i-

COROLLARY: Let M be a hyperkahler manifold, dimg M = n. Then for
each x € M, and each d < 2n, the space A4(M) is a direct sum of several
V; for 0 < i < d, of the same parity as d, and the same holds for H%(M).

Proof: Follows from Klebsch-Gordan because /\%M is a direct sum of SU(2)-
representations of weight 1, /\;M = Vl’”. u

CLAIM: Let M be a compact hyperkahler manifold of maximal holonomy.
Then H2(M) = (wy,wy,wg) @ H2(M)SV () where H2(M)SU(2) s the space
of SU(2)-invariant vectors in H2(M).

Proof: A class n € H2(M) is SU(2)-invariant if and only if n is of Hodge type
(1,1) with respect to all induced complex structures. However, dim H29(M,I) =
1, hence the sub-representation W generated by H29(M, I) is 1-dimensional.
It is a subrepresentation of weight 2, hence it is 3-dimensional, hence W =
(wr,wy,wg). Its complement is an SU(Q) invariant subspace V C HI (M) by

SU(2)-invariance, this gives V C H (M) for all induced complex structures,
hence V = HQ(M)SU(Q). =
3



Hyperkahler manifolds, lecture 24 M. Verbitsky

Primitive cohomology classes

Recall that a cohomology class n € H2(M) on Kihler manifold (M, w) is called
primitive if [;;n A wdMcM—1 = 0. The following result is a special case of
“Hodge-Riemann relations’.

PROPOSITION: (Hodge index theorem)
Let n € HL1(M,R) be a non-zero primitive (1,1)-class on a compact Kihler
manifold (M,w). Then [, nAnAwdMcM=2 <0,

Proof: Take a harmonic representative for n. Since An = 0, nlw at each
point of M. Consider a 2n-dimensional real vector space V equipped with a
Hermitian structure (I, g,w), and let n € AL1(V) be a form which is orthogonal
to w. It would suffice to show that n AnAwdMcV =2 js a strictly negative
volume form on V.

LEMMA: Let (V,I,g9,w) be a real vector space equipped with a Hermitian

structure, and n € ALL(V) a non-zero form which is orthogonal to w. Then

\/O|V )

Proof: Next slide
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Hodge index theorem for pseudo-Hermitian 2-forms on R27

LEMMA: Let (V,1I,9,w) be a real vector space equipped with a Hermitian

structure, and n € AL1(V) a non-zero form which is orthogonal to w. Then

\/O|V )

Step 1: Let A(z,y) := n(x,Iy). Since n is of type (1,1), the form h is
I-invariant, that is, pseudo-Hermitian. For any pseudo-Hermitian form
on a Hermitian space, there exists a basis where both forms are diagonal.
Therefore, there exists an orthonormal basis x1,..,xn,y1,...,yn IN V* such

that I(z;) = y;, I(y;)) = —x; and h =37 ui(x; @z + y; @ Y4)-

Step 2: The form g is written in the same basis: g =371 1z, @ x; + y; Q y;
Therefore, the scalar product (h,g) is equal to 23" ; u;, and (w,n) = 0 is

equivalent to I ; u; = 0. Clearly, nAnAwdiMmcV -2 — m > wjujw™. Since
1<J

> i—qu; =0, we have

n 2 n
0= (Zuz) = > uf + 23 uuy,
) 1=1

i<j

giving > uju; < 0. m
1<J
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Fujiki formula

REMARK: For any Kahler form, [,;w%McM > 0, hence the sign of ¢(w,w) is
constant when w runs through the Kahler cone. If the choice of the sign in
BBF form is ambiguous, we fix the sign of ¢ in such a way that ¢(w,w) > 0
for Kahler w.

CLAIM: The BBF form is SU(2)-invariant, where the SU(2)-action is
induced by any hyperkahler structure.

Proof: Indeed, the SU(2)-action is generated by the Hodge rotation p;, where
L are induced complex structures. m

PROPOSITION: (Fujiki formula)

Let nq,...,m2, be a collection of classes in H2(M,R). Denote by ¥, the
symmetric group, with a permutation ¢ = (o1,...,00,) taking (1,...,2n) to
01,...,00n, I heN

/M mMA...\nop =A Z Q(Tlgla 7702)61(77037 7704)---51(7702n_17 ndzn)a
UEZQn
where A is a positive rational constant.
Proof: For any degree p homogeneous polynomial function f € SymP V™,
its polarization is a symmetric form Q = dgld‘g;f_.dcpf c (V*)®P, satisfying
Q((, ¢, ..., ¢) = f(¢). The Fujiki formula is obtained by applying the polariza-
tion to both sides of [}, 7°" = Aq(n,n)". =
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Primitive cohomology classes on hyperkahler manifolds

CLAIM: Let M be a hyperkahler manifold of maximal holonomy. Then the
1,1 ik : 2 SU(2

space H, ;. (M) of primitive (1,1)-classes is H2(M) (2),

Proof: Primitive classes are represented by forms in ker A, where A is the

Hodge operator. Therefore, a harmonic form is primitive if and only if it

is orthogonal to w pointwise. The decomposition H2(M) = (wj,wj,wk) &

H2(M)SU(2) js orthogonal, hence the decomposition Hll’l(M) = Rw;®H2(M)SU(2)

. L 2 SU(2) —_ gl

is also orthogonal, giving H2(M)SU(2) = Hyo (M), w

Corollary 1: Let M be a hyperkahler manifold of maximal holonomy, dimg M =

2n, and n € HL1(M) primitive. Then ¢(n,w) = 0 and ¢(n,n) is negative.

Proof. Step 1: 0 = [, nAwdMcM=1 = \g(n,w)q(w,w)? 1. Since q(w,w) > 0,
this gives ¢(n,w) = 0.

Step 2: By Hodge index theorem, [y, nAnAwdiMeV =2 < 0. Fujiki formula gives
Jarn An AwdMeV =2 = ¢1q(n,w)2q(w, w)" "2 + caq(n,n)g(w,w)* 1, where cq,cp
are positive constants. Since ¢(n,w) = 0 (Step 1), [iynAnAwdMcV =2 <0

gives q(n,n)q(w,w)”"1 <0, hence ¢(n,7) < 0. =
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Signature of the BBF form

PROPOSITION: Let M be a hyperkahler manifold of maximal holonomy,
and ¢ € Sym2(H?(M,Q)*) the BBF form. Then ¢ is a non-degenerate
form of signature (3,b> — 3). It is positive on the subspace in H2(M,R)
generated by wy,w,wg, and negative definite on the space H2(M,R)SV(2) of
SU(2)-invariant classes.

Proof. Step 1: As we have already seen, H2(M,R) = H2(M,R)UV(2) g
(wr,wy,wg). The form ¢ on (wr,wy,wg) is positive definite, because it is
positive on w; and SU(2)-invariant. It remains only to show that ¢ is
negative definite on H2(M,R)°U(2),

Step 2: The space H2(M,R)SU(2) coincides with the space HY:} (M) of

prim
primitive (1,1)-forms, and ¢ is negative definite on H;;,Z.lm(M) by Corollary
1. m
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Beauville-Bogomolov formula

THEOREM: (Beauville-Bogomolov formula)
Let €2 be a holomorphic symplectic form on a hyperkahler manifold of maximal
holonomy. Then the BBF form is equal to

q'(n,n") == /Mn A AQTTIAQN -

(an/\Q”—l /\ﬁ”) : (an’/\Q”/\ﬁn_l)
Iy QA" ’

— RA (*)

Q(”T_l), and )\ is a positive constant.

where R =
Proof. Step 1: The precise value of R is irrelevant and is left as an exercise.
Since ¢ is compatible with the Hodge decomposition, we have ¢q(n,Q2) =
q(n, Q) = q(2, Q) = q(2,Q) = 0 for any n € HL1(M). By Fujiki formula, this
gives q(n,n)q(2, Q)" 2 = const ;12 A Q"L ACQ" L. Therefore, the form ¢
is proportional to ¢ on the space HL1(M). We fix the coefficients \ and
R) in such a way that ¢(z,z) = ¢/(z,z) when z ¢ HY1(M) and z = Q. It
remains to show that ¢ = ¢’ for such choice of constants.
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Beauville-Bogomolov formula (2)

THEOREM: The BBF form is equal to
q'(n,n') ==X /Mn A AQITIAQTT -

(an/\Q“—l /\ﬁ”) : ([Mn’/\Q”/\ﬁn_l)

— R — ,
Ty rAQ”

()

Proof. Step 1: ...We fix the coefficients A and RX in such a way that
q(z,7) = ¢(z,7) when z € HLY (M) and z = Q... It remains to show that
g = q' for such choice of constants.

Step 2: By construction, the forms ¢ and ¢’ are equal on H1:1(M). Since both
forms are compatible with the Hodge decomposition, they satisfy ¢(n,Q2) =
q(n, Q) = q(R2,Q2) = ¢(2,2) = 0 and ¢'(n,2) = ¢(n, Q) = ¢'(2,92) =
¢ (2,Q2) = 0. Therefore, g = ¢ is implied by ¢(2,Q) = ¢ (2,Q2) and ¢(n,n) =
/

q(n,m). =

REMARK: A similar argument proves the following formula (which we won't
be using)

n—2 [yw? !

(n—l)Q. [x wn

q(n,n') = /\/Xw”_Q/\n/\n’—A
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The Lie group generated by Hodge rotations

Let (M,I) be a compact Kahler manifold. Recall that the Hodge rotation
is U(1)-action p;(t) C Aut(H*(M,R)), acting as 2™V =1 (p—a)t gp HPA(M).
Recall that O(p,q), p,q > 0 has 4 connected components. The connected
component of unity is denoted SO1(HZ2(M,R),q).

THEOREM: Let G C Aut(H*(M,R)) be the subgroup generated by all Hodge
rotations p;(t), for all complex structures I of hyperkadhler type. Then G acts
on H?2(M,R) as SOT(H?(M,R),q).

Proof. Step 1: The image G’ of G in GL(H?(M,R)) is a connected subgroup
preserving +q, hence G’ := G‘HQ(M ) belongs to SOT(H?2(M,R),q).

Step 2: This group contains all Hodge rotations, which can be identified
with rotations in a 2-dimension subspace V € Per C Gr(2, H2(M,R)). Since
Per is open in Gr(2, H2(M,R)), G’ is an open subgroup in the subgroup G”
of SOT(H?(M,R),q) generated by all rotations in W € Gr(2, H2(M,R)).
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The Lie group generated by Hodge rotations (2)

THEOREM: Let G C Aut(H*(M,R)) be the subgroup generated by all Hodge
rotations p;(t), for all complex structures I of hyperkadhler type. Then G acts
on H?(M,R) as SOT(H?(M,R),q).

Step 2: The group G’ := G‘HQ(MR) IS an open subgroup in the subgroup
Q" of SOT(H?(M,R), q) generated by all rotations in W € Gr(2, H2(M,R)).

Step 3: A map which is O(H?(M,R),q)-conjugated to a rotation in W €
Gr(2, H2(M,R)) is again a rotation, hence G” is a normal subgroup in
SOT(H?(M,R),q). This group is simple for rk H2(M,R) # 4, because the cor-
responding complex Lie algebra is simple. When rk H2(M,R), the Lie algebra
is s0(3)2, but the Lie group group SO(1,3) = SL(2,C)/ £+ 1 is nevertheless
simple. We proved that G” = SOT(H?2(M,R),q).

Step 4: This implies that G’ is an open, connected subgroup of
SO+(H2(M, R), q), but a connected Lie group is multiplicatively generated by
any neighbourhood of the unity, (prove this as an exercise) hence G’ =
SOT(H?(M,R),q). m
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The Hodge-Riemann bilinear relations

DEFINITION: Let M be a compact Kahler manifold, and p4q < n = dim¢ M.
Denote by H*(M) = @'_, Wr the weight decomposition associated with the
Lefschetz sl(2)-action, with W, a direct sum of s[(2)-representations of weight
r. Let V% := HP9(M) N Wj. Clearly, H*(M) = @y, , V"?. The Riemann-
Hodge form on V% is

P»q
n,n — /—1P7I(=1)PFak /M AT AwtTPT

THEOREM: (Riemann-Hodge relations)
The Riemann-Hodge form is positive definite.

Proof: Follows from Weyl's structure theorem on tensor representations of
U(n). See Howe, Roger E., "Remarks on classical invariant theory”, Transac-
tions of the American Mathematical Society, American Mathematical Society,
313 (2): 539-570, 19809.

REMARK: For 2-forms this statement is the Hodge index theorem,

proven earlier today.
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The automorphisms of the cohomology algebra

THEOREM: The kernel of the natural restriction map
Aut(H*(M,R)) — O(H?(M,R), q) is a compact group.

Proof. Step 1: Let u € Aut(H*(M,R)) be an automorphism which trivially
acts on H2(M,R). Then v commutes with all Lefschetz triples. Indeed, in
an sl(2)-triple acting on a finite-dimensional vector space V, any two elements
define the third (prove this as an exercise), hence any automorphism of
H*(M,R) which preserves L and H also preserves A.

Step 2: In Lecture 22, we proved that W; = [Lj,Ag], where Wy is the opera-
tor acting as v—1(p—q)Id on HP9(M). Since u preserves the Lefschetz s((2),
it also commutes with Wy, and hence preserves the Hodge decomposition.

Step 3: We obtain that u preserves the decomposition H*(M) = @y, V)4
and commutes with the Hodge-Riemann pairing; the group of such auto-
morphisms is compact, because the Hodge-Riemann pairing is positive
definite. =

COROLLARY: The kernel of Aut(H*(M,Z)) — O(H?(M,Z),q) is finite.

Proof: Indeed, Aut(H*(M,Z)) is discrete, and a discrete subgroup of a com-
pact group is finite. =
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