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Complex structure on vector spaces

Let V be a vector space over R, and I : V −→ V an automorphism which

satisfies I2 = − IdV . We extend the action of I on the tensor spaces

V ⊗V ⊗ ...⊗V ⊗V ∗⊗V ∗⊗ ...⊗V ∗ by multiplicativity: I(v1⊗ ...⊗w1⊗ ...⊗wn) =

I(v1)⊗ ...⊗ I(w1)⊗ ...⊗ I(wn).

Trivial observations:

1. The eigenvalues of I are ±
√
−1 .

2. V admits an I-invariant metric g. Take any metric g0, and let g :=

g0 + I(g0).

3. I diagonalizable over C. Indeed, any orthogonal matrix is diagonalizable.

4. All eigenvalues of I are equal to ±
√
−1 . Indeed, I2 = −1.

5. There are as many
√
−1-eigenvalues as there are −

√
−1-eigenvalues.

Indeed, I is real.
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The Hodge decomposition in linear algebra

DEFINITION: The Hodge decomposition V ⊗R C := V 1,0 ⊕ V 0,1 is de-

fined in such a way that V 1,0 is a
√
−1 -eigenspace of I, and V 0,1 a −

√
−1 -

eigenspace.

REMARK: Let VC := V ⊗R C. The Grassmann algebra of skew-symmetric

forms ΛnVC := ΛnRV ⊗R C admits a decomposition

ΛnVC =
⊕

p+q=n

ΛpV 1,0 ⊗ ΛqV 0,1

We denote ΛpV 1,0 ⊗ ΛqV 0,1 by Λp,qV . The resulting decomposition ΛnVC =⊕
p+q=nΛp,qV is called the Hodge decomposition of the Grassmann al-

gebra.

REMARK: The operator I induces U(1)-action on V by the formula ρ(t)(v) =

cos t · v + sin t · I(v). We extend this action on the tensor spaces by mupti-

plicativity.
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U(1)-representations and the weight decomposition

REMARK: Any complex representation W of U(1) is written as a sum

of 1-dimensional representations Wi(p), with U(1) acting on each Wi(p)

as ρ(t)(v) = e
√
−1 pt(v). The 1-dimensional representations are called weight

p representations of U(1).

DEFINITION: A weight decomposition of a U(1)-representation W is a de-

composition W = ⊕W p, where each W p = ⊕iWi(p) is a sum of 1-dimensional

representations of weight p.

REMARK: The Hodge decomposition ΛnVC =
⊕
p+q=nΛp,qV is a weight

decomposition, with Λp,qV being a weight p− q-component of ΛnVC.

REMARK: V p,p is the space of U(1)-invariant vectors in Λ2pV .

Further on, TM is the tangent bundle on a manifold, and ΛiM the space

of differential i-forms. It is a Grassman algebra on TM
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Complex manifolds

DEFINITION: Let M be a smooth manifold. An almost complex structure
is an operator I : TM −→ TM which satisfies I2 = − IdTM .

The eigenvalues of this operator are ±
√
−1. The corresponding eigenvalue

decomposition is denoted TM = T0,1M ⊕ T1,0(M).

DEFINITION: An almost complex structure is integrable if ∀X,Y ∈ T1,0M ,
one has [X,Y ] ∈ T1,0M . In this case I is called a complex structure op-
erator. A manifold with an integrable almost complex structure is called a
complex manifold.

THEOREM: (Newlander-Nirenberg)
This definition is equivalent to the usual one.

REMARK: The commutator defines a C∞M-linear map
N := Λ2(T1,0)−→ T0,1M , called the Nijenhuis tensor of I. One can rep-
resent N as a section of Λ2,0(M)⊗ T0,1M.

Exercise: Prove that CPn is a complex manifold, in the sense of the above
definition.
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Kähler manifolds

DEFINITION: An Riemannian metric g on an almost complex manifiold M

is called Hermitian if g(Ix, Iy) = g(x, y). In this case, g(x, Iy) = g(Ix, I2y) =

−g(y, Ix), hence ω(x, y) := g(x, Iy) is skew-symmetric.

DEFINITION: The differential form ω ∈ Λ1,1(M) is called the Hermitian

form of (M, I, g).

REMARK: It is U(1)-invariant, hence of Hodge type (1,1).

DEFINITION: A complex Hermitian manifold (M, I, ω) is called Kähler if

dω = 0. The cohomology class [ω] ∈ H2(M) of a form ω is called the Kähler

class of M , and ω the Kähler form.
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Examples of Kähler manifolds.

Definition: Let M = CPn be a complex projective space, and g a U(n + 1)-

invariant Riemannian form. It is called Fubini-Study form on CPn. The

Fubini-Study form is obtained by taking arbitrary Riemannian form and aver-

aging with U(n+ 1).

Remark: For any x ∈ CPn, the stabilizer St(x) is isomorphic to U(n). Fubini-

Study form on TxCPn = Cn is U(n)-invariant, hence unique up to a constant.

Claim: Fubini-Study form is Kähler. Indeed, dω|x is a U(n)-invariant 3-

form on Cn, but such a form must vanish, because − Id ∈ U(n)

REMARK: The same argument works for all symmetric spaces.

Corollary: Every projective manifold (complex submanifold of CPn) is

Kähler. Indeed, a restriction of a closed form is again closed.
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Connections

Notation: Let M be a smooth manifold, TM its tangent bundle, ΛiM the
bundle of differential i-forms, C∞M the smooth functions. The space of

sections of a bundle B is denoted by B.

DEFINITION: A connection on a vector bundle B is a map B
∇−→ Λ1M⊗B

which satisfies

∇(fb) = df ⊗ b+ f∇b

for all b ∈ B, f ∈ C∞M .

REMARK: A connection ∇ on B gives a connection B∗ ∇∗−→ Λ1M ⊗ B∗ on
the dual bundle, by the formula

d(〈b, β〉) = 〈∇b, β〉+ 〈b,∇∗β〉

These connections are usually denoted by the same letter ∇.

REMARK: For any tensor bundle B1 := B∗⊗B∗⊗ ...⊗B∗⊗B ⊗B ⊗ ...⊗B a

connection on B defines a connection on B1 using the Leibniz formula:

∇(b1 ⊗ b2) = ∇(b1)⊗ b2 + b1 ⊗∇(b2).
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Torsion

DEFINITION: A torsion of a connection Λ1 ∇−→ Λ1M ⊗ Λ1M is a map

Alt ◦∇ − d, where Alt : Λ1M ⊗ Λ1M −→ Λ2M is exterior multiplication. It is a

map T∇ : Λ1M −→ Λ2M .

An exercise: Prove that torsion is a C∞M-linear.

DEFINITION: Let (M, g) be a Riemannian manifold. A connection ∇ is

called orthogonal if ∇(g) = 0. It is called Levi-Civita if it is torsion-free.

THEOREM: (“the main theorem of differential geometry”)

For any Riemannian manifold, the Levi-Civita connection exists,

and it is unique.
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Levi-Civita connection and Kähler geometry

THEOREM: Let (M, I, g) be an almost complex Hermitian manifold. Then

the following conditions are equivalent.

(i) The complex structure I is integrable, and the Hermitian form ω is

closed.

(ii) One has ∇(I) = 0, where ∇ is the Levi-Civita connection.

REMARK: The implication (ii) ⇒ (i) is clear. Indeed, [X,Y ] = ∇XY −
∇YX, hence it is a (1,0)-vector field when X,Y are of type (1,0), and then I

is integrable. Also, dω = 0, because ∇ is torsion-free, and dω = Alt(∇ω).

The implication (i)⇒ (ii) is proven by the same argument as used to construct

the Levi-Civita connection.
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Holonomy group

DEFINITION: (Cartan, 1923) Let (B,∇) be a vector bundle with connec-
tion over M . For each loop γ based in x ∈ M , let Vγ,∇ : B|x −→B|x be
the corresponding parallel transport along the connection. The holonomy
group of (B,∇) is a group generated by Vγ,∇, for all loops γ. If one takes
all contractible loops instead, Vγ,∇ generates the local holonomy, or the
restricted holonomy group.

REMARK: A bundle is flat (has vanishing curvature) if and only if its
restricted holonomy vanishes.

REMARK: If ∇(ϕ) = 0 for some tensor ϕ ∈ B⊗i ⊗ (B∗)⊗j, the holonomy
group preserves ϕ.

DEFINITION: Holonomy of a Riemannian manifold is holonomy of its
Levi-Civita connection.

EXAMPLE: Holonomy of a Riemannian manifold lies in O(TxM, g|x) = O(n).

EXAMPLE: Holonomy of a Kähler manifold lies in U(TxM, g|x, I|x) = U(n).

REMARK: The holonomy group does not depend on the choice of a
point x ∈M.
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Curvature of a connection

Let M be a manifold, B a bundle, ΛiM the differential forms, and ∇ :
B −→B ⊗ Λ1M a connection. We extend ∇ to B ⊗ ΛiM

∇−→ B ⊗ Λi+1M

in a natural way, using the formula

∇(b⊗ η) = ∇(b) ∧ η + b⊗ dη,
and define the curvature Θ∇ of ∇ as ∇ ◦∇ : B −→B ⊗ Λ2M .

CLAIM: This operator is C∞M-linear.

REMARK: We shall consider Θ∇ as an element of Λ2M ⊗EndB, that is, an
EndB-valued 2-form.

REMARK: Given vector fields X,Y ∈ TM , the curvature can be written in
terms of a connection as follows

Θ∇(b) = ∇X∇Y b−∇Y∇XB −∇[X,Y ]b.

CLAIM: Suppose that the structure group of B is reduced to its subgroup G,
and let ∇ be a connection which preserves this reduction. This is the same
as to say that the connection form takes values in Λ1⊗ g(B). Then Θ∇ lies
in Λ2M ⊗ g(B).
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The Lasso lemma

DEFINITION: A lasso is a loop of the following form:

The round part is called a working part of a loop.

REMARK: (“The Lasso Lemma”) Let {Ui} be a covering of a manifold,

and γ a loop. Then any contractible loop γ is a product of several lasso,

with working part of each inside some Ui.
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The Ambrose-Singer theorem

DEFINITION: Let (B,∇) be a bundle with connection, Θ ∈ Λ2(M)⊗End(B)

its curvature, and a, b ∈ TxM tangent vectors. An endomorphism Θ(a, b) ∈
End(B)|x is called a curvature element.

THEOREM: (Ambrose-Singer) The restricted holonomy group of B,∇ at

z ∈ M is a Lie group, with its Lie algebra generated by all curvature

elements Θ(a, b) ∈ End(B)|x transported to z along all paths.

REMARK: Its proof follows from the Lasso lemma.
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Holonomy representation

DEFINITION: Let (M, g) be a Riemannian manifold, G its holonomy group.
A holonomy representation is the natural action of G on TM .

THEOREM: (de Rham) Suppose that the holonomy representation is not
irreducible: TxM = V1 ⊕ V2. Then M locally splits as M = M1 ×M2, with
V1 = TM1, V2 = TM2.

Proof. Step 1: Using the parallel transform, we extend V1⊕V2 to a splitting
of vector bundles TM = B1 ⊕B2, preserved by holonomy.

Step 2: The sub-bundles B1, B2 ⊂ TM are integrable: [B1, B1] ⊂ Bi (the
Levi-Civita connection is torsion-free)

Step 3: Taking the leaves of these integrable distributions, we obtain a
local decomposition M = M1 ×M2, with V1 = TM1, V2 = TM2.

Step 4: Since the splitting TM = B1 ⊕ B2 is preserved by the connection,
the leaves M1,M2 are totally geodesic.

Step 5: Therefore, locally M splits (as a Riemannian manifold):
M = M1 ×M2, where M1,M2 are any leaves of these foliations.
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The de Rham splitting theorem

COROLLARY: Let M be a Riemannian manifold, and Hol0(M)
ρ−→ End(TxM)

a reduced holonomy representation. Suppose that ρ is reducible: TxM =

V1 ⊕ V2 ⊕ ... ⊕ Vk. Then G = Hol0(M) also splits: G = G1 × G2 × ... × Gk,
with each Gi acting trivially on all Vj with j 6= i.

Proof: Locally, this statement follows from the local splitting of M proven

above. To obtain it globally in M , use the Lasso Lemma.

THEOREM: (de Rham) A complete, simply connected Riemannian manifold

with non-irreducible holonomy splits as a Riemannian product.

REMARK: It is easy to find non-complete or non-simply connected coun-

terexamples to de Rham theorem.

THEOREM: (Simons, 1962) Let M be a manifold with irreducible holonomy.

Then either M is locally symmetric, or Hol(M) acts transitively on the

unit sphere in TxM.
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Berger’s theorem

THEOREM: (Berger’s theorem, 1955) Let G be an irreducible holonomy
group of a Riemannian manifold which is not locally symmetric. Then G
belongs to the Berger’s list:

Berger’s list

Holonomy Geometry

SO(n) acting on Rn Riemannian manifolds

U(n) acting on R2n Kähler manifolds

SU(n) acting on R2n, n > 2 Calabi-Yau manifolds

Sp(n) acting on R4n hyperkähler manifolds

Sp(n)× Sp(1)/{±1} quaternionic-Kähler

acting on R4n, n > 1 manifolds

G2 acting on R7 G2-manifolds

Spin(7) acting on R8 Spin(7)-manifolds

REMARK: There is one more group acting transitively on a sphere: Spin(9)
acting on S15 ⊂ R16. In 1968, D. Alekseevsky has shown that a manifold
with holonomy Spin(9) is automatically locally symmetric.

REMARK: A similar list exists for non-orthogonal irreducible holonomy without torsion

(Merkulov, Schwachhöfer, 1999).
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Chern connection

DEFINITION: Let B be a holomorphic vector bundle on a complex manifold,

and ∂ : BC∞ −→BC∞ ⊗ Λ0,1(M) an operator mapping b ⊗ f to b ⊗ ∂f , where

b ∈ B is a holomorphic section, and f a smooth function. This operator is

called a holomorphic structure operator on B. It is correctly defined,

because ∂ is OM-linear.

REMARK: A section b ∈ B is holomorphic iff ∂(b) = 0

DEFINITION: let (B,∇) be a smooth bundle with connection and a holo-

morphic structure ∂ : B −→ Λ0,1(M)⊗B. Consider the Hodge decomposition

of ∇, ∇ = ∇0,1 +∇1,0. We say that ∇ is compatible with the holomorphic

structure if ∇0,1 = ∂.

DEFINITION: A Chern connection on a holomorphic Hermitian vector

bundle is a connection compatible with the holomorphic structure and pre-

serving the metric.

THEOREM: On any holomorphic Hermitian vector bundle, the Chern con-

nection exists, and is unique.
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Calabi-Yau manifolds

DEFINITION:
A Calabi-Yau manifold is a compact Kaehler manifold with c1(M,Z) = 0.

DEFINITION: Let (M, I, ω) be a Kaehler n-manifold, and K(M) := Λn,0(M)
its canonical bundle. We consider K(M) as a holomorphic line bundle,
K(M) = ΩnM . The natural Hermitian metric on K(M) is written as

(α, α′)−→
α ∧ α′

ωn
.

Denote by ΘK the curvature of the Chern connection on K(M). The Ricci
curvature Ric of M is a symmetric 2-form Ric(x, y) = ΘK(x, Iy).

DEFINITION: A Kähler manifold is called Ricci-flat if its Ricci curvature
vanishes.

THEOREM: (Calabi-Yau)
Let (M, I, g) be Calabi-Yau manifold. Then there exists a unique Ricci-flat
Kaehler metric in any given Kaehler class.

REMARK: Converse is also true: any Ricci-flat Kähler manifold has a
finite covering which is Calabi-Yau.
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Bochner’s vanishing

THEOREM: (Bochner vanishing theorem) On a compact Ricci-flat Calabi-
Yau manifold, any holomorphic p-form η is parallel with respect to the
Levi-Civita connection: ∇(η) = 0.

DEFINITION: A holomorphic symplectic manifold is a manifold admitting
a non-degenerate, holomorphic symplectic form.

REMARK: A holomorphic symplectic manifold is Calabi-Yau. The top ex-
terior power of a holomorphic symplectic form is a non-degenerate section
of canonical bundle.

REMARK: Due to Bochner’s vanishing, holonomy of Ricci-flat Calabi-
Yau manifold lies in SU(n), and holonomy of Ricci-flat holomorphically
symplectic manifold lies in Sp(n) (a group of complex unitary matrices
preserving a complex-linear symplectic form).

DEFINITION: A holomorphically symplectic Ricci-flat Kaehler manifold is
called hyperkähler.

REMARK: Since Sp(n) = SU(H, n), a hyperkähler manifold admits quater-
nionic action in its tangent bundle.
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