K3 surfaces

lecture 1: Ricci-flat metrics and special holonomy

Misha Verbitsky

IMPA, sala 236

August 22, 2022, 15:30

Complex structure on vector spaces

Let V be a vector space over \mathbb{R} , and $I:V\longrightarrow V$ an automorphism which satisfies $I^2=-\operatorname{Id}_V$. We extend the action of I on the tensor spaces $V\otimes V\otimes ...\otimes V\otimes V^*\otimes V^*\otimes ...\otimes V^*$ by multiplicativity: $I(v_1\otimes ...\otimes w_1\otimes ...\otimes w_n)=I(v_1)\otimes ...\otimes I(w_1)\otimes ...\otimes I(w_n)$.

Trivial observations:

- 1. The eigenvalues of I are $\pm \sqrt{-1}$.
- 2. V admits an I-invariant metric g. Take any metric g_0 , and let $g:=g_0+I(g_0)$.
- 3. I diagonalizable over \mathbb{C} . Indeed, any orthogonal matrix is diagonalizable.
- 4. All eigenvalues of I are equal to $\pm \sqrt{-1}$. Indeed, $I^2 = -1$.
- 5. There are as many $\sqrt{-1}$ -eigenvalues as there are $-\sqrt{-1}$ -eigenvalues. Indeed, I is real.

The Hodge decomposition in linear algebra

DEFINITION: The Hodge decomposition $V \otimes_{\mathbb{R}} \mathbb{C} := V^{1,0} \oplus V^{0,1}$ is defined in such a way that $V^{1,0}$ is a $\sqrt{-1}$ -eigenspace of I, and $V^{0,1}$ a $-\sqrt{-1}$ -eigenspace.

REMARK: Let $V_{\mathbb{C}}:=V\otimes_{\mathbb{R}}\mathbb{C}$. The Grassmann algebra of skew-symmetric forms $\Lambda^n V_{\mathbb{C}}:=\Lambda^n_{\mathbb{R}}V\otimes_{\mathbb{R}}C$ admits a decomposition

$$\Lambda^n V_{\mathbb{C}} = \bigoplus_{p+q=n} \Lambda^p V^{1,0} \otimes \Lambda^q V^{0,1}$$

We denote $\Lambda^p V^{1,0} \otimes \Lambda^q V^{0,1}$ by $\Lambda^{p,q} V$. The resulting decomposition $\Lambda^n V_{\mathbb{C}} = \bigoplus_{p+q=n} \Lambda^{p,q} V$ is called **the Hodge decomposition of the Grassmann algebra**.

REMARK: The operator I induces U(1)-action on V by the formula $\rho(t)(v) = \cos t \cdot v + \sin t \cdot I(v)$. We extend this action on the tensor spaces by muptiplicativity.

U(1)-representations and the weight decomposition

REMARK: Any complex representation W of U(1) is written as a sum of 1-dimensional representations $W_i(p)$, with U(1) acting on each $W_i(p)$ as $\rho(t)(v) = e^{\sqrt{-1}\,pt}(v)$. The 1-dimensional representations are called weight p representations of U(1).

DEFINITION: A weight decomposition of a U(1)-representation W is a decomposition $W = \oplus W^p$, where each $W^p = \oplus_i W_i(p)$ is a sum of 1-dimensional representations of weight p.

REMARK: The Hodge decomposition $\Lambda^n V_{\mathbb{C}} = \bigoplus_{p+q=n} \Lambda^{p,q} V$ is a weight decomposition, with $\Lambda^{p,q} V$ being a weight p-q-component of $\Lambda^n V_{\mathbb{C}}$.

REMARK: $V^{p,p}$ is the space of U(1)-invariant vectors in $\Lambda^{2p}V$.

Further on, TM is the tangent bundle on a manifold, and $\Lambda^i M$ the space of differential i-forms. It is a Grassman algebra on TM

Complex manifolds

DEFINITION: Let M be a smooth manifold. An almost complex structure is an operator $I: TM \longrightarrow TM$ which satisfies $I^2 = -\operatorname{Id}_{TM}$.

The eigenvalues of this operator are $\pm \sqrt{-1}$. The corresponding eigenvalue decomposition is denoted $TM = T^{0,1}M \oplus T^{1,0}(M)$.

DEFINITION: An almost complex structure is **integrable** if $\forall X, Y \in T^{1,0}M$, one has $[X,Y] \in T^{1,0}M$. In this case I is called a **complex structure operator**. A manifold with an integrable almost complex structure is called a **complex manifold**.

THEOREM: (Newlander-Nirenberg)
This definition is equivalent to the usual one.

REMARK: The commutator defines a $\mathbb{C}^{\infty}M$ -linear map $N:=\Lambda^2(T^{1,0})\longrightarrow T^{0,1}M$, called the Nijenhuis tensor of I. One can represent N as a section of $\Lambda^{2,0}(M)\otimes T^{0,1}M$.

Exercise: Prove that $\mathbb{C}P^n$ is a complex manifold, in the sense of the above definition.

Kähler manifolds

DEFINITION: An Riemannian metric g on an almost complex manifold M is called **Hermitian** if g(Ix, Iy) = g(x, y). In this case, $g(x, Iy) = g(Ix, I^2y) = -g(y, Ix)$, hence $\omega(x, y) := g(x, Iy)$ is skew-symmetric.

DEFINITION: The differential form $\omega \in \Lambda^{1,1}(M)$ is called the Hermitian form of (M,I,g).

REMARK: It is U(1)-invariant, hence of Hodge type (1,1).

DEFINITION: A complex Hermitian manifold (M, I, ω) is called **Kähler** if $d\omega = 0$. The cohomology class $[\omega] \in H^2(M)$ of a form ω is called **the Kähler** class of M, and ω the **Kähler form**.

Examples of Kähler manifolds.

Definition: Let $M = \mathbb{C}P^n$ be a complex projective space, and g a U(n+1)-invariant Riemannian form. It is called **Fubini-Study form on** $\mathbb{C}P^n$. The Fubini-Study form is obtained by taking arbitrary Riemannian form and averaging with U(n+1).

Remark: For any $x \in \mathbb{C}P^n$, the stabilizer St(x) is isomorphic to U(n). FubiniStudy form on $T_x\mathbb{C}P^n = \mathbb{C}^n$ is U(n)-invariant, hence unique up to a constant.

Claim: Fubini-Study form is Kähler. Indeed, $d\omega|_x$ is a U(n)-invariant 3-form on \mathbb{C}^n , but such a form must vanish, because $-\operatorname{Id} \in U(n)$

REMARK: The same argument works for all symmetric spaces.

Corollary: Every projective manifold (complex submanifold of $\mathbb{C}P^n$) is Kähler. Indeed, a restriction of a closed form is again closed.

Connections

Notation: Let M be a smooth manifold, TM its tangent bundle, $\Lambda^i M$ the bundle of differential i-forms, $C^{\infty}M$ the smooth functions. The space of sections of a bundle B is denoted by B.

DEFINITION: A connection on a vector bundle B is a map $B \xrightarrow{\nabla} \Lambda^1 M \otimes B$ which satisfies

$$\nabla(fb) = df \otimes b + f\nabla b$$

for all $b \in B$, $f \in C^{\infty}M$.

REMARK: A connection ∇ on B gives a connection $B^* \xrightarrow{\nabla^*} \Lambda^1 M \otimes B^*$ on the dual bundle, by the formula

$$d(\langle b, \beta \rangle) = \langle \nabla b, \beta \rangle + \langle b, \nabla^* \beta \rangle$$

These connections are usually denoted by the same letter ∇ .

REMARK: For any tensor bundle $\mathcal{B}_1 := B^* \otimes B^* \otimes ... \otimes B^* \otimes B \otimes B \otimes ... \otimes B$ a connection on B defines a connection on \mathcal{B}_1 using the Leibniz formula:

$$\nabla(b_1 \otimes b_2) = \nabla(b_1) \otimes b_2 + b_1 \otimes \nabla(b_2).$$

Torsion

DEFINITION: A torsion of a connection $\Lambda^1 \xrightarrow{\nabla} \Lambda^1 M \otimes \Lambda^1 M$ is a map $\Lambda^1 \otimes \nabla - d$, where $\Lambda^1 \otimes \Lambda^1 M \otimes \Lambda^1 M \longrightarrow \Lambda^2 M$ is exterior multiplication. It is a map $T_{\nabla} : \Lambda^1 M \longrightarrow \Lambda^2 M$.

An exercise: Prove that torsion is a $C^{\infty}M$ -linear.

DEFINITION: Let (M,g) be a Riemannian manifold. A connection ∇ is called **orthogonal** if $\nabla(g) = 0$. It is called **Levi-Civita** if it is torsion-free.

THEOREM: ("the main theorem of differential geometry")
For any Riemannian manifold, the Levi-Civita connection exists, and it is unique.

Levi-Civita connection and Kähler geometry

THEOREM: Let (M, I, g) be an almost complex Hermitian manifold. Then the following conditions are equivalent.

- (i) The complex structure I is integrable, and the Hermitian form ω is closed.
- (ii) One has $\nabla(I) = 0$, where ∇ is the Levi-Civita connection.

REMARK: The implication (ii) \Rightarrow (i) is clear. Indeed, $[X,Y] = \nabla_X Y - \nabla_Y X$, hence it is a (1,0)-vector field when X,Y are of type (1,0), and then I is integrable. Also, $d\omega = 0$, because ∇ is torsion-free, and $d\omega = \text{Alt}(\nabla \omega)$.

The implication (i) \Rightarrow (ii) is proven by the same argument as used to construct the Levi-Civita connection.

Holonomy group

DEFINITION: (Cartan, 1923) Let (B, ∇) be a vector bundle with connection over M. For each loop γ based in $x \in M$, let $V_{\gamma,\nabla}: B|_x \longrightarrow B|_x$ be the corresponding parallel transport along the connection. The **holonomy group** of (B, ∇) is a group generated by $V_{\gamma,\nabla}$, for all loops γ . If one takes all contractible loops instead, $V_{\gamma,\nabla}$ generates **the local holonomy**, or **the restricted holonomy** group.

REMARK: A bundle is **flat** (has vanishing curvature) **if and only if its** restricted holonomy vanishes.

REMARK: If $\nabla(\varphi) = 0$ for some tensor $\varphi \in B^{\otimes i} \otimes (B^*)^{\otimes j}$, the holonomy group preserves φ .

DEFINITION: Holonomy of a Riemannian manifold is holonomy of its Levi-Civita connection.

EXAMPLE: Holonomy of a Riemannian manifold lies in $O(T_xM, g|_x) = O(n)$.

EXAMPLE: Holonomy of a Kähler manifold lies in $U(T_xM, g|_x, I|_x) = U(n)$.

REMARK: The holonomy group does not depend on the choice of a point $x \in M$.

Curvature of a connection

Let M be a manifold, B a bundle, $\Lambda^i M$ the differential forms, and ∇ : $B \longrightarrow B \otimes \Lambda^1 M$ a connection. We extend ∇ to $B \otimes \Lambda^i M \stackrel{\nabla}{\longrightarrow} B \otimes \Lambda^{i+1} M$ in a natural way, using the formula

$$\nabla(b\otimes\eta)=\nabla(b)\wedge\eta+b\otimes d\eta,$$

and define the curvature Θ_{∇} of ∇ as $\nabla \circ \nabla : B \longrightarrow B \otimes \Lambda^2 M$.

CLAIM: This operator is $C^{\infty}M$ -linear.

REMARK: We shall consider Θ_{∇} as an element of $\Lambda^2 M \otimes \operatorname{End} B$, that is, an End B-valued 2-form.

REMARK: Given vector fields $X, Y \in TM$, the curvature can be written in terms of a connection as follows

$$\Theta_{\nabla}(b) = \nabla_X \nabla_Y b - \nabla_Y \nabla_X B - \nabla_{[X,Y]} b.$$

CLAIM: Suppose that the structure group of B is reduced to its subgroup G, and let ∇ be a connection which preserves this reduction. This is the same as to say that the connection form takes values in $\Lambda^1 \otimes \mathfrak{g}(B)$. Then Θ_{∇} lies in $\Lambda^2 M \otimes \mathfrak{g}(B)$.

The Lasso lemma

DEFINITION: A lasso is a loop of the following form:

The round part is called a working part of a loop.

REMARK: ("The Lasso Lemma") Let $\{U_i\}$ be a covering of a manifold, and γ a loop. Then any contractible loop γ is a product of several lasso, with working part of each inside some U_i .

The Ambrose-Singer theorem

DEFINITION: Let (B, ∇) be a bundle with connection, $\Theta \in \Lambda^2(M) \otimes \operatorname{End}(B)$ its curvature, and $a, b \in T_xM$ tangent vectors. An endomorphism $\Theta(a, b) \in \operatorname{End}(B)|_x$ is called a curvature element.

THEOREM: (Ambrose-Singer) The restricted holonomy group of B, ∇ at $z \in M$ is a Lie group, with its Lie algebra generated by all curvature elements $\Theta(a,b) \in \operatorname{End}(B)|_x$ transported to z along all paths.

REMARK: Its proof follows from the Lasso lemma.

Holonomy representation

DEFINITION: Let (M,g) be a Riemannian manifold, G its holonomy group. A holonomy representation is the natural action of G on TM.

THEOREM: (de Rham) Suppose that the holonomy representation is not irreducible: $T_xM = V_1 \oplus V_2$. Then M locally splits as $M = M_1 \times M_2$, with $V_1 = TM_1$, $V_2 = TM_2$.

Proof. Step 1: Using the parallel transform, we extend $V_1 \oplus V_2$ to a **splitting** of vector bundles $TM = B_1 \oplus B_2$, preserved by holonomy.

Step 2: The sub-bundles B_1 , $B_2 \subset TM$ are integrable: $[B_1, B_1] \subset B_i$ (the Levi-Civita connection is torsion-free)

Step 3: Taking the leaves of these integrable distributions, we obtain a local decomposition $M = M_1 \times M_2$, with $V_1 = TM_1$, $V_2 = TM_2$.

Step 4: Since the splitting $TM = B_1 \oplus B_2$ is preserved by the connection, the leaves M_1, M_2 are totally geodesic.

Step 5: Therefore, locally M splits (as a Riemannian manifold): $M = M_1 \times M_2$, where M_1, M_2 are any leaves of these foliations.

The de Rham splitting theorem

COROLLARY: Let M be a Riemannian manifold, and $\mathcal{H}\text{ol}_0(M) \stackrel{\rho}{\longrightarrow} \text{End}(T_x M)$ a reduced holonomy representation. Suppose that ρ is reducible: $T_x M = V_1 \oplus V_2 \oplus ... \oplus V_k$. Then $G = \mathcal{H}\text{ol}_0(M)$ also splits: $G = G_1 \times G_2 \times ... \times G_k$, with each G_i acting trivially on all V_j with $j \neq i$.

Proof: Locally, this statement follows from the local splitting of M proven above. To obtain it globally in M, use the Lasso Lemma. \blacksquare

THEOREM: (de Rham) A complete, simply connected Riemannian manifold with non-irreducible holonomy **splits as a Riemannian product.**

REMARK: It is easy to find non-complete or non-simply connected counterexamples to de Rham theorem.

THEOREM: (Simons, 1962) Let M be a manifold with irreducible holonomy. Then either M is locally symmetric, or $\mathcal{H}ol(M)$ acts transitively on the unit sphere in T_xM .

Berger's theorem

THEOREM: (Berger's theorem, 1955) Let G be an irreducible holonomy group of a Riemannian manifold which is not locally symmetric. **Then** G belongs to the Berger's list:

Berger's list	
Holonomy	Geometry
$SO(n)$ acting on \mathbb{R}^n	Riemannian manifolds
$U(n)$ acting on \mathbb{R}^{2n}	Kähler manifolds
$SU(n)$ acting on \mathbb{R}^{2n} , $n>2$	Calabi-Yau manifolds
$Sp(n)$ acting on \mathbb{R}^{4n}	hyperkähler manifolds
$Sp(n) \times Sp(1)/\{\pm 1\}$	quaternionic-Kähler
acting on \mathbb{R}^{4n} , $n>1$	manifolds
G_2 acting on \mathbb{R}^7	G_2 -manifolds
$Spin(7)$ acting on \mathbb{R}^8	Spin(7)-manifolds

REMARK: There is one more group acting transitively on a sphere: Spin(9) acting on $S^{15} \subset \mathbb{R}^{16}$. In 1968, D. Alekseevsky has shown that a manifold with holonomy Spin(9) is automatically locally symmetric.

REMARK: A similar list exists for non-orthogonal irreducible holonomy without torsion (Merkulov, Schwachhöfer, 1999).

Chern connection

DEFINITION: Let B be a holomorphic vector bundle on a complex manifold, and $\overline{\partial}: B_{C^{\infty}} \longrightarrow B_{C^{\infty}} \otimes \Lambda^{0,1}(M)$ an operator mapping $b \otimes f$ to $b \otimes \overline{\partial} f$, where $b \in B$ is a holomorphic section, and f a smooth function. This operator is called a holomorphic structure operator on B. It is correctly defined, because $\overline{\partial}$ is \mathcal{O}_M -linear.

REMARK: A section $b \in B$ is holomorphic iff $\overline{\partial}(b) = 0$

DEFINITION: let (B, ∇) be a smooth bundle with connection and a holomorphic structure $\overline{\partial}: B \longrightarrow \Lambda^{0,1}(M) \otimes B$. Consider the Hodge decomposition of ∇ , $\nabla = \nabla^{0,1} + \nabla^{1,0}$. We say that ∇ is **compatible with the holomorphic** structure if $\nabla^{0,1} = \overline{\partial}$.

DEFINITION: A Chern connection on a holomorphic Hermitian vector bundle is a connection compatible with the holomorphic structure and preserving the metric.

THEOREM: On any holomorphic Hermitian vector bundle, the Chern connection exists, and is unique.

Calabi-Yau manifolds

DEFINITION:

A Calabi-Yau manifold is a compact Kaehler manifold with $c_1(M,\mathbb{Z}) = 0$.

DEFINITION: Let (M, I, ω) be a Kaehler n-manifold, and $K(M) := \Lambda^{n,0}(M)$ its **canonical bundle.** We consider K(M) as a holomorphic line bundle, $K(M) = \Omega^n M$. The natural Hermitian metric on K(M) is written as

$$(\alpha, \alpha') \longrightarrow \frac{\alpha \wedge \overline{\alpha}'}{\omega^n}.$$

Denote by Θ_K the curvature of the Chern connection on K(M). The Ricci curvature Ric of M is a symmetric 2-form $Ric(x,y) = \Theta_K(x,Iy)$.

DEFINITION: A Kähler manifold is called **Ricci-flat** if its Ricci curvature vanishes.

THEOREM: (Calabi-Yau)

Let (M, I, g) be Calabi-Yau manifold. Then there exists a unique Ricci-flat Kaehler metric in any given Kaehler class.

REMARK: Converse is also true: any Ricci-flat Kähler manifold has a finite covering which is Calabi-Yau.

Bochner's vanishing

THEOREM: (Bochner vanishing theorem) On a compact Ricci-flat Calabi-Yau manifold, any holomorphic p-form η is parallel with respect to the Levi-Civita connection: $\nabla(\eta) = 0$.

DEFINITION: A holomorphic symplectic manifold is a manifold admitting a non-degenerate, holomorphic symplectic form.

REMARK: A holomorphic symplectic manifold is Calabi-Yau. The top exterior power of a holomorphic symplectic form is a non-degenerate section of canonical bundle.

REMARK: Due to Bochner's vanishing, **holonomy of Ricci-flat Calabi-Yau manifold lies in** SU(n), and **holonomy of Ricci-flat holomorphically symplectic manifold lies in** Sp(n) (a group of complex unitary matrices preserving a complex-linear symplectic form).

DEFINITION: A holomorphically symplectic Ricci-flat Kaehler manifold is called **hyperkähler**.

REMARK: Since $Sp(n) = SU(\mathbb{H}, n)$, a hyperkähler manifold admits quaternionic action in its tangent bundle.