K3 surfaces

lecture 1: Ricci-flat metrics and special holonomy

Misha Verbitsky

IMPA, sala 236
August 22, 2022, 15:30

Complex structure on vector spaces

Let V be a vector space over \mathbb{R}, and $I: V \longrightarrow V$ an automorphism which satisfies $I^{2}=-\mathrm{Id}_{V}$. We extend the action of I on the tensor spaces $V \otimes V \otimes \ldots \otimes V \otimes V^{*} \otimes V^{*} \otimes \ldots \otimes V^{*}$ by multiplicativity: $I\left(v_{1} \otimes \ldots \otimes w_{1} \otimes \ldots \otimes w_{n}\right)=$ $I\left(v_{1}\right) \otimes \ldots \otimes I\left(w_{1}\right) \otimes \ldots \otimes I\left(w_{n}\right)$.

Trivial observations:

1. The eigenvalues of I are $\pm \sqrt{-1}$.
2. V admits an I-invariant metric g. Take any metric g_{0}, and let $g:=$ $g_{0}+I\left(g_{0}\right)$.
3. I diagonalizable over \mathbb{C}. Indeed, any orthogonal matrix is diagonalizable.
4. All eigenvalues of I are equal to $\pm \sqrt{-1}$. Indeed, $I^{2}=-1$.
5. There are as many $\sqrt{-1}$-eigenvalues as there are $-\sqrt{-1}$-eigenvalues. Indeed, I is real.

The Hodge decomposition in linear algebra
DEFINITION: The Hodge decomposition $V \otimes_{\mathbb{R}} \mathbb{C}:=V^{1,0} \oplus V^{0,1}$ is defined in such a way that $V^{1,0}$ is a $\sqrt{-1}$-eigenspace of I, and $V^{0,1}$ a $-\sqrt{-1}$ eigenspace.

REMARK: Let $V_{\mathbb{C}}:=V \otimes_{\mathbb{R}} \mathbb{C}$. The Grassmann algebra of skew-symmetric forms $\wedge^{n} V_{\mathbb{C}}:=\Lambda_{\mathbb{R}}^{n} V \otimes_{\mathbb{R}} C$ admits a decomposition

$$
\wedge^{n} V_{\mathbb{C}}=\bigoplus_{p+q=n} \wedge^{p} V^{1,0} \otimes \Lambda^{q} V^{0,1}
$$

We denote $\wedge^{p} V^{1,0} \otimes \wedge^{q} V^{0,1}$ by $\wedge^{p, q} V$. The resulting decomposition $\wedge^{n} V_{\mathbb{C}}=$ $\oplus_{p+q=n} \wedge^{p, q} V$ is called the Hodge decomposition of the Grassmann algebra.

REMARK: The operator I induces $U(1)$-action on V by the formula $\rho(t)(v)=$ $\cos t \cdot v+\sin t \cdot I(v)$. We extend this action on the tensor spaces by muptiplicativity.
$U(1)$-representations and the weight decomposition

REMARK: Any complex representation W of $U(1)$ is written as a sum of 1-dimensional representations $W_{i}(p)$, with $U(1)$ acting on each $W_{i}(p)$ as $\rho(t)(v)=e^{\sqrt{-1} p t}(v)$. The 1-dimensional representations are called weight p representations of $U(1)$.

DEFINITION: A weight decomposition of a $U(1)$-representation W is a decomposition $W=\oplus W^{p}$, where each $W^{p}=\oplus_{i} W_{i}(p)$ is a sum of 1-dimensional representations of weight p.

REMARK: The Hodge decomposition $\wedge^{n} V_{\mathbb{C}}=\oplus_{p+q=n} \wedge^{p, q} V$ is a weight decomposition, with $\wedge^{p, q} V$ being a weight $p-q$-component of $\wedge^{n} V_{\mathbb{C}}$.

REMARK: $V^{p, p}$ is the space of $U(1)$-invariant vectors in $\Lambda^{2 p} V$.

Further on, $T M$ is the tangent bundle on a manifold, and $\wedge^{i} M$ the space of differential i-forms. It is a Grassman algebra on $T M$

Complex manifolds

DEFINITION: Let M be a smooth manifold. An almost complex structure is an operator $I: T M \longrightarrow T M$ which satisfies $I^{2}=-\mathrm{Id}_{T M}$.

The eigenvalues of this operator are $\pm \sqrt{-1}$. The corresponding eigenvalue decomposition is denoted $T M=T^{0,1} M \oplus T^{1,0}(M)$.

DEFINITION: An almost complex structure is integrable if $\forall X, Y \in T^{1,0} M$, one has $[X, Y] \in T^{1,0} M$. In this case I is called a complex structure operator. A manifold with an integrable almost complex structure is called a complex manifold.

THEOREM: (Newlander-Nirenberg)
This definition is equivalent to the usual one.
REMARK: The commutator defines a $\mathbb{C}^{\infty} M$-linear map
$N:=\wedge^{2}\left(T^{1,0}\right) \longrightarrow T^{0,1} M$, called the Nijenhuis tensor of I. One can represent N as a section of $\wedge^{2,0}(M) \otimes T^{0,1} M$.

Exercise: Prove that $\mathbb{C} P^{n}$ is a complex manifold, in the sense of the above definition.

Kähler manifolds

DEFINITION: An Riemannian metric g on an almost complex manifiold M is called Hermitian if $g(I x, I y)=g(x, y)$. In this case, $g(x, I y)=g\left(I x, I^{2} y\right)=$ $-g(y, I x)$, hence $\omega(x, y):=g(x, I y)$ is skew-symmetric.

DEFINITION: The differential form $\omega \in \wedge^{1,1}(M)$ is called the Hermitian form of (M, I, g).

REMARK: It is $U(1)$-invariant, hence of Hodge type $(\mathbf{1}, \mathbf{1})$.

DEFINITION: A complex Hermitian manifold (M, I, ω) is called Kähler if $d \omega=0$. The cohomology class $[\omega] \in H^{2}(M)$ of a form ω is called the Kähler class of M, and ω the Kähler form.

Examples of Kähler manifolds.

Definition: Let $M=\mathbb{C} P^{n}$ be a complex projective space, and g a $U(n+1)$ invariant Riemannian form. It is called Fubini-Study form on $\mathbb{C} P^{n}$. The Fubini-Study form is obtained by taking arbitrary Riemannian form and averaging with $U(n+1)$.

Remark: For any $x \in \mathbb{C} P^{n}$, the stabilizer $S t(x)$ is isomorphic to $U(n)$. FubiniStudy form on $T_{x} \mathbb{C} P^{n}=\mathbb{C}^{n}$ is $U(n)$-invariant, hence unique up to a constant.

Claim: Fubini-Study form is Kähler. Indeed, $\left.d \omega\right|_{x}$ is a $U(n)$-invariant 3form on \mathbb{C}^{n}, but such a form must vanish, because - Id $\in U(n)$

REMARK: The same argument works for all symmetric spaces.

Corollary: Every projective manifold (complex submanifold of $\mathbb{C} P^{n}$) is Kähler. Indeed, a restriction of a closed form is again closed.

Connections

Notation: Let M be a smooth manifold, $T M$ its tangent bundle, $\Lambda^{i} M$ the bundle of differential i-forms, $C^{\infty} M$ the smooth functions. The space of sections of a bundle B is denoted by B.

DEFINITION: A connection on a vector bundle B is a map $B \xrightarrow{\nabla} \Lambda^{1} M \otimes B$ which satisfies

$$
\nabla(f b)=d f \otimes b+f \nabla b
$$

for all $b \in B, f \in C^{\infty} M$.
REMARK: A connection ∇ on B gives a connection $B^{*} \xrightarrow{\nabla^{*}} \Lambda^{1} M \otimes B^{*}$ on the dual bundle, by the formula

$$
d(\langle b, \beta\rangle)=\langle\nabla b, \beta\rangle+\left\langle b, \nabla^{*} \beta\right\rangle
$$

These connections are usually denoted by the same letter ∇.
REMARK: For any tensor bundle $\mathscr{B}_{1}:=B^{*} \otimes B^{*} \otimes \ldots \otimes B^{*} \otimes B \otimes B \otimes \ldots \otimes B$ a connection on B defines a connection on \mathscr{B}_{1} using the Leibniz formula:

$$
\nabla\left(b_{1} \otimes b_{2}\right)=\nabla\left(b_{1}\right) \otimes b_{2}+b_{1} \otimes \nabla\left(b_{2}\right)
$$

Torsion

DEFINITION: A torsion of a connection $\wedge^{1} \xrightarrow{\nabla} \Lambda^{1} M \otimes \Lambda^{1} M$ is a map Alt $\circ \nabla-d$, where Alt : $\wedge^{1} M \otimes \wedge^{1} M \longrightarrow \Lambda^{2} M$ is exterior multiplication. It is a map $T_{\nabla}: \wedge^{1} M \longrightarrow \wedge^{2} M$.

An exercise: Prove that torsion is a $C^{\infty} M$-linear.

DEFINITION: Let (M, g) be a Riemannian manifold. A connection ∇ is called orthogonal if $\nabla(g)=0$. It is called Levi-Civita if it is torsion-free.

THEOREM: ("the main theorem of differential geometry")
For any Riemannian manifold, the Levi-Civita connection exists, and it is unique.

Levi-Civita connection and Kähler geometry

THEOREM: Let (M, I, g) be an almost complex Hermitian manifold. Then the following conditions are equivalent.
(i) The complex structure I is integrable, and the Hermitian form ω is closed.
(ii) One has $\nabla(I)=0$, where ∇ is the Levi-Civita connection.

REMARK: The implication (ii) \Rightarrow (i) is clear. Indeed, $[X, Y]=\nabla_{X} Y-$ $\nabla_{Y} X$, hence it is a $(1,0)$-vector field when X, Y are of type $(1,0)$, and then I is integrable. Also, $d \omega=0$, because ∇ is torsion-free, and $d \omega=\operatorname{Alt}(\nabla \omega)$.

The implication (i) \Rightarrow (ii) is proven by the same argument as used to construct the Levi-Civita connection.

Holonomy group

DEFINITION: (Cartan, 1923) Let (B, ∇) be a vector bundle with connection over M. For each loop γ based in $x \in M$, let $V_{\gamma, \nabla}:\left.\left.B\right|_{x} \longrightarrow B\right|_{x}$ be the corresponding parallel transport along the connection. The holonomy group of (B, ∇) is a group generated by $V_{\gamma, \nabla}$, for all loops γ. If one takes all contractible loops instead, $V_{\gamma, \nabla}$ generates the local holonomy, or the restricted holonomy group.

REMARK: A bundle is flat (has vanishing curvature) if and only if its restricted holonomy vanishes.

REMARK: If $\nabla(\varphi)=0$ for some tensor $\varphi \in B^{\otimes i} \otimes\left(B^{*}\right)^{\otimes j}$, the holonomy group preserves φ.

DEFINITION: Holonomy of a Riemannian manifold is holonomy of its Levi-Civita connection.

EXAMPLE: Holonomy of a Riemannian manifold lies in $O\left(T_{x} M,\left.g\right|_{x}\right)=O(n)$.
EXAMPLE: Holonomy of a Kähler manifold lies in $U\left(T_{x} M,\left.g\right|_{x},\left.I\right|_{x}\right)=U(n)$.
REMARK: The holonomy group does not depend on the choice of a point $x \in M$.

Curvature of a connection

Let M be a manifold, B a bundle, $\Lambda^{i} M$ the differential forms, and ∇ : $B \longrightarrow B \otimes \wedge^{1} M$ a connection. We extend ∇ to $B \otimes \wedge^{i} M \xrightarrow{\nabla} B \otimes \wedge^{i+1} M$ in a natural way, using the formula

$$
\nabla(b \otimes \eta)=\nabla(b) \wedge \eta+b \otimes d \eta
$$

and define the curvature Θ_{∇} of ∇ as $\nabla \circ \nabla: B \longrightarrow B \otimes \wedge^{2} M$.
CLAIM: This operator is $C^{\infty} M$-linear.
REMARK: We shall consider Θ_{∇} as an element of $\Lambda^{2} M \otimes$ End B, that is, an End B-valued 2-form.

REMARK: Given vector fields $X, Y \in T M$, the curvature can be written in terms of a connection as follows

$$
\Theta_{\nabla}(b)=\nabla_{X} \nabla_{Y} b-\nabla_{Y} \nabla_{X} B-\nabla_{[X, Y]} b .
$$

CLAIM: Suppose that the structure group of B is reduced to its subgroup G, and let ∇ be a connection which preserves this reduction. This is the same as to say that the connection form takes values in $\Lambda^{1} \otimes \mathfrak{g}(B)$. Then Θ_{∇} lies in $\Lambda^{2} M \otimes \mathfrak{g}(B)$.

The Lasso Iemma

DEFINITION: A lasso is a loop of the following form:

The round part is called a working part of a loop.

REMARK: ("The Lasso Lemma") Let $\left\{U_{i}\right\}$ be a covering of a manifold, and γ a loop. Then any contractible loop γ is a product of several lasso, with working part of each inside some U_{i}.

The Ambrose-Singer theorem
DEFINITION: Let (B, ∇) be a bundle with connection, $\Theta \in \Lambda^{2}(M) \otimes \operatorname{End}(B)$ its curvature, and $a, b \in T_{x} M$ tangent vectors. An endomorphism $\Theta(a, b) \in$ End $\left.(B)\right|_{x}$ is called a curvature element.

THEOREM: (Ambrose-Singer) The restricted holonomy group of B, ∇ at $z \in M$ is a Lie group, with its Lie algebra generated by all curvature elements $\left.\Theta(a, b) \in \operatorname{End}(B)\right|_{x}$ transported to z along all paths.

REMARK: Its proof follows from the Lasso lemma.

Holonomy representation

DEFINITION: Let (M, g) be a Riemannian manifold, G its holonomy group. A holonomy representation is the natural action of G on $T M$.

THEOREM: (de Rham) Suppose that the holonomy representation is not irreducible: $T_{x} M=V_{1} \oplus V_{2}$. Then M locally splits as $M=M_{1} \times M_{2}$, with $V_{1}=T M_{1}, V_{2}=T M_{2}$.

Proof. Step 1: Using the parallel transform, we extend $V_{1} \oplus V_{2}$ to a splitting of vector bundles $T M=B_{1} \oplus B_{2}$, preserved by holonomy.

Step 2: The sub-bundles $B_{1}, B_{2} \subset T M$ are integrable: $\left[B_{1}, B_{1}\right] \subset B_{i}$ (the Levi-Civita connection is torsion-free)

Step 3: Taking the leaves of these integrable distributions, we obtain a local decomposition $M=M_{1} \times M_{2}$, with $V_{1}=T M_{1}, V_{2}=T M_{2}$.

Step 4: Since the splitting $T M=B_{1} \oplus B_{2}$ is preserved by the connection, the leaves M_{1}, M_{2} are totally geodesic.

Step 5: Therefore, locally M splits (as a Riemannian manifold): $M=M_{1} \times M_{2}$, where M_{1}, M_{2} are any leaves of these foliations.

The de Rham splitting theorem

COROLLARY: Let M be a Riemannian manifold, and $\mathcal{H}_{\circ} \mathrm{I}_{0}(M) \xrightarrow{\rho} \operatorname{End}\left(T_{x} M\right)$ a reduced holonomy representation. Suppose that ρ is reducible: $T_{x} M=$ $V_{1} \oplus V_{2} \oplus \ldots \oplus V_{k}$. Then $G=\mathcal{H}_{0} \mathrm{l}_{0}(M)$ also splits: $G=G_{1} \times G_{2} \times \ldots \times G_{k}$, with each G_{i} acting trivially on all V_{j} with $j \neq i$.

Proof: Locally, this statement follows from the local splitting of M proven above. To obtain it globally in M, use the Lasso Lemma.

THEOREM: (de Rham) A complete, simply connected Riemannian manifold with non-irreducible holonomy splits as a Riemannian product.

REMARK: It is easy to find non-complete or non-simply connected counterexamples to de Rham theorem.

THEOREM: (Simons, 1962) Let M be a manifold with irreducible holonomy. Then either M is locally symmetric, or $\not \mathscr{O}(M)$ acts transitively on the unit sphere in $T_{x} M$.

Berger's theorem

THEOREM: (Berger's theorem, 1955) Let G be an irreducible holonomy group of a Riemannian manifold which is not locally symmetric. Then G belongs to the Berger's list:

Berger's list	
Holonomy	Geometry
$S O(n)$ acting on \mathbb{R}^{n}	Riemannian manifolds
$U(n)$ acting on $\mathbb{R}^{2 n}$	Kähler manifolds
$S U(n)$ acting on $\mathbb{R}^{2 n}, n>2$	Calabi-Yau manifolds
$S p(n)$ acting on $\mathbb{R}^{4 n}$	hyperkähler manifolds
$S p(n) \times S p(1) /\{ \pm 1\}$ acting on $\mathbb{R}^{4 n}, n>1$	quaternionic-Kähler manifolds
G_{2} acting on \mathbb{R}^{7}	G_{2}-manifolds
$S p i n(7)$ acting on \mathbb{R}^{8}	$S p i n(7)$-manifolds

REMARK: There is one more group acting transitively on a sphere: $\operatorname{Spin}(9)$ acting on $S^{15} \subset \mathbb{R}^{16}$. In 1968, D. Alekseevsky has shown that a manifold with holonomy $\operatorname{Spin}(9)$ is automatically locally symmetric.

REMARK: A similar list exists for non-orthogonal irreducible holonomy without torsion (Merkulov, Schwachhöfer, 1999).

Chern connection

DEFINITION: Let B be a holomorphic vector bundle on a complex manifold, and $\bar{\partial}: B_{C^{\infty}} \longrightarrow B_{C^{\infty}} \otimes \wedge^{0,1}(M)$ an operator mapping $b \otimes f$ to $b \otimes \bar{\partial} f$, where $b \in B$ is a holomorphic section, and f a smooth function. This operator is called a holomorphic structure operator on B. It is correctly defined, because $\bar{\partial}$ is $\mathcal{O}_{M^{-}}$linear.

REMARK: A section $b \in B$ is holomorphic iff $\bar{\partial}(b)=0$

DEFINITION: let (B, ∇) be a smooth bundle with connection and a holomorphic structure $\bar{\partial}: B \longrightarrow \wedge^{0,1}(M) \otimes B$. Consider the Hodge decomposition of $\nabla, \nabla=\nabla^{0,1}+\nabla^{1,0}$. We say that ∇ is compatible with the holomorphic structure if $\nabla^{0,1}=\bar{\partial}$.

DEFINITION: A Chern connection on a holomorphic Hermitian vector bundle is a connection compatible with the holomorphic structure and preserving the metric.

THEOREM: On any holomorphic Hermitian vector bundle, the Chern connection exists, and is unique.

Calabi-Yau manifolds

DEFINITION:

A Calabi-Yau manifold is a compact Kaehler manifold with $c_{1}(M, \mathbb{Z})=0$.
DEFINITION: Let (M, I, ω) be a Kaehler n-manifold, and $K(M):=\wedge^{n, 0}(M)$ its canonical bundle. We consider $K(M)$ as a holomorphic line bundle, $K(M)=\Omega^{n} M$. The natural Hermitian metric on $K(M)$ is written as

$$
\left(\alpha, \alpha^{\prime}\right) \longrightarrow \frac{\alpha \wedge \bar{\alpha}^{\prime}}{\omega^{n}} .
$$

Denote by Θ_{K} the curvature of the Chern connection on $K(M)$. The Ricci curvature Ric of M is a symmetric 2-form $\operatorname{Ric}(x, y)=\Theta_{K}(x, I y)$.

DEFINITION: A Kähler manifold is called Ricci-flat if its Ricci curvature vanishes.

THEOREM: (Calabi-Yau)
Let (M, I, g) be Calabi-Yau manifold. Then there exists a unique Ricci-flat Kaehler metric in any given Kaehler class.

REMARK: Converse is also true: any Ricci-flat Kähler manifold has a finite covering which is Calabi-Yau.

Bochner's vanishing

THEOREM: (Bochner vanishing theorem) On a compact Ricci-flat CalabiYau manifold, any holomorphic p-form η is parallel with respect to the Levi-Civita connection: $\nabla(\eta)=0$.

DEFINITION: A holomorphic symplectic manifold is a manifold admitting a non-degenerate, holomorphic symplectic form.

REMARK: A holomorphic symplectic manifold is Calabi-Yau. The top exterior power of a holomorphic symplectic form is a non-degenerate section of canonical bundle.

REMARK: Due to Bochner's vanishing, holonomy of Ricci-flat CalabiYau manifold lies in $S U(n)$, and holonomy of Ricci-flat holomorphically symplectic manifold lies in $S p(n)$ (a group of complex unitary matrices preserving a complex-linear symplectic form).

DEFINITION: A holomorphically symplectic Ricci-flat Kaehler manifold is called hyperkähler.

REMARK: Since $S p(n)=S U(\mathbb{H}, n)$, a hyperkähler manifold admits quaternionic action in its tangent bundle.

