
K3 surfaces, lecture 2 M. Verbitsky

K3 surfaces
lecture 2: Hopf theorem

Misha Verbitsky

IMPA, sala 236

August 26, 2022, 15:30

1



K3 surfaces, lecture 2 M. Verbitsky

Graded vector spaces and algebras

DEFINITION: Graded vector space is a space V ∗ =
⊕
i∈Z V

i.

REMARK: If V ∗ is graded, the endomorphism vector space End(V ∗) =⊕
i∈Z Endi(V ∗) is also graded,

Endi(V ∗) =
⊕
j∈Z

Hom(V j, V i+j).

DEFINITION: Graded algebra is an algebra A∗ =
⊕
i∈ZA

i with multiplica-

tion which is compatible with the grading, Ai ·Aj ⊂ Ai+j.

REMARK: Bilinear map of graded vector spaces which satisfies Ai·Bj ⊂ Ci+j,

is called compatible with the grading.

REMARK: Category of graded vector spaces can be defined is equivalent to

the category of representations of U(1); the weight decomposition defines,

and is defined, by an action ρ(t)|An = e2π
√
−1 nt. Then graded algebra is an

associate algebra in the category of vector spaces with U(1)-action.
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Supercommutator

DEFINITION: An operator on a graded vector space is called even (odd),

if it shifts the grading by an even (odd) number. Parity ã of an operator a is

0, if it is even, and 1 otherwise. We say that an operator is pure if it is even

or odd.

DEFINITION: Supercommutator (or graded commutator of pure ele-

ments is defined by the formula {a, b} = ab− (−1)ã̃bba.

DEFINITION: Graded associative algebra A∗ is caled supercommutative,

or graded commutative, if the supercommutator in A∗ vanishes.

EXAMPLE: Grassmann algebra Λ∗V is supercommutative.
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Bialgebras

DEFINITION: A graded commutative, associative algebra A over a field k is

called a graded bialgebra if A is equipped with a morphism of graded algebras

A
∆−→ A⊗k A (”the compultiplication”), which satisfies the associativity

condition: ∆ ⊗ IdA ◦∆ = IdA⊗∆ ◦ ∆ : A−→A ⊗k A ⊗k A. Counit of a

bialgebra is a k-algebra homomorphism A
ε−→ k which satisfies ∆◦(ε⊗ IdA) =

∆ ◦ (IdA⊗ε) = IdA.

REMARK: Further on, all bialgebras are assumed to be with unit.

REMARK: Coassoacitivity plus existence of a couniut means that the dual

space A∗ is a graded algebra. This coalgebra structure is compatible with

multiplication in A means that the algebra structure in A∗ is a morphism

of A-modules.
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Examples of bialgebras

EXAMPLE: Let N be a set equipped with an associative, commutative op-

eration N ×N m−→ N (such a structure is called the structure of a commu-

tative, associative monoid). Then the ring of k-valued functions C(N)

is a bialgebra, m∗C(N)−→ C(N ×N) = C(N)⊗k C(N). Its is not graded.

REMARK: The notion of a bialgebra is an abstract version of this notion,

heuristically, bialgebras are function algebras on monoids.

EXAMPLE: Let N be a connected topological space equipped with a contin-

uous map N×N m−→ N , defining on N a structure of commutative, associative

monoid. Consider the comultiplication on its cohomology algebra H∗(N), de-

fined by the map m∗ : H∗(N)−→H∗(N × N) = H∗(N) ⊗k H∗(N). Then

H∗(N) is a graded bialgebra (check this).
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Hopf algebras

DEFINITION: A bialgebra is called a Hopf algebra if it is equipped with a
homomorphism A

S−→ A (”the antipode map”), and the following diagram
is commutative:

A⊗A S⊗Id //A⊗A
mult

##
A

∆
;;

∆ ##

ε //k 1 //A

A⊗A
Id⊗S

//A⊗A
mult

;;

REMARK: The antipode condition is self-dual: if A is a Hopf algebra, the
dual space A∗ is also a Hopf algebra, multiplication goes to comultiplication.

EXAMPLE: Let N be a group, and C(N) the space of functions on N

equipped with the bialgebra structure Then the map n−→ n−1 defines an
antipode structure on C(N). We obtain that the algebra C(N) of functions
on a group is a Hopf algebra (check this).

EXAMPLE: Let G be a topological group, and H∗(G) its cohomology al-

gebra. Consider the map H∗(G)
S−→ H∗(G), induced by x−→ x−1. Then

H∗(G) is a Hopf algebra (check this).
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H-groups

DEFINITION: An H-group is a topological space M , equipped with a map

M×M µ−→ M , (”multiplication map”), and a point e ∈M (“the homotopy

unit”) such that the restriction of µ to M × {e} is homotopy equivalent to

identity, and and a map M
η−→ M (”homotopy inverse map”), which

satisfies the group axiom up to homotopy:

* Homotopy associativity: a the maps µ× Id ◦µ and Id×µ ◦µ are homotopy

equivalent as maps M ×M ×M 7→M ,

* the homotopy inverse: the compositions of diag ◦(η×Id)◦µ and diag ◦(Id×η)◦
µ are homotopy to a map M 7→ pt to a point.

EXAMPLE: Check that the loop space Ω(X,x) is an H-group.

CLAIM: Let M be an H-group. Then the cohomology algebra H∗(M,k) is a

graded Hopf algebra.
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Structure theorem for Hopf algebras

Let V • be a graded vector space, and Symgr(V ) the tensor product Sym∗(V even)⊗
Λ∗(V odd) with a natural grading. The space Symgr(V ) is equipped with a

structure of graded commutatiove algebra.

DEFINITION: Free commutative algebra generated by V is Sym∗(V ) (the

polynomial algebra). Free graded commutative algebra is Symgr(V •),

where V • is a graded vector space.

DEFINITION: Graded algebra of finite type is algebra, graded by i > 0,

with all graded components finite-dimensional.

Hopf theorem: Let A be a graded Hopf algebra of finite type over a field k

of characteristic 0. Then A is a free graded commutative algebra.
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Primitive elements in bialgebras

DEFINITION: An element x of a bialgebra is called primitive, if ∆(x) =

x⊗ 1 + 1⊗ x.

First, we prove Hopf theorem for Hopf algebras gnerated by primitives.

DEFINITION: Let A be a Hopf algebra, and P ⊂ A the space of primitive

elements. Consider the natural multiplicative homomorphism Symgr(P )
ψ−→

A. We say that A is free in degrees up to k, if
⊕i6k Symi

gr(P )
ψ−→ A is

injective

REMARK: The following lemma immediately implies Hopf theorem for

any algebra generated by primitives.

LEMMA 1: Let A be a Hopf algebra which is free up to degree k. k. Then

A is free up to degree k + 1.
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Structure theorem for Hopf algebras generated by primitives

LEMMA 1: Let A be a Hopf algebra which is free up to degree k. k. Then

A is free up to degree k + 1.

Proof. Step 1: Let {xi} be a basis in the space P of primitive elements.

Consider a polynomial relation of degree k+ 1. Q(x1, ..., xn) = 0. We write Q

as a polynomial in x1 with coefficients in x2, ..., xn: Q = Qmxm1 +Qm−1x
m−1
1 +

...+Q0. Since ψ :
⊕i6k Symi

gr(P )
ψ−→ A is injective, we have

∆(Q) = Q⊗ 1 + 1⊗Q+R,

where R ∈ A :=
(⊕i6k Symi

gr(P )
)
⊗
(⊕i6k Symi

gr(P )
)
. Note that the natural

map A→ A⊗A is injective, because A is free in degrees 6 k.

Step 2: Every element of A can be represented as a sum of monomials λ⊗µ,

where λ, µ are monomials in xi. Ley Π : A−→ x1 ⊗
(⊕i6k Symi

gr(P )
)

be the

projection to the sum of all monomials x1⊗ µ. Since ∆(xi) = xi⊗ 1 + 1⊗ xi,
we have ∆(xm1 ) = (x1 ⊗ 1 + 1⊗ x1)m, giving Π(∆(xm1 )) = mx1 ⊗ xm−1

1 .

10



K3 surfaces, lecture 2 M. Verbitsky

Structure theorem for Hopf algebras generated by primitives (2)

Step 3: Let Π(R) = x1 ⊗R0. Since Q = 0 in A, its component R0 vanishes.

By Step 2,

0 = x1 ⊗R0 =
m∑
i=1

mxm−1
1 Qm

where Qi are polynomials defined in Step 1. Therefore, all Qi = 0.

REMARK: In step 3 we use char k = 0.
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Proof of Hopf theorem

DEFINITION: Augmentation ideal Z in Hopf algebra is the kernel of the

counit map ε : A−→ k.

REMARK: The counit condition gives x = [ε⊗IdA](∆(x)) and x = [IdA⊗ε](∆(x)),

hence

∆(x) = 1⊗ x+ x⊗ 1 mod (Z ⊗ Z)

Proof of Hopf theorem. Step 1: Consider a filtration of A by the powers

Zi of the augmentation ideal Z, and let Agr :=
⊕
iZ

i/Zi+1 be the associated

graded algebra. By the remark above, we have ∆(Zp) ⊂
⊕
i+j=pZ

i ⊗ Zj.

Step 2: This implies that all operations, used in the definition of Hopf algebra,

are compatiblle with the filtration defined by the powers of Z (check this).

Therefore, Agr is also a Hopf algebra.

Step 3: The algebra Agr is multiplicatively generated by Z1/Z2 (this is

a general properties of algebras filtered by degrees of an ideal).
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Proof of Hopf theorem (2)

Step 4: Since ∆(x) = 1⊗ x+ x⊗ 1 mod (Z ⊗ Z), all elements of Z1/Z2 are

primitive in Agr. By Step 3, Agr is generated by primitive elements.

Step 5: By Lemma 1, Agr is freely generated by {xi}, where xi is a basis in

the space of primitive elements in Agr. Choose for each xi a representative

x̃i in A of the same parity. Since there are no non-trivial relations between xi
inAgr, there are no non-trivial relations between x̃i in A. It remains to

show that x̃i generate A.

Step 6: The dimensions of the graded spaces Ap and A
p
gr are equal here

we speak of the grading which was initially defined on A, and the

grading on Agr induced from the grading on A). Let {yi} be a collection

of monomials in the free graded algebra Agr, generating a given component

A
p
gr, and {ỹi} – the corresponding elements in Ap. Then {yi} is a basis Apgr,

and {ỹi} linearly independent elements of the space Ap of the same dimension.

Therefore, the monomials {ỹi} generate Ap.
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Applications of Hopf theorem

COROLLARY: The algebra H∗(G,Q) of cohomology of a Lie group is iso-

morphic to a Grassmann algebra.

COROLLARY: The algebra H∗(ΩM,Q) of cohomology of the space of loops

of a finite cell space M is a free supercommutative algebra.

REMARK: The proof of the structure theorem never uses the antipode

axiom. Therefore, Hopf theorem is true for any bialgebra of finite type,

in particular, for the cohomology algebra of any space with homotopy

associative multiplication and a homotopy unit.
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Cohomology algebra of U(n)

CLAIM: The cohomology algebra of H∗(U(n),Q) – is a free graded com-

mutative algebra with generators in degrees 1,3,5, ...,2n− 1.

Proof. Step 1: Since U(n) is a Lie group, its cohomology is a Hopf algebra.

Therefore, H∗(U(n−1)) is a free graded commutative algebra with gen-

erators in odd degrees. Using induction, we can assume that H∗(U(n−1))

– is a free algebra with generators in degrees 1,3,5, ...,2n− 3.

Step 2: The group U(n) is fibered over S2n−1 with fiber U(n−1), and the form

ξ2n−1 ∈ H∗(U(n)), generated by a pullback of the volume form on a sphere

is closed. Since ξ2n−1 vanishes on vectors tangent to U(n− 1), there are no

relations between ξ2n−1 and elements of H∗(U(n− 1)). Therefore, H∗(U(n))

contains a free algebra A∗, generated by H∗(U(n− 1)) and ξ2n−1. Writing a

cell decomposition associated with the fibration U(n)
U(n−1)−→ S2n−1, we show

that the dimension of A∗ is dimH∗(U(n)), which gives A∗ = H∗(U(n)).
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