K3 surfaces

lecture 2: Hopf theorem

Misha Verbitsky

IMPA, sala 236

August 26, 2022, 15:30

M. Verbitsky

Graded vector spaces and algebras

DEFINITION: Graded vector space is a space $V^* = \bigoplus_{i \in \mathbb{Z}} V^i$.

REMARK: If V^* is graded, the endomorphism vector space $End(V^*) = \bigoplus_{i \in \mathbb{Z}} End^i(V^*)$ is also graded,

$$\operatorname{End}^{i}(V^{*}) = \bigoplus_{j \in \mathbb{Z}} \operatorname{Hom}(V^{j}, V^{i+j}).$$

DEFINITION: Graded algebra is an algebra $A^* = \bigoplus_{i \in \mathbb{Z}} A^i$ with multiplication which is compatible with the grading, $A^i \cdot A^j \subset A^{i+j}$.

REMARK: Bilinear map of graded vector spaces which satisfies $A^i \cdot B^j \subset C^{i+j}$, is called **compatible with the grading**.

REMARK: Category of graded vector spaces can be defined is equivalent to the category of representations of U(1); the weight decomposition defines, and is defined, by an action $\rho(t)|_{A^n} = e^{2\pi\sqrt{-1} nt}$. Then graded algebra is an associate algebra in the category of vector spaces with U(1)-action.

Supercommutator

DEFINITION: An operator on a graded vector space is called **even** (odd), if it shifts the grading by an even (odd) number. **Parity** \tilde{a} of an operator *a* is 0, if it is even, and 1 otherwise. We say that an operator is **pure** if it is even or odd.

DEFINITION: Supercommutator (or graded commutator of pure elements is defined by the formula $\{a, b\} = ab - (-1)^{\tilde{a}\tilde{b}}ba$.

DEFINITION: Graded associative algebra A^* is called **supercommutative**, or **graded commutative**, if the supercommutator in A^* vanishes.

EXAMPLE: Grassmann algebra Λ^*V is supercommutative.

Bialgebras

DEFINITION: A graded commutative, associative algebra A over a field k is called a graded bialgebra if A is equipped with a morphism of graded algebras $A \xrightarrow{\Delta} A \otimes_k A$ ("the compultiplication"), which satisfies the associativity condition: $\Delta \otimes \operatorname{Id}_A \circ \Delta = \operatorname{Id}_A \otimes \Delta \circ \Delta : A \longrightarrow A \otimes_k A \otimes_k A$. Counit of a bialgebra is a k-algebra homomorphism $A \xrightarrow{\varepsilon} k$ which satisfies $\Delta \circ (\varepsilon \otimes \operatorname{Id}_A) = \Delta \circ (\operatorname{Id}_A \otimes \varepsilon) = \operatorname{Id}_A$.

REMARK: Further on, all bialgebras are assumed to be with unit.

REMARK: Coassoacitivity plus existence of a couniut means **that the dual space** A^* **is a graded algebra.** This coalgebra structure is compatible with multiplication in A means that **the algebra structure in** A^* **is a morphism of** A-modules.

Examples of bialgebras

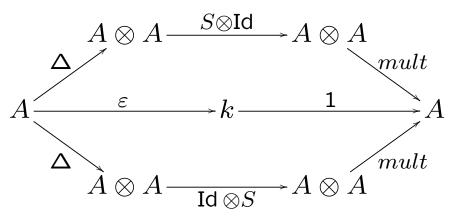
EXAMPLE: Let N be a set equipped with an associative, commutative operation $N \times N \xrightarrow{m} N$ (such a structure is called **the structure of a commutative, associative monoid**). Then **the ring of** k-valued functions C(N) is a bialgebra, $m^*C(N) \longrightarrow C(N \times N) = C(N) \otimes_k C(N)$. Its is not graded.

REMARK: The notion of a bialgebra is an abstract version of this notion, heuristically, **bialgebras are function algebras on monoids**.

EXAMPLE: Let N be a connected topological space equipped with a continuous map $N \times N \xrightarrow{m} N$, defining on N a structure of commutative, associative monoid. Consider the comultiplication on its cohomology algebra $H^*(N)$, defined by the map m^* : $H^*(N) \longrightarrow H^*(N \times N) = H^*(N) \otimes_k H^*(N)$. Then $H^*(N)$ is a graded bialgebra (check this).

Hopf algebras

DEFINITION: A bialgebra is called a Hopf algebra if it is equipped with a homomorphism $A \xrightarrow{S} A$ ("the antipode map"), and the following diagram is commutative:



REMARK: The antipode condition is self-dual: if A is a Hopf algebra, the dual space A^* is also a Hopf algebra, multiplication goes to comultiplication.

EXAMPLE: Let N be a group, and C(N) the space of functions on N equipped with the bialgebra structure Then the map $n \longrightarrow n^{-1}$ defines an antipode structure on C(N). We obtain that **the algebra** C(N) of functions on a group is a Hopf algebra (check this).

EXAMPLE: Let G be a topological group, and $H^*(G)$ its cohomology algebra. Consider the map $H^*(G) \xrightarrow{S} H^*(G)$, induced by $x \longrightarrow x^{-1}$. Then $H^*(G)$ is a Hopf algebra (check this).

H-groups

DEFINITION: An *H*-group is a topological space *M*, equipped with a map $M \times M \xrightarrow{\mu} M$, ("multiplication map"), and a point $e \in M$ ("the homotopy unit") such that the restriction of μ to $M \times \{e\}$ is homotopy equivalent to identity, and and a map $M \xrightarrow{\eta} M$ ("homotopy inverse map"), which satisfies the group axiom up to homotopy:

* Homotopy associativity: a the maps $\mu \times \text{Id} \circ \mu$ and $\text{Id} \times \mu \circ \mu$ are homotopy equivalent as maps $M \times M \times M \mapsto M$,

* the homotopy inverse: the compositions of diag $\circ(\eta \times Id) \circ \mu$ and diag $\circ(Id \times \eta) \circ \mu$ are homotopy to a map $M \mapsto pt$ to a point.

EXAMPLE: Check that the loop space $\Omega(X, x)$ is an *H*-group.

CLAIM: Let *M* be an *H*-group. Then the cohomology algebra $H^*(M, k)$ is a graded Hopf algebra.

Structure theorem for Hopf algebras

Let V^{\bullet} be a graded vector space, and $\operatorname{Sym}_{gr}(V)$ the tensor product $\operatorname{Sym}^*(V^{\operatorname{even}}) \otimes \Lambda^*(V^{\operatorname{odd}})$ with a natural grading. The space $\operatorname{Sym}_{gr}(V)$ is equipped with a structure of graded commutatiove algebra.

DEFINITION: Free commutative algebra generated by V is Sym^{*}(V) (the polynomial algebra). Free graded commutative algebra is $Sym_{gr}(V^{\bullet})$, where V^{\bullet} is a graded vector space.

DEFINITION: Graded algebra of finite type is algebra, graded by $i \ge 0$, with all graded components finite-dimensional.

Hopf theorem: Let A be a graded Hopf algebra of finite type over a field k of characteristic 0. Then A is a free graded commutative algebra.

Primitive elements in bialgebras

DEFINITION: An element x of a bialgebra is called **primitive**, if $\Delta(x) = x \otimes 1 + 1 \otimes x$.

First, we prove Hopf theorem for Hopf algebras gnerated by primitives.

DEFINITION: Let A be a Hopf algebra, and $P \subset A$ the space of primitive elements. Consider the natural multiplicative homomorphism $\operatorname{Sym}_{gr}(P) \xrightarrow{\psi} A$. We say that A is free in degrees up to k, if $\bigoplus^{i \leq k} \operatorname{Sym}_{gr}^{i}(P) \xrightarrow{\psi} A$ is injective

REMARK: The following lemma immediately implies Hopf theorem for any algebra generated by primitives.

LEMMA 1: Let A be a Hopf algebra which is free up to degree k. k. Then A is free up to degree k + 1.

Structure theorem for Hopf algebras generated by primitives

LEMMA 1: Let A be a Hopf algebra which is free up to degree k. k. Then A is free up to degree k + 1.

Proof. Step 1: Let $\{x_i\}$ be a basis in the space P of primitive elements. Consider a polynomial relation of degree k + 1. $Q(x_1, ..., x_n) = 0$. We write Q as a polynomial in x_1 with coefficients in $x_2, ..., x_n$: $Q = Q_m x_1^m + Q_{m-1} x_1^{m-1} + ... + Q_0$. Since $\psi : \bigoplus^{i \leq k} \operatorname{Sym}_{gr}^i(P) \xrightarrow{\psi} A$ is injective, we have

 $\Delta(Q) = Q \otimes 1 + 1 \otimes Q + R,$

where $R \in \mathfrak{A} := \left(\bigoplus^{i \leq k} \operatorname{Sym}_{gr}^{i}(P) \right) \otimes \left(\bigoplus^{i \leq k} \operatorname{Sym}_{gr}^{i}(P) \right)$. Note that the natural map $\mathfrak{A} \to A \otimes A$ is injective, because A is free in degrees $\leq k$.

Step 2: Every element of \mathfrak{A} can be represented as a sum of monomials $\lambda \otimes \mu$, where λ, μ are monomials in x_i . Ley $\Pi : \mathfrak{A} \longrightarrow x_1 \otimes \left(\bigoplus^{i \leq k} \operatorname{Sym}_{gr}^i(P) \right)$ be the projection to the sum of all monomials $x_1 \otimes \mu$. Since $\Delta(x_i) = x_i \otimes 1 + 1 \otimes x_i$, we have $\Delta(x_1^m) = (x_1 \otimes 1 + 1 \otimes x_1)^m$, **giving** $\Pi(\Delta(x_1^m)) = mx_1 \otimes x_1^{m-1}$.

M. Verbitsky

Structure theorem for Hopf algebras generated by primitives (2)

Step 3: Let $\Pi(R) = x_1 \otimes R_0$. Since Q = 0 in A, its component R_0 vanishes. **By Step 2,**

$$0 = x_1 \otimes R_0 = \sum_{i=1}^m m x_1^{m-1} Q_m$$

where Q_i are polynomials defined in Step 1. Therefore, all $Q_i = 0$.

REMARK: In step 3 we use char k = 0.

Proof of Hopf theorem

DEFINITION: Augmentation ideal Z in Hopf algebra is the kernel of the counit map $\varepsilon : A \longrightarrow k$.

REMARK: The counit condition gives $x = [\varepsilon \otimes Id_A](\Delta(x))$ and $x = [Id_A \otimes \varepsilon](\Delta(x))$, hence

$$\Delta(x) = 1 \otimes x + x \otimes 1 \mod (Z \otimes Z)$$

Proof of Hopf theorem. Step 1: Consider a filtration of A by the powers Z^i of the augmentation ideal Z, and let $A_{gr} := \bigoplus_i Z^i/Z^{i+1}$ be the associated graded algebra. By the remark above, we have $\Delta(Z^p) \subset \bigoplus_{i+j=p} Z^i \otimes Z^j$.

Step 2: This implies that all operations, used in the definition of Hopf algebra, are compatible with the filtration defined by the powers of Z (check this). Therefore, A_{gr} is also a Hopf algebra.

Step 3: The algebra A_{gr} is multiplicatively generated by Z^1/Z^2 (this is a general properties of algebras filtered by degrees of an ideal).

Proof of Hopf theorem (2)

Step 4: Since $\Delta(x) = 1 \otimes x + x \otimes 1 \mod (Z \otimes Z)$, all elements of Z^1/Z^2 are primitive in A_{gr} . By Step 3, A_{gr} is generated by primitive elements.

Step 5: By Lemma 1, A_{gr} is freely generated by $\{x_i\}$, where x_i is a basis in the space of primitive elements in A_{gr} . Choose for each x_i a representative \tilde{x}_i in A of the same parity. Since there are no non-trivial relations between x_i in A_{gr} , there are no non-trivial relations between \tilde{x}_i in A. It remains to show that \tilde{x}_i generate A.

Step 6: The dimensions of the graded spaces A^p and A_{gr}^p are equal here we speak of the grading which was initially defined on A, and the grading on A_{gr} induced from the grading on A). Let $\{y_i\}$ be a collection of monomials in the free graded algebra A_{gr} , generating a given component A_{gr}^p , and $\{\tilde{y}_i\}$ – the corresponding elements in A^p . Then $\{y_i\}$ is a basis A_{gr}^p , and $\{\tilde{y}_i\}$ linearly independent elements of the space A^p of the same dimension. Therefore, the monomials $\{\tilde{y}_i\}$ generate A^p .

Applications of Hopf theorem

COROLLARY: The algebra $H^*(G, \mathbb{Q})$ of cohomology of a Lie group is isomorphic to a Grassmann algebra.

COROLLARY: The algebra $H^*(\Omega M, \mathbb{Q})$ of cohomology of the space of loops of a finite cell space M is a free supercommutative algebra.

REMARK: The proof of the structure theorem **never uses the antipode axiom.** Therefore, **Hopf theorem is true for any bialgebra of finite type**, in particular, **for the cohomology algebra of any space with homotopy associative multiplication and a homotopy unit**.

Cohomology algebra of U(n)

CLAIM: The cohomology algebra of $H^*(U(n), \mathbb{Q})$ – is a free graded commutative algebra with generators in degrees 1, 3, 5, ..., 2n - 1.

Proof. Step 1: Since U(n) is a Lie group, its cohomology is a Hopf algebra. Therefore, $H^*(U(n-1))$ is a free graded commutative algebra with generators in odd degrees. Using induction, we can assume that $H^*(U(n-1))$ – is a free algebra with generators in degrees 1, 3, 5, ..., 2n - 3.

Step 2: The group U(n) is fibered over S^{2n-1} with fiber U(n-1), and the form $\xi_{2n-1} \in H^*(U(n))$, generated by a pullback of the volume form on a sphere is closed. Since ξ_{2n-1} vanishes on vectors tangent to U(n-1), there are no relations between ξ_{2n-1} and elements of $H^*(U(n-1))$. Therefore, $H^*(U(n))$ contains a free algebra A^* , generated by $H^*(U(n-1))$ and ξ_{2n-1} . Writing a cell decomposition associated with the fibration $U(n) \xrightarrow{U(n-1)} S^{2n-1}$, we show that the dimension of A^* is dim $H^*(U(n))$, which gives $A^* = H^*(U(n))$.