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Topology of 4-manifolds

REMARK: Topologically, there are 3 interesting classes of manifolds: smooth

manifolds, PL manifolds (that is, manifolds with triangulation) and smooth

manifolds. Any two diffeomorphic smooth manifolds are PL-equivalent, but

PL-manifolds might have non-equivalent smooth structures. There are PL-

manifolds not admitting smooth structures as well. Any topological manifold

might have non-equivalent PL-structures; there are also topological mani-

folds admitting no PL (and hence, no smooth) structures. This hierarchy is

well understood outside of dimension 4. In dimension 4 it is not well under-

stood, but we know that even R4 has uncountable number of pairwise

non-equivalent smooth structures (Donaldson).

Topological 4-manifolds are well understood, due to M. Freedman (Freedman

got the Fields medal for this work). Then Donaldson has shown that the

topology of smooth manifolds is much more complicated (and still myste-

rious). He also got Fields medal for this. The idea is that the classification

of smooth structures is closer to algebraic and symplectic geometry than

to the topology.

I will explain these results as far as they can be applied to K3 surfaces.
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The intersection form

DEFINITION: Let V be Zn, considered as a Z-module. A bilinear symmetric
form η : V ⊗Z V −→ Z is called unimodular if it defines an isomorphism
V → HomZ(V,Z), even if η(x, x) is even for all x ∈ V , and odd otherwise.
Signature of η is signature of the corresponding bilinear form on the vector
space Rn = V ⊗Z R.

THEOREM: (Universal coefficients formula)
Let X be a cellular topological space, bi(X) its Betti numbers, and Ti the
torsion subgroup in Hi(X,Z). Then Hn(X,Z) = Zbn(X) ⊕ Tn−1(X).

COROLLARY: Let X be a simply connected cellular space (a manifold or
a variety). Then H2(X,Z) is torsion-free.

DEFINITION: Let M be a 4-manifold. Intersection form of M is the form
x, y 7→

∫
M x ∩ y on the torsion-free part of H2(M,Z). Signature of M is the

signature of this bilinear symmetric form.

REMARK: By Poincaré duality, the intersection form is unimodular.

THEOREM: (Rokhlin, Wu)
Let M be a smooth, simply connected 4-manifold with even intersection form.
Then its signature is divisible by 16.
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Topology of 4-manifolds and Freedman’s theorem

THEOREM: (M. Freedman, 1982) The homotopy class of a compact,

simply connected 4-manifold M is uniquely determined by its intersec-

tion form H2(M,Z) ⊗Z H2(M,Z)−→ Z. Moreover, such M exists for any

unimodular form. For even intersection forms, homotopy equivalence is

equivalent to homeomorphism. For odd intersection forms, there exists ex-

actly two topological manifolds with a given homotopy type. One of them

has vanishing Kirbi-Siebenmann class (this class vanishes if and only if M ×R
admits PL-structure), for another this class is non-zero.

For smooth manifolds, the situation is entirely different.

THEOREM: (Donaldson, 1986) Let M be a smooth compact manifold

with odd, positive definite intersection form η. Then η admits a diagonal-

ization, that is, for some integer basis xi ∈ H2(M,Z)∗, one has η =
∑

xi ⊗ xi.
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Odd and even unimodular quadratic forms

REMARK: Generally speaking, a positive definite unimodular form, even or

odd, cannot be diagonalized, hence Donaldson’s theorem is very restric-

tive.

EXAMPLE: Clearly, an even form cannot be diagonalized. This includes,

for example, the form ηZ/2 :=

(
2 3
3 4

)
, which is clearly unimodular, because

its determinant is −1.

REMARK: The number of isomorphism classes of positive definite unimod-

ular lattices (odd and even) grows very fast. The sequence A054911

from OEIS (number of n-dimensional odd unimodular lattices): 1, 1, 1, 1,

1, 1, 1, 1, 2, 2, 2, 3, 3, 4, 5, 6, 9, 13, 16, 28, 40, 68, 117, 273, 665,

2566, 17059, 374062. The sequence A054909 from OEIS: (number of

8n-dimensional odd unimodular lattices): 1, 2, 24, ⩾ 1162109024.
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Classification of indefinite bilinear symmetric forms.

DEFINITION: A bilinear symmetric form η is called indefinite, if η(x, x) < 0

and η(y, y) > 0 for some x and y.

THEOREM: (classification of unimodular bilinear symmetric forms)

* Let q be an odd unimodular indefinite form. Then q is diagonal: q =∑
±xi ⊗ xi.

* Let q be an even unimodular indefinite form. Then (V, q) can be rep-

resented as a direct sum of quadratic lattices (that is, Z-modules with

bilinear forms)

(
0 1
1 0

)
, and quadratic lattices E±8,. The bilinear form E8 is

isomorphic to the intersection form of the Cartan algebra of the special Lie

group E8: 
2 −1 0 0 0 0 0 0
−1 2 −1 0 0 0 0 0
0 −1 2 −1 0 0 0 −1
0 0 −1 2 −1 0 0 0
0 0 0 −1 2 −1 0 0
0 0 0 0 −1 2 −1 0
0 0 0 0 0 −1 2 0
0 0 −1 0 0 0 0 2

 ,

and −E8 is the same form with the opposite sign.
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4-dimensional manifolds as connected sums

DEFINITION: Connected sum M1#M2 of manifolds M1 and M2 of the

same dimension is constructed as follows. We remove a ball from M1 and

from M2, and glue the corresponding spherical boundary components of these

manifolds.

CLAIM: Let M1,M2 be manifolds with the intersection form q1, q2. Then

for all 0 < i < dimM we have Hi(M1#M2) = Hi(M1) ⊕ Hi(M2), and the

intersection form on M1#M2 is equal to q1 ⊕ q2.

REMARK: Donaldson and Freedman’s theorem imply that any smooth 4-

manifold with odd intersection form is homeomorphic to a connected

sum of several copies of CP2 (the intersection form on CP2 is diagonal

with signature 1), and several copies of the manifold CP2, obtained

from CP2 by the change of orientation (the intersection form is diagonal with

signature -1).
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4-dimensional manifolds with even intersection form

DEFINITION: E8-manifold is a simply connected 4-manifold with the in-

tersection form E8. By Rokhlin’s theorem, E8-manifold does not admit a

smooth structure (its signature is not divisible by 16). The E8-manifold

with opposite orientation is called the −E8-manifold.

REMARK: From the classification of even unimodular forms and Freed-

man’s theorem it follows immediately that every 4-manifold with even,

indefinite intersection form is homeomorphic to a connected sum of

several copies of E8-manifolds, −E8-manifolds, and §2 × S2.

DEFINITION: A topological 4-manifold if K3 type can be defined as a

connected sum of two −E8-manifolds and three S2×S2. It admits a smooth

structure (an infinite countable number of smooth structures, in fact).

REMARK: It is still not entirely clear when a manifold of form ±Ek
8#(S2×

S2)l admits a smooth structure.

THEOREM: (Furuta) If E2k
8 #(S2 × S2)l admits a smooth structure, then

l > 2k.
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Complex manifolds (reminder)

DEFINITION: Let M be a smooth manifold. An almost complex structure
is an operator I : TM −→ TM which satisfies I2 = − IdTM .

The eigenvalues of this operator are ±
√
−1. The corresponding eigenvalue

decomposition is denoted TM = T0,1M ⊕ T1,0(M).

DEFINITION: An almost complex structure is integrable if ∀X,Y ∈ T1,0M ,
one has [X,Y ] ∈ T1,0M . In this case I is called a complex structure op-
erator. A manifold with an integrable almost complex structure is called a
complex manifold.

THEOREM: (Newlander-Nirenberg)
This definition is equivalent to the usual one.

REMARK: The commutator defines a C∞M-linear map
N := Λ2(T1,0)−→ T0,1M , called the Nijenhuis tensor of I. One can rep-
resent N as a section of Λ2,0(M)⊗ T0,1M.

Exercise: Prove that CPn is a complex manifold, in the sense of the above
definition.
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Kähler manifolds (reminder)

DEFINITION: An Riemannian metric g on an almost complex manifiold M

is called Hermitian if g(Ix, Iy) = g(x, y). In this case, g(x, Iy) = g(Ix, I2y) =

−g(y, Ix), hence ω(x, y) := g(x, Iy) is skew-symmetric.

DEFINITION: The differential form ω ∈ Λ1,1(M) is called the Hermitian

form of (M, I, g).

REMARK: It is U(1)-invariant, hence of Hodge type (1,1).

DEFINITION: A complex Hermitian manifold (M, I, ω) is called Kähler if

dω = 0. The cohomology class [ω] ∈ H2(M) of a form ω is called the Kähler

class of M , and ω the Kähler form.
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Calabi-Yau manifolds

REMARK: Let B be a line bundle on a manifold. Using the long exact

sequence of cohomology associated with the exponential sequence

0−→ ZM −→ C∞M −→ (C∞M)∗ −→ 0,

we obtain a short exact sequence 0 → H1(M, (C∞M)∗)
ξ→ H2(M,Z) → 0,

hence every bundle B is uniquely determined by the cohomology class

ξB ∈ H2(M,Z).

DEFINITION: Let B be a complex line bundle, and ξB its defining element

in H1(M, (C∞M)∗) = H2(M,Z). Its image in H2(M,Z) is called the first

Chern class of B.

REMARK: A complex line bundle B is topologically trivial ⇔ c1(B) = 0.

DEFINITION: The first Chern class of a complex n-manifold is c1(Λ
n,0(M)).

DEFINITION:

A Calabi-Yau manifold is a compact Kaehler manifold with c1(M,Z) = 0.
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K3 surfaces

DEFINITION: A complex surface is a compact, complex manifold of com-

plex dimension 2.

DEFINITION: A K3 surface is a Kähler complex surface M with b1 = 0

and c1(M,Z) = 0.

REMARK: All surfaces with b1 even are Kähler (Kodaira, Buchdahl-

Lamari).

The name K3 is given by Andre Weil in honor of Kummer, Kähler and Kodaira.
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The Broad Peak

“Faichan Kangri (K3) is the 12th highest mountain on Earth.”
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Chez les Weil. André et Simone

André Weil: 6 May 1906 - 6 August 1998.

“Simone et André à Penthiévre, 1918-1919”
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Erich Kähler

(Erich Kähler: 1990)

16 January 1906 - 31 May 2000
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Ernst Eduard Kummer

Ernst Kummer: 29 January 1810 - 14 May 1893
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Kunihiko Kodaira

(Kunihiko and Seiko Kodaira)

Kunihiko Kodaira: 16 March 1915 - 26 July 1997
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Properties of K3 surfaces

CLAIM: Let M be a K3 surface, and KM := Λ2(Ω1M) be its canonical
bundle. Then KM is trivial as a holomorphic vector bundle.

Proof: Since b1 = 0 and M is Kähler, we have h0,1 = H1(OM) = 0. Then the
exponential exact sequence H1(M,OM)−→H1(M,O∗

M)
c1−→ H2(M,Z) implies

that KM is trivial (its Chern class vanishes).

REMARK: Let χ(M) =
∑

i(−1)i dimHi(M,OM) be the holomorphic Euler

characteristic. Riemann-Roch formula for surfaces gives χ(M) =
c21+c2
12 .

Applying this to K3 and using H1(OM) = 0 and H2(OM) = H0(KM)∗ = C
(Serre’s duality), we obtain that χ(OM) = 2. Since c1(M) = 0, this implies
χ(M) = 2 = c2(M)

12 , giving c2(M) = 24. Since c2(M) is the Euler characteristic
of M , we obtain b2(M) = 22.

This gives the Hodge diamond for a K3 surface:

1
0 0

1 20 1
0 0

1
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