K3 surfaces

lecture 3: topology of complex surfaces

Misha Verbitsky

IMPA, sala 236
September 5, 2022, 15:30

Topology of 4-manifolds

REMARK: Topologically, there are 3 interesting classes of manifolds: smooth manifolds, PL manifolds (that is, manifolds with triangulation) and smooth manifolds. Any two diffeomorphic smooth manifolds are PL-equivalent, but PL-manifolds might have non-equivalent smooth structures. There are PLmanifolds not admitting smooth structures as well. Any topological manifold might have non-equivalent PL-structures; there are also topological manifolds admitting no PL (and hence, no smooth) structures. This hierarchy is well understood outside of dimension 4. In dimension 4 it is not well understood, but we know that even \mathbb{R}^{4} has uncountable number of pairwise non-equivalent smooth structures (Donaldson).

Topological 4-manifolds are well understood, due to M. Freedman (Freedman got the Fields medal for this work). Then Donaldson has shown that the topology of smooth manifolds is much more complicated (and still mysterious). He also got Fields medal for this. The idea is that the classification of smooth structures is closer to algebraic and symplectic geometry than to the topology.

I will explain these results as far as they can be applied to K3 surfaces.

The intersection form
DEFINITION: Let V be \mathbb{Z}^{n}, considered as a \mathbb{Z}-module. A bilinear symmetric form $\eta: V \otimes_{\mathbb{Z}} V \longrightarrow \mathbb{Z}$ is called unimodular if it defines an isomorphism $V \rightarrow \operatorname{Hom}_{\mathbb{Z}}(V, \mathbb{Z})$, even if $\eta(x, x)$ is even for all $x \in V$, and odd otherwise. Signature of η is signature of the corresponding bilinear form on the vector space $R^{n}=V \otimes_{\mathbb{Z}} \mathbb{R}$.

THEOREM: (Universal coefficients formula)
Let X be a cellular topological space, $b_{i}(X)$ its Betti numbers, and T_{i} the torsion subgroup in $H_{i}(X, \mathbb{Z})$. Then $H^{n}(X, Z)=\mathbb{Z}^{b_{n}(X)} \oplus T_{n-1}(X)$.

COROLLARY: Let X be a simply connected cellular space (a manifold or a variety). Then $H^{2}(X, \mathbb{Z})$ is torsion-free.

DEFINITION: Let M be a 4-manifold. Intersection form of M is the form $x, y \mapsto \int_{M} x \cap y$ on the torsion-free part of $H^{2}(M, \mathbb{Z})$. Signature of M is the signature of this bilinear symmetric form.

REMARK: By Poincaré duality, the intersection form is unimodular.
THEOREM: (Rokhlin, Wu)
Let M be a smooth, simply connected 4-manifold with even intersection form. Then its signature is divisible by 16.

Topology of 4-manifolds and Freedman's theorem

THEOREM: (M. Freedman, 1982) The homotopy class of a compact, simply connected 4-manifold M is uniquely determined by its intersection form $H^{2}(M, \mathbb{Z}) \otimes_{\mathbb{Z}} H^{2}(M, \mathbb{Z}) \longrightarrow \mathbb{Z}$. Moreover, such M exists for any unimodular form. For even intersection forms, homotopy equivalence is equivalent to homeomorphism. For odd intersection forms, there exists exactly two topological manifolds with a given homotopy type; one of them admits a PL-structure, another does not.

For smooth manifolds, the situation is entirely different.

THEOREM: (Donaldson, 1986) Let M be a smooth compact manifold with odd, positive definite intersection form η. Then η admits a diagonalization, that is, for some integer basis $x_{i} \in H^{2}(M, \mathbb{Z})^{*}$, one has $\eta=\sum x_{i} \otimes x_{i}$.

Odd and even unimodular quadratic forms

REMARK: Generally speaking, a positive definite unimodular form, even or odd, cannot be diagonalized, hence Donaldson's theorem is very restrictive.

EXAMPLE: Clearly, an even form cannot be diagonalized. This includes, for example, the form $\eta_{\mathbb{Z} / 2}:=\left(\begin{array}{ll}2 & 3 \\ 3 & 4\end{array}\right)$, which is clearly unimodular, because its determinant is -1 .

REMARK: The number of isomorphism classes of positive definite unimodular lattices (odd and even) grows very fast. The sequence A054911 from OEIS (number of n-dimensional odd unimodular lattices): $1,1,1,1$, $1,1,1,1,2,2,2,3,3,4,5,6,9,13,16,28,40,68,117,273,665$, 2566, 17059, 374062. The sequence A054909 from OEIS: (number of $8 n$-dimensional odd unimodular lattices): 1, 2, 24, $\geqslant 1162109024$.

Classification of indefinite bilinear symmetric forms.

DEFINITION: A bilinear symmetric form η is called indefinite, if $\eta(x, x)<0$ and $\eta(y, y)>0$ for some x and y.

THEOREM: (classification of unimodular bilinear symmetric forms)

* Let q be an odd unimodular indefinite form. Then q is diagonal: $q=$ $\sum \pm x_{i} \otimes x_{i}$.
* Let q be an even unimodular indefinite form. Then (V, q) can be represented as a direct sum of quadratic lattices (that is, \mathbb{Z}-modules with bilinear forms) $\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$, and quadratic lattices $E_{ \pm 8}$. . The bilinear form E_{8} is isomorphic to the intersection form of the Cartan algebra of the special Lie group E_{8} :

$$
\left(\begin{array}{cccccccc}
2 & -1 & 0 & 0 & 0 & 0 & 0 & 0 \\
-1 & 2 & -1 & 0 & 0 & 0 & 0 & 0 \\
0 & -1 & 2 & -1 & 0 & 0 & 0 & -1 \\
0 & 0 & -1 & 2 & -1 & 0 & 0 & 0 \\
0 & 0 & 0 & -1 & 2 & -1 & 0 & 0 \\
0 & 0 & 0 & 0 & -1 & 2 & -1 & 0 \\
0 & 0 & 0 & 0 & 0 & -1 & 2 & 0 \\
0 & 0 & -1 & 0 & 0 & 0 & 0 & 2
\end{array}\right),
$$

and $-E_{8}$ is the same form with the opposite sign.

4-dimensional manifolds as connected sums

DEFINITION: Connected sum $M_{1} \# M_{2}$ of manifolds M_{1} and M_{2} of the same dimension is constructed as follows. We remove a ball from M_{1} and from M_{2}, and glue the corresponding spherical boundary components of these manifolds.

CLAIM: Let M_{1}, M_{2} be manifolds with the intersection form q_{1}, q_{2}. Then for all $0<i<\operatorname{dim} M$ we have $H^{i}\left(M_{1} \# M_{2}\right)=H^{i}\left(M_{1}\right) \oplus H^{i}\left(M_{2}\right)$, and the intersection form on $M_{1} \# M_{2}$ is equal to $q_{1} \oplus q_{2}$.

REMARK: Donaldson and Freedman's theorem imply that any smooth 4manifold with odd intersection form is homeomorphic to a connected sum of several copies of $\mathbb{C} P^{2}$ (the intersection form on $\mathbb{C} P^{2}$ is diagonal with signature 1), and several copies of the manifold $\overline{\mathbb{C} P^{2}}$, obtained from $\mathbb{C} P^{2}$ by the change of orientation (the intersection form is diagonal with signature -1).

4-dimensional manifolds with even intersection form

DEFINITION: E_{8}-manifold is a simply connected 4-manifold with the intersection form E_{8}. By Rokhlin's theorem, E_{8}-manifold does not admit a smooth structure (its signature is not divisible by 16). The E_{8}-manifold with opposite orientation is called the $-E_{8}$-manifold.

REMARK: From the classification of even unimodular forms and Freedman's theorem it follows immediately that every 4-manifold with even, indefinite intersection form is homeomorphic to a connected sum of several copies of E_{8}-manifolds, $-E_{8}$-manifolds, and $\S^{2} \times S^{2}$.

DEFINITION: A topological 4-manifold if K3 type can be defined as a connected sum of two $-E_{8}$-manifolds and three $S^{2} \times S^{2}$. It admits a smooth structure (an infinite countable number of smooth structures, in fact).

REMARK: It is still not entirely clear when a manifold of form $\pm E_{8}^{k} \#\left(S^{2} \times\right.$ $\left.S^{2}\right)^{l}$ admits a smooth structure.

THEOREM: (Furuta) If $E_{8}^{2 k} \#\left(S^{2} \times S^{2}\right)^{l}$ admits a smooth structure, then $l>2 k$.

Complex manifolds (reminder)

DEFINITION: Let M be a smooth manifold. An almost complex structure is an operator $I: T M \longrightarrow T M$ which satisfies $I^{2}=-\mathrm{Id}_{T M}$.

The eigenvalues of this operator are $\pm \sqrt{-1}$. The corresponding eigenvalue decomposition is denoted $T M=T^{0,1} M \oplus T^{1,0}(M)$.

DEFINITION: An almost complex structure is integrable if $\forall X, Y \in T^{1,0} M$, one has $[X, Y] \in T^{1,0} M$. In this case I is called a complex structure operator. A manifold with an integrable almost complex structure is called a complex manifold.

THEOREM: (Newlander-Nirenberg)
This definition is equivalent to the usual one.
REMARK: The commutator defines a $\mathbb{C}^{\infty} M$-linear map
$N:=\wedge^{2}\left(T^{1,0}\right) \longrightarrow T^{0,1} M$, called the Nijenhuis tensor of I. One can represent N as a section of $\wedge^{2,0}(M) \otimes T^{0,1} M$.

Exercise: Prove that $\mathbb{C} P^{n}$ is a complex manifold, in the sense of the above definition.

Kähler manifolds (reminder)

DEFINITION: An Riemannian metric g on an almost complex manifiold M is called Hermitian if $g(I x, I y)=g(x, y)$. In this case, $g(x, I y)=g\left(I x, I^{2} y\right)=$ $-g(y, I x)$, hence $\omega(x, y):=g(x, I y)$ is skew-symmetric.

DEFINITION: The differential form $\omega \in \wedge^{1,1}(M)$ is called the Hermitian form of (M, I, g).

REMARK: It is $U(1)$-invariant, hence of Hodge type $(\mathbf{1}, \mathbf{1})$.

DEFINITION: A complex Hermitian manifold (M, I, ω) is called Kähler if $d \omega=0$. The cohomology class $[\omega] \in H^{2}(M)$ of a form ω is called the Kähler class of M, and ω the Kähler form.

Calabi-Yau manifolds

REMARK: Let B be a line bundle on a manifold. Using the long exact sequence of cohomology associated with the exponential sequence

$$
0 \longrightarrow \mathbb{Z}_{M} \longrightarrow C^{\infty} M \longrightarrow\left(C^{\infty} M\right)^{*} \longrightarrow 0,
$$

we obtain a short exact sequence $0 \rightarrow H^{1}\left(M,\left(C^{\infty} M\right)^{*}\right) \xrightarrow{\xi} H^{2}(M, \mathbb{Z}) \rightarrow 0$, hence every bundle B is uniquely determined by the cohomology class $\xi_{B} \in H^{2}(M, \mathbb{Z})$.

DEFINITION: Let B be a complex line bundle, and ξ_{B} its defining element in $H^{1}\left(M,\left(C^{\infty} M\right)^{*}\right)=H^{2}(M, \mathbb{Z})$. Its image in $H^{2}(M, \mathbb{Z})$ is called the first Chern class of B.

REMARK: A complex line bundle B is topologically trivial $\Leftrightarrow c_{1}(B)=0$.
DEFINITION: The first Chern class of a complex n-manifold is $c_{1}\left(\wedge^{n, 0}(M)\right)$.

DEFINITION:
A Calabi-Yau manifold is a compact Kaehler manifold with $c_{1}(M, \mathbb{Z})=0$.

K3 surfaces

DEFINITION: A complex surface is a compact, complex manifold of complex dimension 2.

DEFINITION: A K3 surface is a Kähler complex surface M with $b_{1}=0$ and $c_{1}(M, \mathbb{Z})=0$.

REMARK: All surfaces with b_{1} even are Kähler (Kodaira, BuchdahlLamari).

The name K3 is given by Andre Weil in honor of Kummer, Kähler and Kodaira.

The Broad Peak

"Faichan Kangri (K3) is the 12th highest mountain on Earth."

Chez les Weil. André et Simone

André Weil: 6 May 1906-6 August 1998.

"Simone et André à Penthiévre, 1918-1919"

Erich Kähler

(Erich Kähler: 1990)
16 January 1906-31 May 2000

Ernst Eduard Kummer

Ernst Kummer: 29 January 1810-14 May 1893

Kunihiko Kodaira

(Kunihiko and Seiko Kodaira)
Kunihiko Kodaira: 16 March 1915-26 July 1997

Properties of K3 surfaces

CLAIM: Let M be a K 3 surface, and $K_{M}:=\Lambda^{2}\left(\Omega^{1} M\right)$ be its canonical bundle. Then K_{M} is trivial as a holomorphic vector bundle.

Proof: Since $b_{1}=0$ and M is Kähler, we have $h^{0,1}=H^{1}\left(\Theta_{M}\right)=0$. Then the exponential exact sequence $H^{1}\left(M, \mathcal{O}_{M}\right) \longrightarrow H^{1}\left(M, \mathcal{O}_{M}^{*}\right) \xrightarrow{c_{1}} H^{2}(M, \mathbb{Z})$ implies that K_{M} is trivial (its Chern class vanishes).

REMARK: Let $\chi(M)=\sum_{i}(-1)^{i} \operatorname{dim} H^{i}\left(M, \mathcal{O}_{M}\right)$ be the holomorphic Euler characteristic. Riemann-Roch formula for surfaces gives $\chi(M)=\frac{c_{1}^{2}+c_{2}}{12}$. Applying this to K 3 and using $H^{1}\left(\Theta_{M}\right)=0$ and $H^{2}\left(\Theta_{M}\right)=H^{0}\left(K_{M}\right)^{*} \stackrel{12}{=} \mathbb{C}$ (Serre's duality), we obtain that $\chi\left(\mathcal{G}_{M}\right)=2$. Since $c_{1}(M)=0$, this implies $\chi(M)=2=\frac{c_{2}(M)}{12}$, giving $c_{2}(M)=24$. Since $c_{2}(M)$ is the Euler characteristic of M, we obtain $b_{2}(M)=22$.

This gives the Hodge diamond for a K3 surface:

		1		
	0		0	
1		20		1
	0		0	
		1		

