K3 surfaces

lecture 3: topology of complex surfaces

Misha Verbitsky

IMPA, sala 236

September 5, 2022, 15:30

Topology of 4-manifolds

REMARK: Topologically, there are 3 interesting classes of manifolds: **smooth manifolds**, **PL manifolds** (that is, manifolds with triangulation) and **smooth manifolds**. Any two diffeomorphic smooth manifolds are PL-equivalent, but PL-manifolds might have non-equivalent smooth structures. There are PL-manifolds not admitting smooth structures as well. Any topological manifold might have non-equivalent PL-structures; there are also topological manifolds admitting no PL (and hence, no smooth) structures. This hierarchy is well understood outside of dimension 4. In dimension 4 it is not well understood, but we know that **even** \mathbb{R}^4 **has uncountable number of pairwise non-equivalent smooth structures (Donaldson)**.

Topological 4-manifolds are well understood, due to M. Freedman (Freedman got the Fields medal for this work). Then Donaldson has shown that the topology of **smooth** manifolds **is much more complicated** (and still mysterious). He also got Fields medal for this. The idea is that the classification of smooth structures **is closer to algebraic and symplectic geometry** than to the topology.

I will explain these results as far as they can be applied to K3 surfaces.

The intersection form

DEFINITION: Let V be \mathbb{Z}^n , considered as a \mathbb{Z} -module. A bilinear symmetric form $\eta: V \otimes_{\mathbb{Z}} V \longrightarrow \mathbb{Z}$ is called **unimodular** if it defines an isomorphism $V \to \operatorname{Hom}_{\mathbb{Z}}(V,\mathbb{Z})$, **even** if $\eta(x,x)$ is even for all $x \in V$, and **odd** otherwise. **Signature** of η is signature of the corresponding bilinear form on the vector space $R^n = V \otimes_{\mathbb{Z}} \mathbb{R}$.

THEOREM: (Universal coefficients formula)

Let X be a cellular topological space, $b_i(X)$ its Betti numbers, and T_i the torsion subgroup in $H_i(X,\mathbb{Z})$. Then $H^n(X,Z)=\mathbb{Z}^{b_n(X)}\oplus T_{n-1}(X)$.

COROLLARY: Let X be a simply connected cellular space (a manifold or a variety). Then $H^2(X,\mathbb{Z})$ is torsion-free.

DEFINITION: Let M be a 4-manifold. **Intersection form** of M is the form $x, y \mapsto \int_M x \cap y$ on the torsion-free part of $H^2(M, \mathbb{Z})$. **Signature** of M is the signature of this bilinear symmetric form.

REMARK: By Poincaré duality, the intersection form is unimodular.

THEOREM: (Rokhlin, Wu)

Let M be a smooth, simply connected 4-manifold with even intersection form. Then its signature is divisible by 16.

Topology of 4-manifolds and Freedman's theorem

THEOREM: (M. Freedman, 1982) The homotopy class of a compact, simply connected 4-manifold M is uniquely determined by its intersection form $H^2(M,\mathbb{Z})\otimes_{\mathbb{Z}}H^2(M,\mathbb{Z})\longrightarrow \mathbb{Z}$. Moreover, such M exists for any unimodular form. For even intersection forms, homotopy equivalence is equivalent to homeomorphism. For odd intersection forms, there exists exactly two topological manifolds with a given homotopy type; one of them admits a PL-structure, another does not.

For smooth manifolds, the situation is entirely different.

THEOREM: (Donaldson, 1986) Let M be a smooth compact manifold with odd, positive definite intersection form η . Then η admits a diagonalization, that is, for some integer basis $x_i \in H^2(M, \mathbb{Z})^*$, one has $\eta = \sum x_i \otimes x_i$.

Odd and even unimodular quadratic forms

REMARK: Generally speaking, a positive definite unimodular form, even or odd, cannot be diagonalized, hence Donaldson's theorem is very restrictive.

EXAMPLE: Clearly, an even form cannot be diagonalized. This includes, for example, the form $\eta_{\mathbb{Z}/2} := \begin{pmatrix} 2 & 3 \\ 3 & 4 \end{pmatrix}$, which is clearly unimodular, because its determinant is -1.

REMARK: The number of isomorphism classes of positive definite unimodular lattices (odd and even) **grows very fast.** The sequence A054911 from OEIS (number of n-dimensional odd unimodular lattices): 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 3, 3, 4, 5, 6, 9, 13, 16, 28, 40, 68, 117, 273, 665, 2566, 17059, 374062. The sequence A054909 from OEIS: (number of 8n-dimensional odd unimodular lattices): 1, 2, 24, \geqslant 1162109024.

Classification of indefinite bilinear symmetric forms.

DEFINITION: A bilinear symmetric form η is called **indefinite**, if $\eta(x,x) < 0$ and $\eta(y,y) > 0$ for some x and y.

THEOREM: (classification of unimodular bilinear symmetric forms)

- * Let q be an odd unimodular indefinite form. Then q is diagonal: $q = \sum \pm x_i \otimes x_i$.
- * Let q be an even unimodular indefinite form. Then (V,q) can be represented as a direct sum of quadratic lattices (that is, \mathbb{Z} -modules with bilinear forms) $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$, and quadratic lattices $E_{\pm 8}$,. The bilinear form E_8 is isomorphic to the intersection form of the Cartan algebra of the special Lie group E_8 :

$$\begin{pmatrix} 2 & -1 & 0 & 0 & 0 & 0 & 0 & 0 \\ -1 & 2 & -1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & -1 & 2 & -1 & 0 & 0 & 0 & -1 \\ 0 & 0 & -1 & 2 & -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 & 2 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 & -1 & 2 & -1 & 0 \\ 0 & 0 & 0 & 0 & 0 & -1 & 2 & 0 \\ 0 & 0 & -1 & 0 & 0 & 0 & 0 & 2 \end{pmatrix},$$

and $-E_8$ is the same form with the opposite sign.

4-dimensional manifolds as connected sums

DEFINITION: Connected sum $M_1 \# M_2$ of manifolds M_1 and M_2 of the same dimension is constructed as follows. We remove a ball from M_1 and from M_2 , and glue the corresponding spherical boundary components of these manifolds.

CLAIM: Let M_1, M_2 be manifolds with the intersection form q_1, q_2 . Then for all $0 < i < \dim M$ we have $H^i(M_1 \# M_2) = H^i(M_1) \oplus H^i(M_2)$, and the intersection form on $M_1 \# M_2$ is equal to $q_1 \oplus q_2$.

REMARK: Donaldson and Freedman's theorem imply that any smooth 4-manifold with odd intersection form is homeomorphic to a connected sum of several copies of $\mathbb{C}P^2$ (the intersection form on $\mathbb{C}P^2$ is diagonal with signature 1), and several copies of the manifold $\overline{\mathbb{C}P^2}$, obtained from $\mathbb{C}P^2$ by the change of orientation (the intersection form is diagonal with signature -1).

4-dimensional manifolds with even intersection form

DEFINITION: E_8 -manifold is a simply connected 4-manifold with the intersection form E_8 . By Rokhlin's theorem, E_8 -manifold does not admit a smooth structure (its signature is not divisible by 16). The E_8 -manifold with opposite orientation is called the $-E_8$ -manifold.

REMARK: From the classification of even unimodular forms and Freedman's theorem it follows immediately that every 4-manifold with even, indefinite intersection form is homeomorphic to a connected sum of several copies of E_8 -manifolds, $-E_8$ -manifolds, and $\S^2 \times S^2$.

DEFINITION: A topological 4-manifold if K3 type can be defined as a connected sum of two $-E_8$ -manifolds and three $S^2 \times S^2$. It admits a smooth structure (an infinite countable number of smooth structures, in fact).

REMARK: It is still not entirely clear when a manifold of form $\pm E_8^k \# (S^2 \times S^2)^l$ admits a smooth structure.

THEOREM: (Furuta) If $E_8^{2k} \# (S^2 \times S^2)^l$ admits a smooth structure, then l > 2k.

Complex manifolds (reminder)

DEFINITION: Let M be a smooth manifold. An almost complex structure is an operator $I: TM \longrightarrow TM$ which satisfies $I^2 = -\operatorname{Id}_{TM}$.

The eigenvalues of this operator are $\pm \sqrt{-1}$. The corresponding eigenvalue decomposition is denoted $TM = T^{0,1}M \oplus T^{1,0}(M)$.

DEFINITION: An almost complex structure is **integrable** if $\forall X, Y \in T^{1,0}M$, one has $[X,Y] \in T^{1,0}M$. In this case I is called a **complex structure operator**. A manifold with an integrable almost complex structure is called a **complex manifold**.

THEOREM: (Newlander-Nirenberg)

This definition is again along the theorem.

This definition is equivalent to the usual one.

REMARK: The commutator defines a $\mathbb{C}^{\infty}M$ -linear map $N:=\Lambda^2(T^{1,0})\longrightarrow T^{0,1}M$, called the Nijenhuis tensor of I. One can represent N as a section of $\Lambda^{2,0}(M)\otimes T^{0,1}M$.

Exercise: Prove that $\mathbb{C}P^n$ is a complex manifold, in the sense of the above definition.

Kähler manifolds (reminder)

DEFINITION: An Riemannian metric g on an almost complex manifold M is called **Hermitian** if g(Ix, Iy) = g(x, y). In this case, $g(x, Iy) = g(Ix, I^2y) = -g(y, Ix)$, hence $\omega(x, y) := g(x, Iy)$ is skew-symmetric.

DEFINITION: The differential form $\omega \in \Lambda^{1,1}(M)$ is called the Hermitian form of (M,I,g).

REMARK: It is U(1)-invariant, hence of Hodge type (1,1).

DEFINITION: A complex Hermitian manifold (M, I, ω) is called **Kähler** if $d\omega = 0$. The cohomology class $[\omega] \in H^2(M)$ of a form ω is called **the Kähler** class of M, and ω the **Kähler form**.

Calabi-Yau manifolds

REMARK: Let B be a line bundle on a manifold. Using the long exact sequence of cohomology associated with the exponential sequence

$$0 \longrightarrow \mathbb{Z}_M \longrightarrow C^{\infty}M \longrightarrow (C^{\infty}M)^* \longrightarrow 0,$$

we obtain a short exact sequence $0 \to H^1(M, (C^{\infty}M)^*) \stackrel{\xi}{\to} H^2(M, \mathbb{Z}) \to 0$, hence every bundle B is uniquely determined by the cohomology class $\xi_B \in H^2(M, \mathbb{Z})$.

DEFINITION: Let B be a complex line bundle, and ξ_B its defining element in $H^1(M,(C^{\infty}M)^*)=H^2(M,\mathbb{Z})$. Its image in $H^2(M,\mathbb{Z})$ is called **the first** Chern class of B.

REMARK: A complex line bundle B is topologically trivial $\Leftrightarrow c_1(B) = 0$.

DEFINITION: The first Chern class of a complex n-manifold is $c_1(\Lambda^{n,0}(M))$.

DEFINITION:

A Calabi-Yau manifold is a compact Kaehler manifold with $c_1(M,\mathbb{Z})=0$.

K3 surfaces

DEFINITION: A complex surface is a compact, complex manifold of complex dimension 2.

DEFINITION: A K3 surface is a Kähler complex surface M with $b_1=0$ and $c_1(M,\mathbb{Z})=0$.

REMARK: All surfaces with b_1 even are Kähler (Kodaira, Buchdahl-Lamari).

The name K3 is given by Andre Weil in honor of Kummer, Kähler and Kodaira.

K3 surfaces, lecture 3

The Broad Peak

"Faichan Kangri (K3) is the 12th highest mountain on Earth."

K3 surfaces, lecture 3

Chez les Weil. André et Simone

André Weil: 6 May 1906 - 6 August 1998.

"Simone et André à Penthiévre, 1918-1919"

Erich Kähler

(Erich Kähler: 1990)

16 January 1906 - 31 May 2000

Ernst Eduard Kummer

Ernst Kummer: 29 January 1810 - 14 May 1893

Kunihiko Kodaira

(Kunihiko and Seiko Kodaira)

Kunihiko Kodaira: 16 March 1915 - 26 July 1997

Properties of K3 surfaces

CLAIM: Let M be a K3 surface, and $K_M := \Lambda^2(\Omega^1 M)$ be its canonical bundle. Then K_M is trivial as a holomorphic vector bundle.

Proof: Since $b_1 = 0$ and M is Kähler, we have $h^{0,1} = H^1(\mathcal{O}_M) = 0$. Then the exponential exact sequence $H^1(M,\mathcal{O}_M) \longrightarrow H^1(M,\mathcal{O}_M^*) \stackrel{c_1}{\longrightarrow} H^2(M,\mathbb{Z})$ implies that K_M is trivial (its Chern class vanishes).

REMARK: Let $\chi(M) = \sum_i (-1)^i \dim H^i(M, \mathcal{O}_M)$ be the holomorphic Euler characteristic. Riemann-Roch formula for surfaces gives $\chi(M) = \frac{c_1^2 + c_2}{12}$. Applying this to K3 and using $H^1(\mathcal{O}_M) = 0$ and $H^2(\mathcal{O}_M) = H^0(K_M)^* = \mathbb{C}$ (Serre's duality), we obtain that $\chi(\mathcal{O}_M) = 2$. Since $c_1(M) = 0$, this implies $\chi(M) = 2 = \frac{c_2(M)}{12}$, giving $c_2(M) = 24$. Since $c_2(M)$ is the Euler characteristic of M, we obtain $b_2(M) = 22$.

This gives the Hodge diamond for a K3 surface: